Режим защита от записи и считывания памяти в вычислительных системах
Содержание
Методы
Чаще всего реализуется в рамках виртуальной адресации памяти.
Сегментирование памяти
Сегментирование памяти означает разбиение компьютерной памяти на фрагменты переменной длины, называемые сегментами (cм Сегментная адресация памяти).
В архитектуре x86 есть несколько режимов сегментации, которые могут использоваться для защиты памяти. [1] В процессорах архитектуры x86, существуют Global Descriptor Table и Local Descriptor Table, описывающие сегменты памяти. Указатели на сегменты в подобных процессорах хранятся в специализированных сегментных регистрах. Изначально их было 4: CS (code segment), SS (stack segment), DS (data segment) и ES (extra segment); затем добавили еще два: FS и GS. [1]
Страничная память
При страничной организации памяти, все адресное пространство делится на фрагменты фиксированного размера, называемые страницами. Их размер кратен степени 2, и обычно равен 4096, но возможно использование одновременно нескольких размеров страниц (4 кб, 2-4МБ в x86, от 4 до 256 кб в IA64). При помощи механизма виртуальной памяти, каждая страница виртуальной памяти может быть поставлена в соответствие любой странице физической памяти, либо помечена как защищенная. При помощи виртуальной памяти возможно использование линейного адресного пространства виртуальной памяти, которое на самом деле образовано фрагментированными участками адресного пространства физической памяти.
Многие архитектуры, использующие страничную организацию памяти, в том числе и наиболее популярная x86, реализуют защиту памяти на уровне страниц.
Таблица страниц используется для установления соответствия адресов в виртуальной памяти физическим адресам. Обычно эта таблица невидима для программы. Возможность установки в таблицах произвольных отображений позволяет легко выделить новую память, т.к. дополнительная страница, расположенная в нужном месте виртуального адресного пространства, может быть отображена на любую свободную страницу в оперативной памяти.
При таком отображении, приложение не имеет возможности обратиться к странице, отсутствующей в ее таблице страниц. Если при обращении по произвольному адресу не было найдено подходящее отображение, происходит исключительная ситуация page fault (PF).
Следует заметить, что page fault - это не фатальное событие. Эти прерывания могут использоваться не только для защиты памяти, но и другими способами. Так, ОС, перехватив PF, может загрузить страницу в память, например, если она была ранее выгружена на жесткий диск в процессе подкачки страниц, после чего приложение может продолжать работу. Такая схема позволяет прозрачным способом увеличить количество доступной приложениям памяти.
Механизм ключей защиты
Симуляция сегментации
Адресация основанная на Capability
Capability-based addressing редко применяется в коммерческих компьютерах. В системах с такой защитой памяти вместо указателей используются защищенные объекты (называемые capabilities), которые могут быть созданы лишь привилегированными инструкциями, исполняемыми либо ядром ОС либо специальными процессами. Использование такой защиты позволяет ограничивать доступ процессов к чужой памяти без использования раздельных адресных пространств и переключений контекста (сброса TLB, изменения глобальных дескрипторов). Использовались в исследовательских проектах KeyKOS, EROS; виртуальных машинах Smalltalk и Java.
Оценка уровня защиты
Защита памяти в различных ОС
Среди ОС, реализующих защиту памяти
-
начиная с Windows NT 3.1 и Windows 95.
- Большая часть Unix-like систем, включая
Некоторые старые ОС жесткого реального времени не используют защиту памяти, даже на процессорах, где это возможно. Примером такой ОС является VxWorks версий до 5 включительно.
При мультипрограммном режиме работы ЭВМ в ее памяти одновременно могут находиться несколько независимых программ. Поэтому необходимы специальные меры по предотвращению или ограничению обращений одной программы к областям памяти, используемым другими программами. Программы могут также содержать ошибки, которые, если этому не воспрепятствовать, приводят к искажению информации, принадлежащей другим программам. Последствия таких ошибок особенно опасны, если разрушению подвергнутся программы операционной системы. Другими словами, надо исключить воздействие программы пользователя на работу программ других пользователей и программ операционной системы. Следует защищать и сами программы от находящихся в них возможных ошибок.
Таким образом, средства защиты памяти должны предотвращать 2
- неразрешенное взаимодействие пользователей друг с другом,
- несанкционированный доступ пользователей к данным,
- повреждение программ и данных из-за ошибок в программах,
- намеренные попытки разрушить целостность системы ,
- использование информации в памяти не в соответствии с ее функциональным назначением.
Чтобы воспрепятствовать разрушению одних программ другими, достаточно защитить область памяти данной программы от попыток записи в нее со стороны других программ, а в некоторых случаях и своей программы ( защита от записи ), при этом допускается обращение других программ к этой области памяти для считывания данных.
В других случаях, например при ограничениях на доступ к информации, хранящейся в системе, необходимо запрещать другим программам любое обращение к некоторой области памяти как на запись , так и на считывание. Такая защита от записи и считывания помогает в отладке программы, при этом осуществляется контроль каждого случая обращения за область памяти своей программы.
Для облегчения отладки программ желательно выявлять и такие характерные ошибки в программах, как попытки использования данных вместо команд или команд вместо данных в собственной программе, хотя эти ошибки могут и не разрушать информацию (несоответствие функционального использования информации).
Если нарушается защита памяти , исполнение программы приостанавливается и вырабатывается запрос прерывания по нарушению защиты памяти .
Защита от вторжения программ в чужие области памяти может быть организована различными методами. Но при любом подходе реализация защиты не должна заметно снижать производительность компьютера и требовать слишком больших аппаратурных затрат.
Методы защиты базируются на некоторых классических подходах, которые получили свое развитие в архитектуре современных ЭВМ. К таким методам можно отнести защиту отдельных ячеек, метод граничных регистров , метод ключей защиты [ 7 ] .
Защита отдельных ячеек памяти организуется в ЭВМ, предназначенных для работы в системах управления, где необходимо обеспечить возможность отладки новых программ без нарушения функционирования находящихся в памяти рабочих программ, управляющих технологическим процессом. Это может быть достигнуто выделением в каждой ячейке памяти специального "разряда защиты". Установка этого разряда в "1" запрещает производить запись в данную ячейку, что обеспечивает сохранение рабочих программ. Недостаток такого подхода - большая избыточность в кодировании информации из-за излишне мелкого уровня защищаемого объекта ( ячейка ).
В системах с мультипрограммной обработкой целесообразно организовывать защиту на уровне блоков памяти, выделяемых программам, а не отдельных ячеек.
Метод граничных регистров (рис. 17.1) заключается во введении двух граничных регистров, указывающих верхнюю и нижнюю границы области памяти, куда программа имеет право доступа .
Рис. 17.1. Защита памяти методом граничных регистров
При каждом обращении к памяти проверяется, находится ли используемый адрес в установленных границах. При выходе за границы обращение к памяти не производится, а формируется запрос прерывания , передающий управление операционной системе. Содержание граничных регистров устанавливается операционной системой при загрузке программы в память .
Модификация этого метода заключается в том, что один регистр используется для указания адреса начала защищаемой области, а другой содержит длину этой области.
Метод граничных регистров , обладая несомненной простотой реализации, имеет и определенные недостатки. Основным из них является то, что этот метод поддерживает работу лишь с непрерывными областями памяти.
Метод ключей защиты, в отличие от предыдущего, позволяет реализовать доступ программы к областям памяти, организованным в виде отдельных модулей, не представляющих собой единый массив .
Память в логическом отношении делится на одинаковые блоки, например, страницы. Каждому блоку памяти ставится в соответствие код, называемый ключом защиты памяти, а каждой программе, принимающей участие в мультипрограммной обработке, присваивается код ключа программы. Доступ программы к данному блоку памяти для чтения и записи разрешен, если ключи совпадают (то есть данный блок памяти относится к данной программе) или один из них имеет код 0 (код 0 присваивается программам операционной системы и блокам памяти, к которым имеют доступ все программы: общие данные, совместно используемые подпрограммы и т. п.). Коды ключей защиты блоков памяти и ключей программ устанавливаются операционной системой.
В ключе защиты памяти предусматривается дополнительный разряд режима защиты. Защита действует только при попытке записи в блок, если в этом разряде стоит 0, и при любом обращении к блоку, если стоит 1. Коды ключей защиты памяти хранятся в специальной памяти ключей защиты, более быстродействующей, чем оперативная память .
Функционирование этого механизма защиты памяти поясняется схемой на рис. 17.2.
При обращении к памяти группа старших разрядов адреса ОЗУ , соответствующая номеру блока, к которому производится обращение, используется как адрес для выборки из памяти ключей защиты кода ключа защиты, присвоенного операционной системой данному блоку. Схема анализа сравнивает ключ защиты блока памяти и ключ программы, находящийся в регистре слова состояния программы ( ССП ), и вырабатывает сигнал "Обращение разрешено" или сигнал " Прерывание по защите памяти". При этом учитываются значения режима обращения к ОЗУ ( запись или считывание), указываемого триггером режима обращения ТгРО, и режима защиты, установленного в разряде режима обращения (РРО) ключа защиты памяти .
Метод граничных регистров:
Идея метода состоит в том, что вводят два граничных регистра, указывающих верхнюю и нижнюю границы области памяти, куда программа имеет право доступа.
При каждом обращении к памяти проверяется, находится ли используемый адрес в установленных границах. При выходе за границы обращение к памяти подавляется и формируется запрос прерывания, передающий управление операционной системе. Содержание граничных регистров устанавливается операционной системой перед тем, как для очередной целевой программы начнется активный цикл. Если для динамического распределения памяти используется базовый регистр, то он одновременно определяет и нижнюю границу. Верхняя граница подсчитывается операционной системой в соответствии с длиной программы в ОП.
Метод ключей защиты:
Память в логическом отношении делится на блоки. Каждому блоку памяти ставится в соответствие код, называемый ключом защиты памяти. При этом каждой программе, принимающей участие в мультипрограммной обработке, присваивается код ключа программы. Доступ программы к данному блоку памяти для чтения и записи разрешен, если ключи совпадают или один из них имеет код 0.
Метод защиты отдельных ячеек:
В небольших управляющих вычислительных устройствах, работающих, например, в составе АСУ ТП, необходимо обеспечить возможность отладки новых программ параллельно с функционированием находящихся в памяти рабочих программ, управляющих технологическим процессом. Этого можно достичь выделением в каждой ячейке памяти специального разряда защиты. Установка 1 в этот разряд запрещает производить запись в данную ячейку. Это так называемый метод контрольного разряда.
Содержание
Защита по уровню привилегей
В защищенном режиме процессор имеет четырехуровневую систему привилегий, которая управляет использованием привилегированных инструкций и доступом к сегментам памяти. Уровень привилегии сегмента указывается в его дескрипторе. Нумерация уровней происходит от 0 до 3, высшие привилегии соответствуют нулевому уровню. Для наглядности их принято изображать в виде колец.
Уровни привилегий обеспечивают защиту целостности операционной системы от «недружелюбных» программ. А также защиту адресных пространств одновременно выполняемых задач. Сервисы операционной системы, обработчики прерываний и другое системное обеспечение могут включаться в виртуальное адресное пространство каждой задачи и защищаться системой привилегий. Как правило, назначение уровней следующее. Нулевой уровень – уровень операционной системы (ядро операционной системы). Уровни 1 и 2 – программы системного назначения. Уровень 3 – прочие прикладные программы (уровень прикладных программ). Дескрипторы (сегменты) и селекторы имеют свои атрибуты привилегий. Привилегии задач оказывают влияние на выполнение инструкций и использование дескрипторов. Текущий уровень привилегии задачи CPL (Current Privilege Level) определяется двумя младшими битами регистра CS.
CPL задачи может изменяться только при передаче управления к новому сегменту через дескриптор шлюза. Задача начинает выполняться с уровня CPL, указанного селектором кодового сегмента внутри TSS, когда задача инициируется посредством операции переключения задач. Задача, выполняемая на нулевом уровне привилегий, имеет доступ ко всем сегментам, описанным в GDT, и является самой привилегированной. Задача, выполняемая на уровне 3, имеет самые ограниченные права доступа. Текущий уровень привилегии задачи может изменяться только при передаче управления через шлюзы. Привилегии сегмента задаются полем DPL байта управления доступом.
DPL определяет наибольший номер уровня привилегий (фактически, наименьшие привилегии), с которым возможен доступ к данному дескриптору. Самый защищенный (привилегированный) дескриптор имеет DPL=0, к нему имеют доступ только задачи с CPL=0. Самый общедоступный дескриптор имеет DPL=3, его могут использовать задачи с CPL=0, 1, 2, 3. Это правило применимо ко всем дескрипторам, за исключением дескриптора LDT. Привилегии селектора задаются полем RPL (Requested Privilege Level) — двумя младшими битами селектора. [2]
Метод защиты ключей
Защита памяти по ключам (уровням привилегий) используется в большинстве современных многопрограммных ЭВМ со страничной организацией памяти и динамическим её распределением между параллельно выполняемыми программами. В её основе лежит применение специальных кодов (уровней) для проверки соответствия используемых массивов ячеек памяти номеру выполняемой программы.
Каждой рабочей программе ОС придает специальный ключ — ключ программы. Все выделенные для данной рабочей программы страницы отмечаются одним и тем же ключом страницы или ключом защиты. В качестве ключа защиты обычно указывается двоичный код номера программы. В процессе обращения к ОП производится сравнение ключа выполняемой про граммы с ключами защиты соответствующих страниц памяти. Обращение разрешается только при совпадении сравниваемых кодов ключей. Защита памяти по ключам применяется не только при работе ОП с процессором, но и в ходе обмена информацией с ВЗУ через каналы ввода-вывода. Тогда вместо ключей программ используются ключи каналов. Разрядность кодов ключей определяется максимальным количеством параллельно выполняемых программ. [3]
Метод граничных регисторов
Идея метода состоит в том, что вводят два граничных регистра, указывающих верхнюю и нижнюю границы области памяти, куда программа имеет право доступа.
При каждом обращении к памяти проверяется, находится ли используемый адрес в установленных границах. При выходе за границы обращение к памяти подавляется и формируется запрос прерывания, передающий управление операционной системе. Содержание граничных регистров устанавливается операционной системой перед тем, как для очередной целевой программы начнется активный цикл. Если для динамического распределения памяти используется базовый регистр, то он одновременно определяет и нижнюю границу. Верхняя граница подсчитывается операционной системой в соответствии с длиной программы в ОП. Преимущество данного способа защиты памяти состоит в том, что он позволяет защищать области памяти произвольной длины. Кроме того, блок защиты достаточно прост, а его функционирование не приводит к значительным временным затратам. Однако необходимость размещения программ в областях памяти с последовательными номерами ячеек и ограниченных двумя граничными адресами существенно снижает возможности программирования и даже эффективность работы ЭВМ. Поэтому способ защиты памяти по граничным адресам в настоящее время применяется редко, при статическом распределении памяти, когда для каждой из параллельно выполняемых рабочих программ заранее (до начала их выполнения) отводится определенная область памяти. Реализация способа защиты памяти предполагает разделение основной памяти на блоки, каждому из которых ставится в соответствие некоторый ключ защиты памяти. Каждой действующей программе ставится в соответствие ключ защиты, который имеет ту же длину, что и ключ защиты памяти. Если эти ключи совпадают или ключ защиты памяти равен нулю, та использование данного блока памяти разрешается. В противном случае использование памяти запрещено и вырабатывается сигнал прерывания программы. В ключе защиты памяти часто предусматривается бит защиты памяти при выборке. Если этот бит равен нулю, то защита действует только при записи в память. Если же бит защиты при выборке равен единице, защита действует при операции выборки так же, как и при записи.
Защита памяти по маскам
Защита памяти по маскам используется при страничной организации ОП. Для каждой программы перед её выполнением указываются номера страниц, отведенные для размещения её команд и всех необходимых данных. Указание о номерах отведенных страниц для данной программы задается управляющей программой операционной системы в виде кода маски или кода признаков страниц. Код маски формируется для каждой рабочей программы. Под маской программы понимается n-разрядный двоичный код, разрядность которого определяется количеством страниц ОП. Каждый i-й разряд маски указывает о принадлежности i-й страницы ОП данной программе: если в i-м разряде задано значение 1, то при обращении к ОП разрешен доступ к любой ячейке i-ой страницы, если же i-й разряд маски содержит ноль, то выполняемой программе доступ к i-й странице запрещен.
Читайте также: