Робот из радиодеталей своими руками
Привет! Будучи любителем - энтузиастом электроники, я уверен, что всё что мы делаем – радиоэлектронные игрушки – самоделки, или большие проекты, все это от любопытства и лени. Любопытство стремится понять и постичь необъятное, не познанное,
Ремонт неисправного ЖК дисплея
Эта инструкция наглядно покажет, как отремонтировать жидкокристаллический дисплей с мертвыми строками или столбцами. Для примера взят старенький телефон, но принцип подходит и для других устройств. Обычно дисплей соединен с контроллером через
Универсальный индикатор разряда аккумулятора
Ни одно переносное электронное устройство, будь то портативная колонка для телефона, сам телефон, плеер и т.д. не обходится без аккумулятора. Огромной популярностью сейчас пользуются литий-ионные аккумуляторы номинальным напряжением 3,7 вольт, они
Прожектор для мастерской из хлама
Работая с наждаком постоянно не хватает света. Гаражный свет закрываю телом и появляется тень на заготовке. Первоначально использовал переноску, даже использовал налобный фонарик. Решил все же облегчить задачу и сделать постоянное освещение.
Вечный фонарик в киндере
Имея очень энергичную собаку, которая бегает без передышки за мячом, мы решили использовать это, сделав такое устройство чтобы при пробежке сохранять часть энергии. Будем делать брелок на шею со светодиодом. Утром на прогулке он будет заряжаться, а
Как сделать огромный светодиод LED
А вы когда-нибудь держали в руках огромный светодиод, размером с человеческий кулак? Конечно же нет, потому что таких не существует. Я покажу как сделать такую оригинальную вещицу своими руками. Это LED светодиод будет точно похож на своего мелкого
Как сделать прибор ночного видения
Всем привет! Вот такая композиция лежит у меня на столе. И как вы думаете для чего все это? Да-да, я решила собрать прибор ночного видения. Скажем, для наблюдения сов по ночам. Мне кажется это очень интересным.
100 Ваттный фонарь своими руками
Сейчас стали популярны и доступны мощные сверх ярких светодиодных источников света. Преимущества светодиодов в том, что их срок службы намного больше - до 20 000 часов, а не на 1000 часов как обычные лампы накаливания. Также светодиодные модули
Детектор скрытой проводки
Довольно часто у жителей многоквартирных домов возникает необходимость закрепить на стене квартиры картину, вешалку, полку или ещё какой-нибудь предмет интерьера. Для этого необходимо отметить точку на стене и пробурить небольшое отверстие
Десульфататор АКБ из хлама
Всем привет! Сделать простейший десульфататор из старых и ненужных вещей вполне возможно минут за 15, если конечно знать, что и из чего делать. У любого нормального радиолюбителя по любому много всевозможного электронного хлама. И если поскребсти
Индукционный нагреватель металла
Индукционный нагреватель позволяет нагреть металл вплоть до красноты, даже не прикасаясь к нему. Основой такого нагревателя является катушка, в которой создаётся поле высокой частоты, которое и действует на помещённый внутрь металлический объект. В
Звонок на дверь из старого мобильника
Стрелочный индикатор звука
Многие звуковоспроизводящие устройства, будь то магнитофоны или усилители конца прошлого века были оснащены стрелочным индикатором на лицевой панели. Его стрелка двигалась в такт музыке, и хоть это не имело никакого практического значения,
Запуск трехфазного двигателя от однофазной сети без конденсатора
Статья посвящена возможности запуска трехфазного асинхронного двигателя мощностью 250 Вт от сети 220 В не при помощи пускового конденсатора, а с использованием самодельного пускового электронного устройства. Схема его очень проста: на двух
Яркий автономный светильник своими руками
Внезапно вышедший из строя внешний аккумулятор – не повод для расстройства, особенно, если повреждена всего лишь его микросхема. Конечно, это самая главная деталь в данном устройстве, но если не повреждены аккумуляторы (во многих таких устройствах
Не выбрасывайте старый картридж - сделайте из него повербанк
Думая об очередной самоделке, понял, что нет крепкого Powerbank. Сразу образовалась идея конструкции в трубе. Но брать ПВХ трубу не захотелось. Паять ее не проблема, но как-то кустарно. Как всегда, во время попался старый картридж от лазерного
Как зарядить севшую батарею с помощью другого телефона
Бывают такие ситуации, когда зарядное устройство от вашего телефона сломалось, а нужно срочно зарядить свой аппарат. Но не стоит отчаиваться. Если вы живёте не один, то проблема легко решается. Для зарядки батареи подойдёт любой другой телефон
Трехфазное напряжение из однофазного за 5 минут
Получить трехфазное напряжение 380 В из однофазного 220 В у себя в гараже можно довольно просто. На это не потребуется много времени, всю схему можно подключить минут за 5 без лишней сложности. К примеру, Вам необходимо запустить мощный двигатель 3
Как сделать Power Bank на 220 В
Это переносное зарядное устройство (Power Bank) в отличии от всех выпускаемых моделей выдает не только 5 В постоянного тока, но 220В переменного, чем очень выгодно отличается и может быть применимо в более широком круге. Мощность - 60 Вт, что для
Трёхфазное твердотельное реле на 40 А
В быту всё прочнее занимают своё место твердотельные реле, они просто не заменимы, когда включение и выключение нагрузки происходит очень часто и обычные электромагнитные реле просто не выдерживают механических нагрузок, изнашиваются и ломаются. К
Погружной насос из помпы стиральной машины
Если у Вас в наличии имеется старая или сломанная автоматическая стиральная машино, но из нее можно извлечь неплохую и очень нужную штуковину - водяную помпу (насос). Стоит она предположительно в самом низу под барабаном и служит для откачки
Стенд для паяльника
Содержание электропаяльника в чистоте и порядке – дело нехитрое. Однако, вместе с паяльником мы всегда используем такие расходные материалы, как оловянно-свинцовый припой, флюс для спаивания, канифоль, паяльный жир и тому подобные принадлежности.
Твердотельное реле своими руками
В последнее время набрали популярность твёрдотельные реле. Для очень многих устройств силовой электроники твёрдотельные реле стали просто необходимы. Их преимущество в несоизмеримо большем количестве срабатываний, по сравнению с электромагнитными
Роботы заменяют людей на производстве и в быту, трудятся в опасных условиях. Андроиды, напоминающие человека, работают, как правило, в качестве промоутеров, а промышленные машины настроены на точное выполнение функций. Их разработкой занимаются специалисты.
Домашних же мастеров интересует вопрос, как сделать робота из подручных средств. Оригинальные механизмы можно сконструировать самостоятельно и запрограммировать на реализацию несложных задач.
Робот, реагирующий на источник света
Для быстрого сбора механизмов используются предметы, которые можно найти дома. Это моторчики и батарейки из детских игрушек, проволока, солнечные аккумуляторы от старых калькуляторов, светодиоды. Дополнительно потребуются фиксаторы (клей, изолента), отвертка и другие инструменты из домашней мастерской.
Перед началом работы следует определить, какие функции возьмет на себя готовый механизм. За 15 минут можно собрать робота, который ищет источник света. При включении лампы он будет двигаться к ней, а при перемещении фонаря — следовать за потоком лучей.
Необходимые инструменты и детали
При сборке конструкции простого робота своими руками потребуются:
- основа – монтажная плата или плотный материал (картон);
- движущая сила – миниатюрные моторчики мощностью 3 или 5 В (из старой игрушки);
- колеса – крышки от пластиковых бутылок;
- датчики – фототранзисторы на 3 В;
- источник питания — 3 спаянные батарейки АА (пальчиковые);
- управляющие элементы – транзисторы 816Г (производство – Россия);
- монтажные приспособления – провода из витой пары.
Для проделывания отверстий на картоне потребуется шило, а фиксатором элементов послужит термопластичный клей (из термопистолета). Для работы также понадобится паяльник и жесткая проволока, которую заменит разогнутая скрепка.
Процесс сборки
Готовые детали следует разложить на рабочем столе и включить паяльник. Первоначально собирают плату, для чего подготавливают текстолитовую или картонную основу со сторонами от 4 до 5 см. На ней должна уместиться схема, батарейки, двигатели и крепеж переднего колеса.
Поодаль от переднего края фиксируют транзисторы, запаивая их так, чтобы маркировка располагалась на стороне правого колеса.
К 3 соединенным батарейкам подпаивают провода и определяют на плате 2 точки их схождения (плюс и минус). Удобно продеть в края платы витую пару, запаять концы к транзисторам и датчикам, вывести петлю и к ней подпаять батарейки.
Двигатели устанавливают в конце шасси с противоположной стороны платы. Управляющий моторчик крепят напротив управляемой системы. Это необходимо, чтобы робот поворачивался на свет.
Сборку электрики начинают от отрицательного полюса батарейки к положительному контакту по всей схеме. Взяв часть витой пары, припаивают отрицательный контакт датчиков к минусу батарей, и в это же место добавляют коллекторы транзисторов.
Второй фотоэлемент припаивают небольшим куском провода к транзисторной базе. Остальные ножки присоединяют к моторчикам. Для проверки правильности сборки используют тестер полярности напряжения.
После сборки проводят тестирование. Для этого включают схему и подносят ее к источнику света, поворачивая сначала одним, затем другим чувствительным элементом.
Когда все сделано правильно, двигатели на плате вращаются, меняя скорость в зависимости от степени освещения.
Если устройство не работает, проверяют правильность подключения контактов. В схеме каждый из датчиков отвечает за работу колес — правый за левое, и наоборот. Если это не так, корректируют полярность включения моторов.
Далее осуществляют сборку устройства. Первым делом изготавливают боковые колеса, склеив крышки между собой полой частью внутрь. Для их фиксации просверливают небольшые отверстия, используя миниатюрную дрель с насадками. В колесо продевают проволоку (бывшую скрепку) и закрепляют ее концы между фотодатчиками на плате.
На последнем этапе проверяют работу механизма, используя источники освещения разной интенсивности. Колеса робота должны ехать вперед. Если система работает, зафиксированные на плате моторчики и батарейки закрепляют термоклеем.
После приступают к изучению возможностей робота и расширению его функционала. Например, ставят задачу, чтобы он ездил по заданной траектории.
Робот, различающий препятствия
Перед сборкой интеллектуального устройства обдумывают его внешний вид и принцип передвижения. Оптимальный вариант – использование гусеничной цепи (как в танке).
Такими роботами легче управлять, и они способны передвигаться по любому типу поверхности. Снять гусеницы, моторчик и редуктор можно с игрушечного танка.
Инструменты и запчасти
Перед созданием робота следует подготовить:
- микроконтроллер (ATmega 16 в корпусе Dip-40);
- керамические конденсаторы 0,1 мкФ, 1 мкФ, 22 пФ;
- резисторы на 25 Вт номиналом 10 кОм (1 единицу) и 220 Ом (4 штуки);
- диод 1N4004;
- L7805 в корпусе ТО-220;
- паяльник;
- инфракрасные диоды (2 шт.);
- фототранзисторы, способные реагировать на длину ик-лучей;
- резонатор кварцевый на 16 МГц;
- мультиметр;
- радиодетали;
- гусеницы и мотор от игрушечного экскаватора, танка.
Работа с платой
Для обеспечения питания микроконтроллера подбирают стабилизатор напряжения. Оптимальный выбор – микросхема L7805, дающая на выходе стабильные 5 В. Дополнением к ней идут конденсаторы для сглаживания напряжения и диоды, защищающие от переполюсовки.
Далее осматривают корпус контроллера MK-Dip и выделяют в нем узлы:
Управление двигателями
В приспособлении используется микросхема L293D со встроенными диодами, которые защищают систему от перегрузки. Она имеет 2 канала, что позволяет подключить сразу 2 двигателя. Моторчики на плате запрещено присоединять напрямую к МК. Контакт обеспечивается с помощью ключевых транзисторов.
Во время работы возможен нагрев микроэлектронного устройства. Для отведения тепла предусмотрены ножки GND, которые следует распаивать на контактной площадке.
Установка датчиков препятствий
Ориентирование робота в пространстве обеспечивает простой инфракрасный датчик. Он состоит из диода, способного излучать в инфракрасном диапазоне, и фототранзистора для приема лучей. В отсутствии преграды перед механизмом транзистор закрыт.
При его приближении к мебели, стене, элементы улавливают тепло. Транзистор открывается, что активирует течение тока по цепи и побуждает устройство изменять траекторию движения.
Датчики устанавливают на передней части платы, подключая их с помощью проводов к основной схеме. По бокам от основы располагают гусеничный механизм.
Прошивка робота
Для работы устройства требуется программа, которая позволит снимать показания с датчиков и управлять двигателями. Простым роботам ее пишут с использованием языка программирования Си. Он представляет собой набор функций, вызывающих друг друга для дополнения.
Прописывая команды, следует учесть, что по инструкции у робота 2 датчика. Если на 1 из фототранзисторов поступает свет от инфракрасного диода, механизм начинает движение назад, отъезжая от препятствия. Он разворачивается и снова едет вперед.
Наличие преград следует проверять справа и слева, что прописывается с помощью команд. Алгоритм работы можно усовершенствовать, задав командную строку, что делать при возникновении угрозы прямого столкновения.
Улучшить готовый механизм позволит энкодер, который распознает положение робота в пространстве. Для информативности в дальнейшем устанавливается дисплей, на котором будет отображаться отладочная информация, расстояние до препятствий и другие нужные сведения.
Наилучший вариант знакомства детей с миром робототехники — конструирование и программирование Lego-роботов (EV3 и Boost).
Роботы для детей
Робототехника позволяет школьникам развивать творческие навыки и знакомить с техническими терминами. Освоив принципы конструирования lego-роботов (как правило, в школах робототехники используют для обучения lego-платформы), дети учатся разбираться в новых технологиях и осваивают азы востребованной профессии.
Ребятам будет интересно самостоятельно построить или поучаствовать в сборке:
- механических насекомых, которые передвигаются, светятся в темноте;
- квадропода (4-хногого шагохода) по специальным чертежам;
- умных робоживотных, которые могут передвигаться по заданной траектории;
- робота-колобка для накопления солнечной энергии;
- настоящей роботизированной руки для игры на барабане и других манипуляций.
Полезные роботизированные устройства для начинающих
Первые шаги в робототехнике можно начать:
Необходимые навыки
Для изготовления роботов новичкам потребуются следующие навыки:
- умение конструировать, создавать механизмы;
- знание того, как обеспечивается взаимодействие маленьких помощников с внешней средой;
- изучение темы, так как сделать шагающего робота своими руками – задача не из легких;
- начальное представление о программировании – переменных, алгоритмах, современных языках.
Познакомившись с азами программирования, можно переходить к созданию самодельных роботов-пылесосов, мойщиков бассейнов и окон в доме. Применение роботам можно найти и в других сферах жизни.
ПРОСТЕЙШИЙ РОБОТ НА ОДНОЙ МИКРОСХЕМЕ
Сделать робота можно, используя лишь одну микросхему драйвера моторов и пару фотоэлементов. В зависимости от способа соединения моторов, микросхемы и фотоэлементов робот будет двигаться на свет или, наоборот, прятаться в темноту, бежать вперед в поисках света или пятиться, как крот, назад. Если добавить в схему робота пару ярких светодиодов, то можно добиться, чтобы он бегал за рукой и даже следовал по темной или светлой линии.
Принцип поведения робота основывается на "фоторецепции" и является типичным для целого класса BEAM-роботов. В живой природе, которой будет подражать наш робот, фоторецепция - одно из основных фотобиологических явлений, в котором свет выступает как источник информации.
В качестве первого опыта обратимся к устройству BEAM-робота, двигающегося вперед, когда на него падает луч света, и останавливающегося, когда свет перестает его освещать. Поведение такого робота называется фотокинезисом - ненаправленным увеличением или уменьшением подвижности в ответ на изменения уровня освещённости.
В устройстве робота, кроме микросхемы драйвера моторов L293D , будет использоваться только один фотоэлемент и один электромотор. В качестве фотоэлемента можно применить не только фототранзистор, но и фотодиод или фоторезистор.
В конструкции робота мы используем фототранзистор n-p-n структуры в качестве фотосенсора. Фототранзисторы на сегодняшний день являются, пожалуй, одним из самых распространенных видов оптоэлектронных приборов и отличаются хорошей чувствительностью и вполне приемлемой ценой.
На рисунке приведены монтажная и принципиальная схемы робота, и если Вы еще не очень хорошо знакомы с условными обозначениями, то, исходя из двух схем, несложно понять принцип обозначения и соединения элементов. Провод, соединяющий различные части схемы с "землей" (отрицательным полюсом источника питания), обычно не изображают полностью, а на схеме рисуют небольшую черточку, обозначающую, что это место соединяется с "землей". Иногда рядом с такой черточкой пишут три буквы "GND", что означает "землю" (ground). Vcc обозначает соединение с положительным полюсом источника питания. Вместо букв Vcc часто пишут +5V, показывая тем самым напряжение источника питания.
Принцип действия схемы робота очень простой. Когда на фототранзистор PTR1 упадет луч света, то на входе INPUT1 микросхемы драйвера двигателей появится положительный сигнал и мотор M1 начнет вращаться. Когда фототранзистор перестанут освещать, сигнал на входе INPUT1 исчезнет, мотор перестанет вращаться и робот остановится. Более подробно о работе с драйвером двигателей можно прочитать в предыдущей статье "Драйвер двигателей L293D".
Чтобы скомпенсировать проходящий через фототранзистор ток, в схему введен резистор R1, номинал которого можно выбрать около 200 Ом. От номинала резистора R1 будет зависеть не только нормальная работа фототранзистора, но и чувствительность робота. Если сопротивление резистора будет большим, то робот будет реагировать только на очень яркий свет, если - небольшим, то чувствительность будет более высокой. В любом случае не следует использовать резистор с сопротивлением менее 100 Ом, чтобы предохранить фототранзистор от перегрева и выхода из строя.
Сделать робота, реализующего реакцию фототаксиса (направленного движения к свету или от света), можно с использованием двух фотосенсоров.
Когда на один из фотосенсоров такого робота попадает свет, включается соответствующий сенсору электромотор и робот поворачивает в сторону света до тех пор, пока свет не осветит оба фотосенсора и не включится второй мотор. Когда оба сенсора освещены, робот движется навстречу источнику света. Если один из сенсоров перестает освещаться, то робот снова поворачивает в сторону источника света и, достигнув положения, при котором свет падает на оба сенсора, продолжает свое движение на свет. Если свет перестает падать на фотосенсоры, робот останавливается.
Схема робота симметричная и состоит из двух частей, каждая из которых управляет соответствующим электромотором. По сути, она является как бы удвоенной схемой предыдущего робота. Фотосенсоры следует располагать крест-накрест по отношению к электромоторам так, как показано на рисунке робота выше. Также можно расположить моторы крест-накрест относительно фотосенсоров так, как показано на монтажной схеме ниже.
Если мы расположим сенсоры в соответствии с левым рисунком, то робот будет избегать источников света и его реакции будут похожи на поведение крота, прячущегося от света.
Сделать поведение робота более живым можно, подав на входы INPUT2 и INPUT3 положительный сигнал (подключить их к плюсу источника питания): робот будет двигаться при отсутствии падающего на фотосенсоры света, а "увидев" свет, будет поворачивать в сторону его источника. Когда свет будет падать на оба сенсора, робот остановится.
Дорогой Бобот, а можно ли использовать в приводимой схеме простейшего робота какие-либо другие микросхемы, например L293DNE?
Конечно, можно, но видишь ли, в чем дело, дружище Бибот. Настоящая L293D выпускается только группой компаний ST Microelectronics. Все остальные подобные микросхемы являются лишь заменителями или аналогами L293D . К таким аналогам относятся L293DNE американской компании Texas Instruments, SCP-3337 от Sensitron Semiconductor. Естественно, что, как и многие аналоги, эти микросхемы имеют свои отличия, которые тебе будет необходимо учитывать, когда ты будешь делать своего робота.
А не мог бы ты рассказать об отличиях, которые мне необходимо будет учесть при использовании L293DNE.
С удовольствием, старина Бибот. Все микросхемы линейки L293D имеют входы, совместимые с TTL-уровнями*, но лишь совместимостью уровней некоторые из них не ограничиваются. Так, L293DNE имеет не только совместимость с TTL по уровням напряжения, но и обладает входами с классической TT-логикой. То есть на неподключенном входе присутствует логическая "1".
Прости, Бобот, но я не совсем понимаю: как же мне это учитывать?
Если на неподключенном входе у L293DNE присутствует высокий уровень (логическая "1"), то и на соответствующем выходе мы будем иметь сигнал высокого уровня. Если мы теперь подадим на рассматриваемый вход сигнал высокого уровня, говоря по другому - логическую "1" (соединим с "плюсом" питания), то на соответствующем выходе ничего не изменится, так как на входе у нас и до этого была "1". Если же мы подадим на наш вход сигнал низкого уровня (соединим с "минусом" питания), то состояние выхода изменится и на нем будет напряжение низкого уровня.
То есть получается все наоборот: L293D мы управляли с помощью положительных сигналов, а L293DNE нужно управлять с помощью отрицательных.
L293D и L293DNE можно управлять как в рамках отрицательной логики, так и в рамках положительной*. Для того чтобы управлять входами L293DNE с помощью положительных сигналов, нам будет необходимо подтянуть эти входы к "земле" подтягивающими резисторами.
Тогда, при отсутствии положительного сигнала, на входе будет присутствовать логический "0", обеспечиваемый подтягивающим резистором. Хитроумные янки называют такие резисторы pull-down, а при подтягивании высокого уровня - pull-up.
Насколько я понял, все, что нам нужно будет добавить в схему простейшего робота, - так это подтягивающие резисторы на входы микросхемы драйвера моторов.
Ты совершенно правильно понял, дорогой Бибот. Номинал этих резисторов можно выбрать около 4,7 кОм. Тогда схема простейшего робота будет выглядеть следующим образом.
Причем от номинала резистора R1 будет зависеть чувствительность нашего робота. Чем сопротивление R1 будет меньше, тем чувствительность робота будет ниже, а чем оно будет больше, тем чувствительность будет выше.
А так как в данном случае нам нет необходимости управлять мотором в двух направлениях, то второй вывод мотора мы можем подключить напрямую к "земле". Что даже несколько упростит схему.
И последний вопрос. А в тех схемах роботов, которые ты привел в рамках нашей беседы, может быть использована классическая микросхема L293D?
Конечно, может. И я бы даже добавил, что использование pull-down резисторов для L293D будет вполне оправдано.
Чтобы сделать робота, "бегающего" за рукой, нам понадобятся два ярких светодиода (на схеме LED1 и LED2). Подключим их через резисторы R1 и R4, чтобы скомпенсировать протекающий через них ток и предохранить от выхода из строя. Расположим светодиоды рядом с фотосенсорами, направив их свет в ту же сторону, в которую ориентированы фотосенсоры, и уберем сигнал с входов INPUT2 и INPUT3.
Задача получившегося робота - реагировать на отраженный свет, который излучают светодиоды. Включим робота и поставим ладонь перед одним из фотосенсоров. Робот повернет в сторону ладони. Переместим ладонь немного в сторону так, чтобы она скрылась из поля "зрения" одного из фотосенсоров, в ответ робот послушно, как собачка, повернет за ладонью.
Светодиоды следует подбирать достаточно яркие, чтобы отраженный свет устойчиво улавливался фототранзисторами. Хороших результатов можно достичь при использовании красных или оранжевых светодиодов с яркостью более 1000 мКд.
Если робот реагирует на вашу руку только тогда, когда она почти касается фотосенсора, то можно попробовать поэкспериментировать с листочком белой бумаги: отражающие способности белого листа намного выше, чем у человеческой руки, и реакция робота на белый листок будет намного лучше и устойчивее.
Белый цвет обладает самыми высокими отражающими свойствами, черный - наименьшими. Основываясь на этом, можно сделать робота, следующего по линии. Сенсоры при этом следует расположить так, чтобы они были направлены вниз. Расстояние между сенсорами должно быть немного больше, чем ширина линии.
Cхема робота, следующего по черной линии, идентична предыдущей. Чтобы робот не терял черную линию, нарисованную на белом поле, ее ширина должна быть около 30 мм или шире. Алгоритм поведения робота достаточно прост. Когда оба фотосенсора улавливают отраженный от белого поля свет, робот движется вперед. Когда один из сеносоров заезжает на черную линию, соответствующий электромотор останавливается и робот начинает поворачиваться, выравнивая свое положение. После того как оба сенсора снова находятся над белым полем, робот продолжает свое движение вперед.
Примечание:
На всех рисунках роботов микросхема драйвера двигателей L293D показана условно (только управляющие входы и выходы).
Размеры получились очень маленькие — на фото сравнение его с монетой и ещё возле спичечного коробка. Глаза робота сделаны из сверхярких светодиодов, засунутых в корпус небольших электролитических конденсаторов.
Рецепты домашней выпечки с фото — пошаговые мастер-классы
чтоб собрать жучка вам понадобится: — 2 маленьких моторчика 1.5вольт (можно купить или снять со старых игрушок (см. фото).) — 2 маленькие скрепки — 2 большие скрепки
2 батарейки AAA или AA
1 держатель для батареек AAA или AA (можно купить или снять с каких-нибудь игрушок)
1 2 cm изоляции
1 деревянный шарик (исп. в качестве колёсика) (можно использовать любой другой стабилизатор, например сняв колесо с какойнибудь старой или не нужной игрушки) — 1 метр эл. провода — 2 не больших SPDT переключателя (можно купить или снять например с старой компютерной мыши)
а также инструменты: *паяльник + немного олова *клейный пистолет и стержень клея к нему (клейный стержень можно расплавить просто паяльником, но рекоменд. это делать клейным пистолетом) *кусачки (чтоб снять изоляцию)
а вот и все детали
1. режим эл. провод на 13 кусочков по 6см и снимаем с них изоляцию (с двух сторон) по 1 см.
2. Припаеваем провода к каждому из компонентов (кроме батареек) см. рисунок.
припаеваем провод к бат. держателю (синий)(third connection)
4. Приклейте 2 моторчика между переключателями так, чтобы сама ходовая часть моторчика касалась земли
5. Из большой скрепки и шарика делаем стабилизатор (колесо, чтоб проще передвигатся по поверхности)
вот так всё это должно смотрется
7. берем 2 мал. скрепочки и делаем из них усы для жука
8. осторожно приклеиваем усы к переключателям (используйте немного клея для этого, чтоб не заклеить сам переключатель)
9. наматываем немного изоляции на ходовую часть моторчика (для лучшего сцепления)
10. Вставляем батарейки
Это не очень сложно. Сам недавно делал.
Прикол в том, что когда он дотрагивается до препятствия правым усиком, то провое колесо останавливается и он поварачивает влево, и наоборот. (Объезжает препятствия)
Как нельзя лучше имитирует настоящих живых существ, которые живут с нами на нашей планете. Сделать такого робота не сложно, но нужно иметь желание и некоторые навыки в сфере электроники.
Материалы и инструменты: — кусок медного провода; — два держателя пальчиковых батареек; — два монолитных керамических конденсатора по 0.22 мФ; — один резистор номиналом 3.3М; — 74НСТ240 октальный чип инвертора на восемь каналов (один); — 20 pin DIP 74ХХ240 или же 74ХХ245 (один); — серводвигатель (один); — выключатель; — одна пластиковая шестерня; — соединитель проводов.
Шаг первый. Подготовка шестерней
Нужно взять пластиковую шестерню и разрезать ее на две одинаковых части. Затем нужно снять рожок и с помощью клея закрепить его к одному полукругу.
Шаг второй. Переделка двигателя
Серводвигатель нужно переделать таким образом, чтобы он работал только на вращение. Затем к нему надо приклеить медный провод, как указано на картинке.
Также на этом этапе понадобится пластиковая трубочка подходящего диаметра, ее нужно приклеить к полукругу. Рожок серводвигателя впоследствии ставится на родное место. На медный провод затем нужно надеть пластиковую трубку. На этом этапе работу можно считать оконченными.
Шаг третий. Создание и установка лап робота
В качестве ног используется медная проволока, ее нужно согнуть так, как указано на картинке. Затем автор приклеивает лапы к полукругам. Также теперь можно приклеить к серводвигателю держатели батареек.
Шаг четвертый. Работа с электроникой
Пожалуй, это самый сложный и ответственный момент. Всю систему нужно подключить четко так, как указано на схеме. Сразу после подключения робот будет готов, и его можно будет испытывать.
Путем изменения угла лап можно добиваться различных характеристик от робота. Можно делать его быстрее или медленнее. Еще можно оснастить робота дополнительными элементами управления, к примеру, усами, по которым он будет определять препятствие. Еще робота можно оснастить глазами в виде светодиодов, это создаст еще большую реалистичность подобия живого существа.
Запускать такого робота нужно на ровной поверхности. Чтобы его ноги не скользили, на их концы можно надеть кембрики.
Очень часто на всевозможных форумах или сайтах посвящённых робототехники можно встретить такой вопрос: как сделать робота из подручных материалов? По таким вопросам сразу понятно, что человек, который их задаёт новичок и мало, что смыслит в робототехники. Но как ни странно из подручных материалов МОЖНО сделать робота…нужно только смекалку проявить.
Я не задавался идеей писать какую-то грандиозную книгу или всеобъемлющий обучающий курс. Я просто захотел ответить на вопросы вот таких новичков. Собственно, я не буду тянуть время и сразу опишу, как можно сделать несложного робота, который бы реагировал на окружающую среду, а точнее объезжал препятствия.
-
Думаю, вы понимаете, что для создания робота нужны определённые детали. А именно: 1. 1. два моторчика по 1.5 вольт каждый 2. 2. два SPDT выключателя 3. 3. две батарейки 4. 4. один корпус для этих батареек 5. 5. один пластиковый шарик со сквозным отверстием 6. 6. три скрепки 7. 7. немного проводков
Практически все эти детали можно найти дома (моторчики можно из какой-нибудь игрушки вытащить), но SPDT выключатели придётся покупать (стоят они недорого — 100 рублей каждый). Итак, вы приобрели все необходимые детали, и я начинаю объяснять что и как нужно делать.
Шаг 1
У нас есть проводки. Нарезаем 13 проводков по 6 см каждый.
Теперь у каждого провода с двух концов удаляем по 1 см изоляцию плоскогубцами или ножом.
С помощью паяльника прикрепляем по два провода к моторчикам и по три провода к SPDT выключателям.
Берём корпус для батареек. С одной стороны от него отходят красный и чёрный провода. Поэтому к другой стороне припаиваем ещё один провод.
Теперь переворачиваем держатель батареек вверх ногами и с помощью клея приклеиваем SPDT выключатели в форме буквы V.
Наступил самый сложный процесс. Нужно правильно спаять и припаять все проводки. Как это сделать показано на рисунке.
Чтобы наш робот реагировал на окружающий его мир и смог объезжать препятствия мы сделаем ему антенны. Берём две скрепки, разгибаем их.
Далее приклеиваем их к SPDT выключателям (лучше приклеить, чем спаивать — иначе можете насквозь пропаять выключатели).
Чтобы обезопасить оси моторчиков от поломки, мы оденем их в резину. Для этого можно взять изоляцию от провода и надеть её на ось.
Ну что? Вот мы с Вами и сделали первого несложного робота, который реагирует на препятствия и объезжает их. Чтобы этот робот поехал, вставьте батарейки и наоборот. А чтобы ускорить движение робота или замедлить, то приклейте моторчики, как на рисунке.
В данной статье мы рассмотрели создание самого элементарного робота. Но ведь вы не хотите и не будите на этом останавливаться, правильно?
Часть II. Суставы и связки.
Расскажите учащимся, что благодаря суставам наши конечности могут сгибаться, а благодаря связкам кости нашего скелета скрепляются между собой. А за счет чего в будет обеспечиваться подвижность деталей в роботе, части которого должны свободно изменять свое положение относительно друг друга?
Предложите командам найти следующие штифты в коробках своих робототехнических наборов.
Спросите учащихся, в чем отличаются штифты в каждой паре?
Попросите учащихся в командах соединить каждым штифтом по две балки и проверить вращение балок относительно друг друга. Балки, соединенные какими штифтами, вращаются более свободно? Сделайте заключение о том, какие штифты наиболее подходящие для подвижных соединений. Задайте вопрос, какие еще элементы из конструктора учащиеся могут предложить использовать в местах подвижных соединений помимо штифтов?
Часть III. Прототипирование ноги робота.
Пусть каждый из членов команд в своей тетради сделает схематический рисунок для шагающего робота или его части, которая ответственна за шагание. При создании схемы пусть они ориентируются только на детали из существующего комплекта. По завершению, учащиеся должны обговорить внутри команд свои схемы:
- Есть ли отличающиеся предложения по типу перемещения робота? По принципиальному строению педипулятора (pedis — нога, лат., понятие введено по аналогии с манипулятором)?
- Какую траекторию, по их мнению, описывают крайние точки получившихся педипуляторов относительно робота?
Обсудите получившиеся схемы. Могут ли учащиеся предложить еще варианты после обсуждения?
Пусть учащиеся соберут схему подобную следующей: Попросите привести шестерню в движение посредством оси и спросите, можно ли считать свободную балку, прикрепленную к шестерне прототипом ноги? Что произойдет если внизу под балкой подставить какую-то поверхность? Сможет ли робот опираться на такую ногу? Что не хватает такой конструкции?
Объясните, что мы будем считать эту конструкцию первым прототипом ноги. Теперь его нужно перенести на мотор. Прежде, чем это сделать попросите учащихся обозначить критические точки в конструкции, какие должны быть потом найдены у мотора. Если посмотреть на мотор, то у него места для крепления частей педипулятора тоже есть.
Теперь учащиеся должны будут перенести всю конструкцию, необходимую для создания педипулятора, на мотор. Работа должна проходить в парах — каждая пара делает педипулятор на одном моторе. В итоге получится вот такой результат:
Попросите учащихся подключить мотор к контроллеру и на блоке написать программу для движения одного мотора в течении нескольких секунд.
Перенос прототипа на мотор робота удался!
После наблюдения за системой, пусть учащиеся построят в тетради схему этой механической системы, а также проставят размеры. Если какие-то размеры должны быть вычислены, то учащиеся должны расписать процесс вычисления данных величин.
Любители электроники, люди интересующиеся робототехникой не упускают возможность самостоятельно сконструировать простого или сложного робота, насладиться самим процессом сборки и результатом.
Не всегда есть время и желание на уборку дома, но современные технологию позволяют создавать роботов уборщиков. К таковым можно отнести робота пылесоса, который ездит часами по комнатам и собирает пыль.
С чего начать если возникло желание создать робота своими руками? Конечно же первые роботы должны быть просты в создании. Робот, о котором пойдет речь в сегодняшней статье, не займет много времени и не требует особых навыков.
Продолжая тему создание роботов своими руками, предлагаю попробовать сделать танцующего робота из подручных средств. Для создания робота своими руками потребуются простые материалы, которые найдутся наверное практически в каждом доме.
Разнообразие роботов не ограничивается конкретными шаблонами, по которым эти роботы создаются. Людям постоянно приходят в голову оригинальные интересные идеи, как сделать робота. Одни создают статичные скульптуры роботов, другие создают динамичные скульптуры роботов, о чем и пойдет речь в сегодняшней статье.
Сделать робота своими руками может любой, даже ребенок. Робот, описание которого пойдет ниже, прост в создании и не требует много времени. Попробую привести описание этапов создания робота своими руками.
Порой идеи создания робота приходят совсем неожиданно. Если поразмышлять на тему, как заставить робота из подручных средств двигаться, возникает мысль о батарейках. Но, что если всё гораздо проще и доступнее? Давайте попробуем сделать робота своими руками используя мобильный телефон в качестве основной детали. Для создания вибро робота своими руками понадобятся следующие материалы.
Что можно воспитать благодаря данному набору?
Уверенность в себе!
Мало того, что у меня нашлись общие темы для общения с совершенно незнакомыми людьми, но мне также удалось самостоятельно не только собрать, но и починить игрушку! А значит, я могу не сомневаться: с моим роботом всегда всё будет ок. И это очень приятное чувство, когда речь идёт о любимых вещах.
Мы живём в мире, где мы страшно зависим от продавцов, поставщиков, сотрудников сервиса и наличия свободного времени и денег. Если ты почти ничего не умеешь делать, тебе за всё придётся платить, и скорее всего — переплачивать. Возможность починить игрушку самому, потому что ты знаешь, как у неё устроен каждый узел — это бесценно. Пусть у ребёнка такая уверенность в себе будет.
Итоги
Что понравилось:
- Собранный по инструкции робот не потребовал отладки, запустился сразу
- Детали почти невозможно перепутать
- Строгая каталогизация и наличие деталей
- Инструкция, которую не надо читать (только изображения)
- Отсутствие значимых люфтов и зазоров в конструкциях
- Лёгкость сборки
- Лёгкость профилактики и починки
- Last but not least: свою игрушку собираешь сам, за тебя не трудятся филиппинские дети
Что нужно ещё:
- Ещё крепёжных элементов, прозапас
- Детали и запчасти к нему, чтобы можно было заменить при необходимости
- Ещё роботов, разных и сложных
- Идеи, что можно улучшить\приделать\убрать — словом, на сборке игра не заканчивается! Очень хочется, чтобы она продолжалась!
Читайте также: