Родонит калия как сделать
Метод молекулярной абсорбционной спектроскопии в УФ - и видимой областях спектра обычно называют спектрофотометрией. Объектом спектрофотометрических измерений, как правило, являются растворы.
Этот метод анализа, будучи абсорбционным, основан на измерении поглощения света. Его чаще всего измеряют путем сравнения интенсивностей света внешнего источника, падающего на образец и прошедшего сквозь него.
Отметим, что изменение интенсивности света при прохождение через образец может быть вызвано светопоглощение не только определяемого вещества, но и других компонентов (растворителя), а также рассеянием, отражением и т.д. чтобы исключить светорассеяние исследуемый раствор должен быть прозрачным. Прочие эффекты можно скомпенсировать, используя раствор сравнения. В простейшем случае им является чистый растворитель или раствор контрольного опыта (содержащий все компоненты кроме определяемого). Раствор сравнения и фотометрируемый раствор помещают в кюветы одинаковой толщины.
Важнейшие законы светопоглощения
Закон Бугера-Ламберта-Бера. Пусть слой однородной среды толщиной dl содержит светопоглощающее вещество в концентрации с. Через него пропускают монохроматический световой поток интенсивности I. Интенсивность слоя на выходе равна I+dl, причем dl
Интегрируя это выражение получаем:
интенсивность светового потока падающего на образец обозначим I0. подставляя в выражение l=0 и I=I0, находим, что const=lnI0. подставляя это значение в выражение и переходя от натуральных логарифмов к десятичным, получаем математическое выражение основного закона светопоглащения:
величину I0/I называют пропусканием и обозначают Т. величину А=lgТ называют оптической плотностью.
Отметим, что при выводе основного закона светопоглащения не делалось никаких предположений ни о природе поглощающей среды, ни о характере поглощаемого излучения.
Поэтому этот закон универсален. Поскольку связь между концентрацией и оптической плотностью прямо пропорциональна, то из всех возможных величин, характеризующих светопоглащения, именно оптическую плотность удобнее всего использовать в спектрофотомерии в качестве аналитического сигнала.
Если концентрация поглощающих частиц в моль/л, а толщина слоя - в сантиметрах, то коэффициент поглощения обозначается буквой ε и называется молярным коэффициентом поглощения.
Общепринятая форма записи основного закона светопоглащения в спектрофотомерии выглядит как:
Поскольку размерность величины ε однозначно задана, то её обычно не указывают, а приводят только численное значение.
Закон аддитивности оптических плотностей
Если в растворе присутствуют несколько поглощающих веществ, то оптическая плотность раствора равна сумме вкладов каждого из компонентов:
2. Причины отклонения от основного закона светопоглощения Немонохроматичность и влияние рассеянного света
При выводе основного закона светопоглащения сделано предположение о строгой монохроматичности источника света. В действительности в спектре испускания любого источника всегда присутствуют фотоны различных длин волн. Немонохроматичность источника приводит к отрицательным отклонениям от основного закона светопоглащения. Требуемая степень монохроматичности источника зависит от ширины излучаемой спектральной полосы. Один и тот же источник в одном случае может рассматриваться как монохроматичный, а в другом нет. Для большинства практических задач, не связанных с измерениями очень больших оптических плотностей, источник можно считать достаточно монохроматичным, если
где wист и wпогл - спектральная полуширина полосы испускания источника и изучаемой полосы поглощения, соответственно. При этом максимумы обеих полос должны совпадать. Уравнение называется условием Уолша. Для различных приборов спектральная полосы испускания источника может быть различной. Поэтому в спектрофотометрии построение градуировочного графика и измерение оптической плотности анализируемого образца необходим, выполнять на одном и том же приборе. Также отклонения от основного закон светопоглащения вызывает и влияние рассеянного света. Рассеянный свет это постороннее излучение, которое возникает в оптической системе прибора вследствие отражения и рассеяния света от поверхностей линз, зеркал и других оптических деталей. На раствор попадает тем больше рассеянного света, чем шире щель монохроматора. Раскрывать щель монохроматора приходиться, если I0 мало или оптическая плотность раствора сравнения велика. Щель увеличивается там, где при уменьшение чувствительности детектора. Особенно сильно рассеянное излучение в УФ - области, где чувствительность детектора в несколько раз меньше, чем в длинноволновой. Рассеянный свет может вызвать смещение максимума поглощения или даже появление ложных максимумов. Чтобы это предотвратить на пути светового потока ставят специальные светофильтры.
В выражение основного закона светопоглощения величина с представляет собой равновесную концентрацию поглощающих частиц особого сорта. При построение зависимости А от с по оси абсцисс откладывают общую концентрацию растворенного вещества. Несовпадение общей и равновесной концентрации может привести к нарушению основного закона светопоглащения. Отклонение от линейной зависимости будет иметь место тогда, когда на глубину протекания химических процессов с поглощающим веществом оказывает влияние его концентрация. Это процессы абсорбции-диссоциации.
Влияние показателя преломления
На границе раздела двух сред некоторая доля падающего света всегда отражается. Эта доля зависит от показателей преломления сред. На практике этим явлением можно пренебречь, поскольку в спектрофотометрии имеют дело с разбавленными растворами, показатель преломления которых можно считать независящим от концентрации.
спектрофотометрия роданид калий светопоглощение
Метрологические характеристики спектрофотометрического метода
Воспроизводимость. Случайные погрешности, обусловливающие воспроизводимость результатов фотометрических определений, вызваны следующими причинами: погрешностями при приготовлении анализируемых растворов; полнотой переведения определяемого компонента в фотометрируемое соединение; влиянием посторонних компонентов; погрешностями контрольного опыта; кюветной погрешностью, которая связана с различиями в толщине кювет, состоянием их рабочих граней, а также воспроизводимостью их положения в кюветодержателе; погрешностями установки нужной длины волны и настройки регистрирующей системы на 0 и 100% пропускания; нестабильностью работы источника освещения и приемно-усилительной системы.
Селективность. Важнейшим фактором, ограничивающим селективность в спектрофотометрии, является спектральная ширина молекулярных полос поглощения в растворах (достигающая десятка нанометров) и связанная с этим высокая вероятность спектральных помех - перекрывание спектров компонентов, появление аддитивных систематических погрешностей. Кроме того, спектр поглощения комплекса часто обусловлен поглощением реагента.
Приборы, применяемые в спектрофотомерии
Для измерения спектров используют спектральные приборы-спектрофотометры, основные части которого: источник излучения, диспергирующий элемент, кювета с исследуемым веществом, регистрирующее устройство. В качестве источников излучения применяют дейтериевую (или водородную) лампу (в УФ области) и вольфрамовую лампу накаливания или галогенную лампу (в видимой и ближней ИК областях). Приемниками излучения служат фотоэлектронные умножители (ФЭУ) и фотоэлементы (фоторезисторы на основе PbS). Диспергирующими элементами прибора являются призменный монохроматор или монохроматор с дифракционными решетками. Спектр получают в графической форме, а в приборах со встроенной мини-ЭВМ-в графической и цифровой формах. Графически спектр регистрируют в координатах: длина волны (нм) и (или) волновое число (см-1) - пропускание (%) и (или) оптическая плотность. Основные характеристики спектрофотометров: точность определения длины волны излучения и величины пропускания, разрешающая способность и светосила, время сканирования спектра. Мини-ЭВМ (или микропроцессоры) осуществляют автоматизированное управление прибором и различную математическую обработку получаемых экспериментальных данных: статистическую обработку результатов измерений, логарифмирование величины пропускания, многократное дифференцирование спектра, интегрирование спектра по различным программам, разделение перекрывающихся полос, расчет концентраций отдельных компонентов и т.п. Спектрофотометры обычно снабжаются набором приставок для получения спектров отражения, работы с образцами при низких и высоких т-рах, для измерения характеристик источников и приемников излучения и т.п.
Для исследования спектров в ИК области используют обычно спектрофотометры, работающие в интервале от 1,0 до 50 мкм (от 10000 до 200 см-1). Основными источниками излучения в них являются стержень из карбида кремния (глобар), штифт из смеси оксидов циркония, тория и иттрия (штифт Нернста) и спираль из нихрома. Приемниками излучения служат термопары (термоэлементы), болометры, различные модели оптико-акустических приборов и пироэлектрические детекторы, например на основе дейтерированного триглицинсульфата (ТГС). В спектрофотометрах, сконструированных по "классической" схеме, в качестве диспергирующий элементов применяют призменный монохроматор или монохроматор с дифракционными решетками. С кон.60-х гг.20 в. выпускаются ИК фурье-спектрофотометры, которые обладают уникальными характеристиками: разрешающая способность-до 0,001 см-1, точность определения волнового числа v-до 10-4 см-1 (относит. точность bDv/v!! 10 - 8), время сканирования спектра может достигать 1 с, отношение сигнал: шум превышает 105. Эти приборы позволяют изучать образцы массой менее 1 нг. К ним также имеются различные приставки для получения спектров отражения, исследования газов при малых или высоких давлениях, разных температурах и т.п. Встроенная в прибор мини-ЭВМ управляет прибором, выполняет Фурье-преобразования, осуществляет накопление спектров, проводит различную обработку получаемой информации.
ИК фурье-спектрофотометры могут содержать программы по автоматической идентификации образца неизвестного состава и определению содержания примесей, например в полупроводниковых материалах.
3. Роданид калия (Potassium thiocyanate)
Химическая формула: KCNS
Синоним: Калий роданид, тиоционат, Калий сульфоцианат, Калий тиоционат
Внешний вид: бесцветные кристаллы, в массе белого цвета
Условия хранения: хранить в сухом, хорошо проветриваемом помещении
Температура плавления: 173,2°С.
Растворимость в воде68,5% (при 20°С)
Температура Кипения°C 500
PH (5%, 25°С) 6-8 (по факт.6,6)
Калий роданистый (Калий роданид, Калий сульфоцианат, Калий тиоционат) KCNS - бесцветные кристаллы моноклинной системы, расплывающиеся во влажном воздухе. При 430°С препарат приобретает синюю окраску, при охлаждении снова обесцвечивается. При 500°С разлагается. Калий роданистый хорошо растворим в воде, хорошо растворим также в этиловом спирте. При кристаллизации растворов роданистого калия при низкой температуре получается кристаллогидрат KNCS·0,5H2O.
Роданистый калий (Калий роданид) можно получить при взаимодействии роданистого аммония с гидроокисью калия:
NH4NCS + KOH = KNCS + NH3б + H2O
Роданистый калий (Калий роданид, сульфоцианат, тиоционат) KCNS используется в текстильной промышленности; в фотографии; в органическом синтезе (например, для получения тиомочевины, искусственного горчичного масла или красителей), для получения тиоцианатов, охлаждающих смесей, инсектицидов и т.д.
Растворимость Вещество (в г/100 г или характеристика)
амиловый спирт | растворим |
вода (0°C) | 177 |
вода (20°C) | 217 |
вода (25°C) | 239 |
вода (32,5°C) | 265 |
вода (47,3°C) | 317 |
вода (67°C) | 408 |
вода (99°C) | 673 |
этанол | растворим |
Природные и антропогенные источники: Содержится в слюне (в среднем 0,01 %) и крови (13 мг/л) человека.
Представляем видео уроки по химии – в данном ролике рассматривается такое понятие как химическое равновесие.
В аналитической химии используются вещества, которые в процессе реакций меняют свой цвет, что дает возможность визуально оценивать происходящие процессы. Это свойство часто демонстрируют в учебном процессе, а также включают в видео уроки по химии. Химическое равновесие в растворах можно продемонстрировать на примере обратимой реакции роданида калия с солями железа (III). Для опыта используются три колбы, в которые помещаются реагенты.
Роданид калия образует с хлоридом железа (III) красный роданид железа, который по виду похож на кровь. Уравнение реакции записывается таким образом:
Чтобы наблюдать смещение равновесия, добавляются исходные вещества и продукты реакции. В результате реакции не все вещества полностью превратились в роданид, и остался запас исходных веществ.
В первую колбу добавляем одно из исходных веществ – хлорид железа. Окраска раствора становится более интенсивной. Это значит, что концентрация роданида железа увеличилась. Это демонстрирует принцип, что при увеличении концентрации исходных веществ равновесие реакции смещается в сторону образования продуктов реакции.
В третью колбу добавляют один из продуктов реакции – хлорид калия. Наблюдается не потемнение раствора, как в первых двух случаях, а его осветление. Это значит, что концентрации роданида (конечного продукта реакции) уменьшается, а исходных веществ – увеличивается. То есть, добавление в раствор продуктов реакции сдвигает химическое равновесие реакции в сторону образования исходных веществ.
Что это такое.
. и зачем его едят?
Откуда у цианистого калия такая популярность среди преступников настоящих и вымышленных? Причины понять нетрудно: вещество хорошо растворимо в воде, не обладает выраженным вкусом, летальная (смертельная) доза невелика — в среднем достаточно 0,12 г, хотя индивидуальная восприимчивость к яду, конечно, различается. Высокая доза цианида калия вызывает почти мгновенную потерю сознания, а затем паралич дыхания. Добавим сюда доступность вещества в начале XIX века, и выбор заговорщиков-убийц Распутина становится понятным.
Как он действует?
Пора разобраться, как же действует такое нехитрое по составу вещество на организм. Еще в 60-х годах XIX века было установлено, что венозная кровь отравленных цианидами животных имеет алый цвет. Это свойственно, если вы помните, артериальной крови, богатой кислородом. Значит, отравленный цианидами организм не способен усваивать кислород. Синильная кислота и цианиды каким-то образом тормозят процесс тканевого окисления. Оксигемоглобин (соединение гемоглобина с кислородом) впустую циркулирует по организму, не отдавая кислород тканям.
Связывая цитохромоксидазу, цианид-ионы выводят молекулы этого фермента из окислительной цепи, и передача электрона кислороду срывается, то есть кислород клеткой не усваивается. Был обнаружен интересный факт: ежики, находящиеся в зимней спячке, способны переносить дозы цианида, во много раз превосходящие смертельную. А причина в том, что при низкой температуре усвоение кислорода организмом замедляется, как и все химические процессы. Поэтому уменьшение количества фермента переносится легче.
У читателей детективов иногда возникает представление, что цианистый калий — самое ядовитое вещество на Земле. Вовсе нет! Никотин и стрихнин (вещества растительного происхождения) в десятки раз более ядовиты. О мере ядовитости можно судить по массе токсина на 1 кг веса лабораторного животного, которая требуется для наступления смерти в 50% случаев (LD50). Для цианида калия она равна 10 мг/кг, а для никотина — 0,3. Далее идут: диоксин, яд искусственного происхождения — 0,022 мг/кг; тетродотоксин, выделяемый рыбой фугу, — 0,01 мг/кг; батрахотоксин, выделяемый колумбийской древесной лягушкой, — 0,002 мг/кг; рицин, содержащийся в семенах клещевины, — 0,0001 мг/кг (подпольную лабораторию террористов по изготовлению рицина раскрыли британские спецслужбы в 2003 году); β-бунгаротоксин, яд южноазиатской змеи бунгарос, — 0,000019 мг/кг; токсин столбняка — 0,000001 мг/кг.
Как видим, самые ядовитые на свете вещества создала природа. Добывать их гораздо сложнее, чем получить нехитрое соединение КСN Понятно, что цианид калия и дешевле, и доступнее.
Однако не всегда применение цианистого калия в преступных целях дает гарантированный результат. Посмотрим, что пишет Феликс Юсупов о событиях, происходивших в подвале на Мойке студеной декабрьской ночью 1916 году:
«. Я предложил ему эклеры с цианистым калием. Он сперва отказался.
— Не хочу, — сказал он, — больно сладкие.
Однако взял один, потом еще один. Я смотрел с ужасом. Яд должен был подействовать тут же, но, к изумлению моему, Распутин продолжал разговаривать, как ни в чем не бывало. Тогда я предложил ему наших домашних крымских вин.
Я стоял возле него и следил за каждым его движением, ожидая, что он вот-вот рухнет.
Но он пил, чмокал, смаковал вино, как настоящие знатоки. Ничего не изменилось в лице его. Временами он подносил руку к горлу, точно в глотке у него спазм. Вдруг он встал и сделал несколько шагов. На мой вопрос, что с ним, он ответил:
— А ничего. В горле щекотка.
Он выпил его. Никакого впечатления. На подносе оставался последний, третий бокал.
Все напрасно. Феликс Юсупов поднялся к себе в кабинет. «. Дмитрий, Сухотин и Пуришкевич, едва я вошел, кинулись навстречу с вопросами:
— Ну что? Готово? Кончено?
— Яд не подействовал, — сказал я. Все потрясенно замолчали.
— Не может быть! — вскричал Дмитрий.
— Доза слоновья! Он все проглотил? — спросили остальные.
Но все-таки цианид калия оказал некоторое действие на организм старца: «Голову он свесил, дышал прерывисто.
— Вам нездоровится? — спросил я.
Но вернемся к Ямбо:
Во-первых, HCN — очень слабая кислота. Такая кислота может быть вытеснена из своей соли более сильной кислотой и улетучиться. Даже угольная кислота сильнее синильной. А угольная кислота образуется при растворении углекислого газа в воде. То есть под действием влажного воздуха, содержащего и воду, и углекислый газ, цианид калия постепенно превращается в карбонат:
Если цианид калия, который использовали в описанных случаях, долго хранился в контакте с влажным воздухом, он мог и не подействовать.
Во-вторых, соль слабой циановодородной кислоты подвержена гидролизу:
KCN + H2O = HCN↑ + КОН.
Выделяющийся циановодород способен присоединяться к молекуле глюкозы и других сахаров, содержащих карбонильную группу:
СН2ОН—СНОН—СНОН—СНОН—СНОН—СН=О + HC≡N →
СН2ОН—СНОН—СНОН—СНОН—СНОН—СНОН—С≡N
Вещества, образующиеся в результате присоединения циановодорода по карбонильной группе, называют циангидринами. Глюкоза — продукт гидролиза сахарозы. Люди, работающие с цианидами, знают, что для профилактики отравления следует держать за щекой кусочек сахара. Глюкоза связывает цианиды, находящиеся в крови. Та часть яда, которая уже проникла в клеточное ядро, где в митохондриях происходит тканевое окисление, для сахаров недоступна. Если у животного повышенное содержание глюкозы в крови, оно более устойчиво к отравлению цианидами, как, например, птицы. То же наблюдается и у больных сахарным диабетом. При поступлении в организм небольших порций цианидов организм может обезвредить их самостоятельно с помощью глюкозы, содержащейся в крови. А при отравлении в качестве антидота используют 5%-ный или 40%-ный растворы глюкозы, вводимые внутривенно. Но это средство действует медленно.
И для Распутина, и для слона Ямбо цианидом калия начинили пирожные, содержащие сахар. Съедены они были не сразу, а тем временем цианид калия выделил синильную кислоту, и она присоединилась к глюкозе. Часть цианида определенно успела обезвредиться. Добавим, что на сытый желудок отравление цианидами происходит медленнее.
При этом образуются тиоцианаты (роданиды), гораздо менее вредные для организма, чем цианиды. Если цианиды и синильная кислота относятся к первому классу опасности, то тиоцианаты — вещества второго класса. Они отрицательно влияют на печень, почки, вызывают гастрит, а также угнетают щитовидную железу. У людей, систематически испытывающих воздействие небольших доз цианидов, возникают заболевания щитовидной железы, вызванные постоянным образованием тиоцианатов из цианидов. Тиосульфат в реакции с цианидами более активен, чем глюкоза, но тоже действует медленно. Обычно его используют в комбинации с другими антицианидами.
Реакция образования цианметгемоглобина тоже обратима, поэтому со временем цианид-ионы снова поступают в кровь. Чтобы связать их, одновременно с антидотом (обычно нитритом) в кровь вводят раствор тиосульфата. Наиболее эффективна смесь нитрита натрия с тиосульфатом натрия. Она способна помочь даже на последних стадиях отравления цианидами — судорожной и паралитической.
Где с ним можно встретиться?
Имеет ли шанс обычный человек, не герой детективного романа, отравиться цианидом калия или синильной кислотой? Как любые вещества первого класса опасности, цианиды хранятся с особыми предосторожностями и недоступны рядовому злоумышленнику, если только он не сотрудник специализированной лаборатории или цеха. Да и там подобные вещества на строгом учете. Однако отравление цианидами может произойти и без участия злодея.
Во-первых, цианиды встречаются в природе. Цианид-ионы входят в состав витамина В12 (цианокоболамина). Даже в плазме крови здорового человека на 1 л приходится 140 мкг цианид-ионов. В крови курящих людей содержание цианидов в два с лишним раза больше. Но такие концентрации организм переносит безболезненно. Другое дело, если с пищей поступят цианиды, содержащиеся в некоторых растениях. Тут возможно серьезное отравление. В ряду источников синильной кислоты, доступных каждому, можно назвать семена абрикосов, персиков, вишен, горького миндаля. В них содержится гликозид амигдалин.
При гидролизе молекула амигдалина распадается на две молекулы глюкозы, молекулу бензальдегида и молекулу синильной кислоты. Это происходит в кислой среде или под действием фермента эмульсина, содержащегося в косточке. Из-за образования синильной кислоты один грамм амигдалина — смертельная доза. Это соответствует 100 г ядрышек абрикосовых косточек. Известны случаи отравления детей, съевших по 10–12 косточек абрикоса.
В горьком миндале содержание амигдалина в три — пять раз выше, но есть его косточки вряд ли захочется. В крайнем случае следует подвергнуть их нагреванию. При этом разрушится фермент эмульсин, без которого гидролиз не пойдет. Именно благодаря амигдалину семена горького миндаля имеют свой горький вкус и миндальный запах. Точнее, миндальный запах имеет не сам амигдалин, а продукты его гидролиза — бензальдегид и синильная кислота (запах синильной кислоты мы уже обсуждали, а вот запах бензальдегида, без сомнения, миндальный).
Во-вторых, отравление цианидами может произойти на производстве, где они используются для создания гальванических покрытий или для извлечения благородных металлов из руд. Ионы золота и платины образуют с цианид-ионами прочные комплексные соединения. Благородные металлы не способны окисляться кислородом, потому что их оксиды непрочны. Но если кислород действует на эти металлы в растворе цианида натрия или калия, то образующиеся при окислении ионы металла связываются цианид-ионами в прочный комплексный ион и металл полностью окисляется. Сам цианид натрия благородных металлов не окисляет, но помогает окислителю осуществить его миссию:
4Au + 8NaCN + 2H2O = 4Na[Au(CN)2] + 4NaOH.
Рабочие, занятые в таких производствах, испытывают хроническое воздействие цианидов. Цианиды ядовиты и при попадании в желудок, и при вдыхании пыли и брызг при обслуживании гальванических ванн, и даже при попадании на кожу, особенно если на ней есть ранки. Недаром доктор Лазоверт надевал резиновые перчатки. Был случай смертельного отравления горячей смесью, содержащей 80% которая попала рабочему на кожу.
Даже не занятые в горно-обогатительном или на гальваническом производстве люди могут пострадать от цианидов. Известны случаи, когда в реки попадали сточные воды таких производств. В 2000, 2001 и 2004 году Европа была встревожена выбросами цианидов в воды Дуная на территории Румынии и Венгрии. Это приводило к тяжелым последствиям для обитателей рек и жителей прибрежных поселков. Отмечались случаи отравления рыбой, выловленной в Дунае. Поэтому нелишне знать меры предосторожности при обращении с цианидами. И читать в детективах про цианистый калий будет интереснее.
Что это такое.
. и зачем его едят?
Откуда у цианистого калия такая популярность среди преступников настоящих и вымышленных? Причины понять нетрудно: вещество хорошо растворимо в воде, не обладает выраженным вкусом, летальная (смертельная) доза невелика — в среднем достаточно 0,12 г, хотя индивидуальная восприимчивость к яду, конечно, различается. Высокая доза цианида калия вызывает почти мгновенную потерю сознания, а затем паралич дыхания. Добавим сюда доступность вещества в начале XIX века, и выбор заговорщиков-убийц Распутина становится понятным.
Как он действует?
Пора разобраться, как же действует такое нехитрое по составу вещество на организм. Еще в 60-х годах XIX века было установлено, что венозная кровь отравленных цианидами животных имеет алый цвет. Это свойственно, если вы помните, артериальной крови, богатой кислородом. Значит, отравленный цианидами организм не способен усваивать кислород. Синильная кислота и цианиды каким-то образом тормозят процесс тканевого окисления. Оксигемоглобин (соединение гемоглобина с кислородом) впустую циркулирует по организму, не отдавая кислород тканям.
Связывая цитохромоксидазу, цианид-ионы выводят молекулы этого фермента из окислительной цепи, и передача электрона кислороду срывается, то есть кислород клеткой не усваивается. Был обнаружен интересный факт: ежики, находящиеся в зимней спячке, способны переносить дозы цианида, во много раз превосходящие смертельную. А причина в том, что при низкой температуре усвоение кислорода организмом замедляется, как и все химические процессы. Поэтому уменьшение количества фермента переносится легче.
У читателей детективов иногда возникает представление, что цианистый калий — самое ядовитое вещество на Земле. Вовсе нет! Никотин и стрихнин (вещества растительного происхождения) в десятки раз более ядовиты. О мере ядовитости можно судить по массе токсина на 1 кг веса лабораторного животного, которая требуется для наступления смерти в 50% случаев (LD50). Для цианида калия она равна 10 мг/кг, а для никотина — 0,3. Далее идут: диоксин, яд искусственного происхождения — 0,022 мг/кг; тетродотоксин, выделяемый рыбой фугу, — 0,01 мг/кг; батрахотоксин, выделяемый колумбийской древесной лягушкой, — 0,002 мг/кг; рицин, содержащийся в семенах клещевины, — 0,0001 мг/кг (подпольную лабораторию террористов по изготовлению рицина раскрыли британские спецслужбы в 2003 году); β-бунгаротоксин, яд южноазиатской змеи бунгарос, — 0,000019 мг/кг; токсин столбняка — 0,000001 мг/кг.
Как видим, самые ядовитые на свете вещества создала природа. Добывать их гораздо сложнее, чем получить нехитрое соединение КСN Понятно, что цианид калия и дешевле, и доступнее.
Однако не всегда применение цианистого калия в преступных целях дает гарантированный результат. Посмотрим, что пишет Феликс Юсупов о событиях, происходивших в подвале на Мойке студеной декабрьской ночью 1916 году:
«. Я предложил ему эклеры с цианистым калием. Он сперва отказался.
— Не хочу, — сказал он, — больно сладкие.
Однако взял один, потом еще один. Я смотрел с ужасом. Яд должен был подействовать тут же, но, к изумлению моему, Распутин продолжал разговаривать, как ни в чем не бывало. Тогда я предложил ему наших домашних крымских вин.
Я стоял возле него и следил за каждым его движением, ожидая, что он вот-вот рухнет.
Но он пил, чмокал, смаковал вино, как настоящие знатоки. Ничего не изменилось в лице его. Временами он подносил руку к горлу, точно в глотке у него спазм. Вдруг он встал и сделал несколько шагов. На мой вопрос, что с ним, он ответил:
— А ничего. В горле щекотка.
Он выпил его. Никакого впечатления. На подносе оставался последний, третий бокал.
Все напрасно. Феликс Юсупов поднялся к себе в кабинет. «. Дмитрий, Сухотин и Пуришкевич, едва я вошел, кинулись навстречу с вопросами:
— Ну что? Готово? Кончено?
— Яд не подействовал, — сказал я. Все потрясенно замолчали.
— Не может быть! — вскричал Дмитрий.
— Доза слоновья! Он все проглотил? — спросили остальные.
Но все-таки цианид калия оказал некоторое действие на организм старца: «Голову он свесил, дышал прерывисто.
— Вам нездоровится? — спросил я.
Но вернемся к Ямбо:
Во-первых, HCN — очень слабая кислота. Такая кислота может быть вытеснена из своей соли более сильной кислотой и улетучиться. Даже угольная кислота сильнее синильной. А угольная кислота образуется при растворении углекислого газа в воде. То есть под действием влажного воздуха, содержащего и воду, и углекислый газ, цианид калия постепенно превращается в карбонат:
Если цианид калия, который использовали в описанных случаях, долго хранился в контакте с влажным воздухом, он мог и не подействовать.
Во-вторых, соль слабой циановодородной кислоты подвержена гидролизу:
KCN + H2O = HCN↑ + КОН.
Выделяющийся циановодород способен присоединяться к молекуле глюкозы и других сахаров, содержащих карбонильную группу:
СН2ОН—СНОН—СНОН—СНОН—СНОН—СН=О + HC≡N →
СН2ОН—СНОН—СНОН—СНОН—СНОН—СНОН—С≡N
Вещества, образующиеся в результате присоединения циановодорода по карбонильной группе, называют циангидринами. Глюкоза — продукт гидролиза сахарозы. Люди, работающие с цианидами, знают, что для профилактики отравления следует держать за щекой кусочек сахара. Глюкоза связывает цианиды, находящиеся в крови. Та часть яда, которая уже проникла в клеточное ядро, где в митохондриях происходит тканевое окисление, для сахаров недоступна. Если у животного повышенное содержание глюкозы в крови, оно более устойчиво к отравлению цианидами, как, например, птицы. То же наблюдается и у больных сахарным диабетом. При поступлении в организм небольших порций цианидов организм может обезвредить их самостоятельно с помощью глюкозы, содержащейся в крови. А при отравлении в качестве антидота используют 5%-ный или 40%-ный растворы глюкозы, вводимые внутривенно. Но это средство действует медленно.
И для Распутина, и для слона Ямбо цианидом калия начинили пирожные, содержащие сахар. Съедены они были не сразу, а тем временем цианид калия выделил синильную кислоту, и она присоединилась к глюкозе. Часть цианида определенно успела обезвредиться. Добавим, что на сытый желудок отравление цианидами происходит медленнее.
При этом образуются тиоцианаты (роданиды), гораздо менее вредные для организма, чем цианиды. Если цианиды и синильная кислота относятся к первому классу опасности, то тиоцианаты — вещества второго класса. Они отрицательно влияют на печень, почки, вызывают гастрит, а также угнетают щитовидную железу. У людей, систематически испытывающих воздействие небольших доз цианидов, возникают заболевания щитовидной железы, вызванные постоянным образованием тиоцианатов из цианидов. Тиосульфат в реакции с цианидами более активен, чем глюкоза, но тоже действует медленно. Обычно его используют в комбинации с другими антицианидами.
Реакция образования цианметгемоглобина тоже обратима, поэтому со временем цианид-ионы снова поступают в кровь. Чтобы связать их, одновременно с антидотом (обычно нитритом) в кровь вводят раствор тиосульфата. Наиболее эффективна смесь нитрита натрия с тиосульфатом натрия. Она способна помочь даже на последних стадиях отравления цианидами — судорожной и паралитической.
Где с ним можно встретиться?
Имеет ли шанс обычный человек, не герой детективного романа, отравиться цианидом калия или синильной кислотой? Как любые вещества первого класса опасности, цианиды хранятся с особыми предосторожностями и недоступны рядовому злоумышленнику, если только он не сотрудник специализированной лаборатории или цеха. Да и там подобные вещества на строгом учете. Однако отравление цианидами может произойти и без участия злодея.
Во-первых, цианиды встречаются в природе. Цианид-ионы входят в состав витамина В12 (цианокоболамина). Даже в плазме крови здорового человека на 1 л приходится 140 мкг цианид-ионов. В крови курящих людей содержание цианидов в два с лишним раза больше. Но такие концентрации организм переносит безболезненно. Другое дело, если с пищей поступят цианиды, содержащиеся в некоторых растениях. Тут возможно серьезное отравление. В ряду источников синильной кислоты, доступных каждому, можно назвать семена абрикосов, персиков, вишен, горького миндаля. В них содержится гликозид амигдалин.
При гидролизе молекула амигдалина распадается на две молекулы глюкозы, молекулу бензальдегида и молекулу синильной кислоты. Это происходит в кислой среде или под действием фермента эмульсина, содержащегося в косточке. Из-за образования синильной кислоты один грамм амигдалина — смертельная доза. Это соответствует 100 г ядрышек абрикосовых косточек. Известны случаи отравления детей, съевших по 10–12 косточек абрикоса.
В горьком миндале содержание амигдалина в три — пять раз выше, но есть его косточки вряд ли захочется. В крайнем случае следует подвергнуть их нагреванию. При этом разрушится фермент эмульсин, без которого гидролиз не пойдет. Именно благодаря амигдалину семена горького миндаля имеют свой горький вкус и миндальный запах. Точнее, миндальный запах имеет не сам амигдалин, а продукты его гидролиза — бензальдегид и синильная кислота (запах синильной кислоты мы уже обсуждали, а вот запах бензальдегида, без сомнения, миндальный).
Во-вторых, отравление цианидами может произойти на производстве, где они используются для создания гальванических покрытий или для извлечения благородных металлов из руд. Ионы золота и платины образуют с цианид-ионами прочные комплексные соединения. Благородные металлы не способны окисляться кислородом, потому что их оксиды непрочны. Но если кислород действует на эти металлы в растворе цианида натрия или калия, то образующиеся при окислении ионы металла связываются цианид-ионами в прочный комплексный ион и металл полностью окисляется. Сам цианид натрия благородных металлов не окисляет, но помогает окислителю осуществить его миссию:
4Au + 8NaCN + 2H2O = 4Na[Au(CN)2] + 4NaOH.
Рабочие, занятые в таких производствах, испытывают хроническое воздействие цианидов. Цианиды ядовиты и при попадании в желудок, и при вдыхании пыли и брызг при обслуживании гальванических ванн, и даже при попадании на кожу, особенно если на ней есть ранки. Недаром доктор Лазоверт надевал резиновые перчатки. Был случай смертельного отравления горячей смесью, содержащей 80% которая попала рабочему на кожу.
Даже не занятые в горно-обогатительном или на гальваническом производстве люди могут пострадать от цианидов. Известны случаи, когда в реки попадали сточные воды таких производств. В 2000, 2001 и 2004 году Европа была встревожена выбросами цианидов в воды Дуная на территории Румынии и Венгрии. Это приводило к тяжелым последствиям для обитателей рек и жителей прибрежных поселков. Отмечались случаи отравления рыбой, выловленной в Дунае. Поэтому нелишне знать меры предосторожности при обращении с цианидами. И читать в детективах про цианистый калий будет интереснее.
Читайте также: