Реле с самоподхватом своими руками
Добрый день вам. Третий день ищу решение проблемы, помогите. Вопрос вот в чем, изредка отключают электричество у нас в городе. У моей тети дома имеется газовое отопление, котел это переделаyная печь для угля, подведен газ, установлена горелка. Раньше была открытая система отопления с чугун батареями, теперь закрытая с биметалл батареями. Стоит циркуляционный насос. Трубы пвх. Без насоса не работает так как нет циркуляции. Однажды ночью когда она спала, отключили свет и насос перестал работать а газовая горелка нет,так как нет никакой автоматики. В результате вода закипела и пвх труба лопнула. Тетя пожилая,живет одна. Ее этот хлопок от разрыва трубы очень напугал и теперь она боится ночью оставлять котел вкл.
Я ей купил электромагнитный клапан на газ,установил на трубу подачи газа и от него уже на котел. Все работает, выкл из розетки, он срабатывает и перекрывает подачу газа, соотв пламя гаснет все хорошо. Но при вкл в розетку он вкл и идет подача газа а котел потух уже и так как нет автоматики в котле, то газ не воспламеняется и не перекрывается в котле и уходит просто в дымоход, что и опасно и затратно. Что теперь мне нужно, нужно некое устройство которое будет отключать подачу тока на электромагнитный клапан если вдруг отключат электричество в сети. Нужно чтобы она вручную вкл подачу тока на элмагнклапан. Чтото типа размыкателя цепи если в нем пропало электричество но не замыкало его при появлении в цепи электричества, а нужно было в ручную его вкл как например выключатель света. Извините за сумбур, не могу точнее сформулировать вопрос.
Простой вариант — поставить расцепитель минимального напряжения к автомату, и подключить клапан через маломощный автомат.
Сложный вариант — найти поляризованное реле. Оно срабатывает при подачи напряжения определенной полярности.
И наконец, правильный и классический вариант — реле или пускатель с самоподхватом. Пускатель для клапана — избыточен, а вот реле — то что нужно. Вам для этого нужно реле с двумя группами нормально-разомкнутых контактов с катушкой на 220В. Схему прилагаю.
Чтобы выбрать подходящее, как вариант, можете посмотреть каталог компании Finder или любых других. Если не найдете с катушкой на 220В, то возьмите на 12В, можно даже два автомобильных реле соединенных параллельно, собственно схема сильно не изменится.
В этой статье обсудим схемы подключения твердотельными реле (ТТР), и способы управления ими.
Напоминаю, для тех кто не в курсе – что такое твердотельное реле и как оно работает – обратитесь к более старой моей статье О принципах работы твердотельных реле.
Схемы включения подобных реле не очень сложны, но, как и везде, есть свои особенности.
Твердотелки – надо ли их использовать?
Для начала рассмотрим также целесообразность применения таких реле. Например, реальный случай:
У нас на предприятии на одном станке стоят соленоидные клапаны с питанием 24VDC 2А. Эти два клапана соединены параллельно, и включаются-выключаются с частотой примерно 1 раз в секунду. Питание идёт через реле. И, несмотря на то, что номинальный ток реле 10А индуктивной нагрузки, приходилось менять его каждый месяц-два. Поставили мы твердотелку – и забыли, работает без шума и проблем уже два года.
Другой случай, когда такие реле не нужны:
Простейший контроллер температуры, точность поддержания не существенна. Нагрузка – ТЭНы, работают в воде круглосуточно. Чаще, чем раз в год, один из ТЭНов замыкает или коротит на корпус. Здесь большая вероятность того, что ТТР выгорит, так как они очень чувствительны к перегрузкам.
О перегрузках и защите твердотельных реле будет подробно сказано ниже, а в данном случае целесообразно применить обычный контактор, который прекрасно справляется с перегрузкой и стоит в 10 раз дешевле.
Поэтому, за модой гнаться не стоит, а лучше применить трезвый расчет. Расчет по току и по финансам.
Если кому-то придёт в голову, можно кнопкой звонка или герконом запускать двигатель мощностью 10 кВт! Но не так всё просто, подробности будут ниже.
Различия схем включения реле
По виду подключения твердотельные реле можно разделить на следующие категории:
По управлению (виду входного управляющего сигнала):
- постоянное напряжение (встречается чаще всего),
- переменное напряжение,
- постоянный ток 4-20 мА,
- переменный резистор.
По виду коммутируемого тока
- твердотельные реле переменного тока
- твердотельные реле постоянного тока
По количеству фаз
- одна фаза
- три фазы (как правило, фактически это две фазы)
В любом случае, для выбора ТТР и его схемы включения нужно руководствоваться мануалами на данное реле.
Кстати, рекомендую мою статью про трехфазное и однофазное напряжение. Терминология и отличия разжеваны не пальцах)))
Схемы подключения твердотельных реле
Теперь рассмотрим подключение твердотельного реле подробнее.
Управление твердотельными реле схемотехнически такое же, как и у обычного реле. Ниже упрощенно показана схема включения реле переменного тока с сигналом управления 24В постоянного тока:
Схема включения твердотельного реле
Схема показана для реле, у которого управляющее напряжение постоянное, от 5 до 24 Вольт. Данное реле может коммутировать переменное напряжение до 240 Вольт, ток до 20 А.
С током не всё так просто, но об этом ниже.
Как работает схема. На вход (контакты 3 и 4, соблюдать полярность!) подается управляющее напряжение от источника 24В. Подается оно через цепь управления, которая представлена как НО контакт. Этим контактом может быть и обычное реле, и выход контроллера, и датчик с релейным выходом или транзисторным выходом типа PNP.
Про НО контакты и PNP выходы датчиков я подробно написал в этой статье. Очень рекомендую!
Ещё раз напоминаю –
НЗ – это закрытые (замкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) течёт ток.
НО – это открытые (незамкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) ток не течёт.
Условные выходные контакты ТТР также будут НО, т.к. без активации цепи управления нагрузка выключена.
Теперь подробнее по управлению твердотелками.
Схемы с управлением от транзистора
Здесь транзистор может быть выходом любого полупроводникового прибора – датчика приближения, контроллера, и т.п.
Управление транзистором PNP, НО реле
Скажу, что со схемами управления, которые я взял из фирменных инструкций, полная путаница. Можете сами разобраться, а я расскажу своё мнение.
Управление транзистором PNP, НО реле
Под “нормально открытым контактом” (читали, что это, ссылку я давал выше?) подразумевается, что без управляющего напряжения (на базе транзистора) твердотельное реле не пропускает ток. Напряжение между входными контактами 3 и 4 близко к нулю, реле выключено. При подаче входного управляющего напряжения на базу транзистора (например, +5В), транзистор открывается и плюс подается на вход 3. Реле открывается, нагрузка получает питание.
Управление транзистором NPN, НЗ реле
Управление транзистором NPN, НЗ реле
Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, нагрузка под напряжением.
Управление транзистором NPN, НО реле
Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, близкое к нулю, и нагрузка без напряжения.
Управление резистором
Плавно подходим к переменному току.
Управление переменным резистором
Не путать переменный ток и переменный резистор! В данном случае твердотельное реле фактически является диммером, который изменяет скважность выходного напряжения для нагрузки, которая приспособлена для этого. Такие реле – только с коммутацией переменного тока, и включаются/выключаются 100 раз в секунду.
Схема с фиксацией и управлением кнопками (защелка)
Управление твердотельным реле с фиксацией включения
Схема включения интересна тем, что можно включать – выключать нагрузку, используя только две кнопки – Пуск и Стоп. То есть, схема такая же, как и при использовании обычного реле. Точнее, магнитного пускателя. Важно, что управляющее напряжение равно напряжению питания нагрузки.
Схема нарисована тайваньскими инженерами, попробуем разобраться в ней.
Кстати, её же можно использовать для коммутации и переменного, и постоянного тока.
Схема работает таким образом. Исходно управляющее напряжение поступает на клемму 3 ТТР с источника питания через НЗ контакты кнопки Стоп. При нажатии кнопки Пуск (слева на схеме) напряжение с другого полюса источника поступает через НО контакты на клемму 4 ТТР. Реле включается, напряжение на клемме 1 появляется, и подается через резистор (вверху схемы) на клемму 4. Прошла доля секунды, кнопку Пуск можно отпускать, нагрузка питается до тех пор, пока не будет нажата кнопка Стоп.
Схемы включения трехфазных твердотельных реле
Трехфазное твердотельное реле, схемы подключения.
Тут источник трехфазного напряжения – справа по схемам, нагрузка – слева. Управляющее напряжение может быть любым (переменным или постоянным).
Кроме того, коммутация может быть как по двум фазам, так и по трём, это важно! Подробнее ниже.
Реверсивные твердотельные реле
Существуют также специальные трехфазные твердотельные реле для реверса двигателей, у которых два управляющих входа.
Пример включения трехфазного реле – на фото ниже:
Включение трехфазного твердотельного реле
Как видно, реле не совсем трехфазное, одна фаза подается на двигатель постоянно, что может стать причиной опасности.
Важно – внутри реле нет блокировки от одновременного включения в обоих направлениях, и ее надо обеспечить аппаратно (блокировочные контакты кнопок/реле) и программно (если управление – от контроллера). Если это не предусмотреть, то вероятна ситуация, когда силовые выходы 1, 2, 3, 4 будут замкнуты накоротко :( .
Выбор твердотельных реле, защита и особенности работы
Обычное реле и контактор без особых проблем выдерживают кратковременные перегрузки до 150 и даже 200% от номинала. Особенно, если не коммутировать нагрузку с таким током, а повышать ток после замыкания, и понижать перед размыканием.
Обычные контакты могут выдержать и кратковременный ток КЗ, если сработает защита с правильной уставкой тока. Просто, возможно, придётся потом контакты почистить.
Твердотельные реле от перегрузок страдают сильнее, за пол периода портятся безвозвратно, и контакты потом не почистить, из-за отсутствия таковых.
Это как в звукотехнике. Ламповая техника при перегрузках чувствует себя нормально, только слегка “потеет”, а транзисторы начинают жутко искажать сигнал и могут выйти из строя. За это до сих пор так ценятся ламповые усилители, за их мягкий, бархатный звук на предельных мощностях. Другое дело, что источников качественного сигнала сейчас практически нет, всё заполонил mp3 128kbps, и то в лучшем случае. Но это тема отдельной статьи…
Если при выборе контактора достаточно выбрать запас в 10-20% и защитить его обычным автоматом, то с твердотельными устройствами всё сложнее.
Поэтому для твердотельных реле рекомендуется для активной нагрузки (лампы, ТЭНы) запас по номинальному току в 2-4 раза. При пуске асинхронных двигателей из-за большого пускового тока запас по току нужно увеличить до 6-10 раз.
То есть, трехфазная твердотелка Fotek TSR-40AA-H на 40А, показанная на фото чуть выше, на своих 40 амперах работать вряд ли будет. Мощность двигателя, которую можно коммутировать в данном случае – от 2,2 кВт до 5 кВт. Причём двигатель 5 кВт (это около 10А) должен запускаться обязательно на холостом ходу, с минимальным пусковым моментом, а нагрузку к нему прикладывать можно после пуска и разгона.
Кстати, с индуктивной нагрузкой твердотельные реле могут вести себя неадекватно, у меня бывали проблемы. В случае высокоиндуктивных нагрузок (трансформаторы, катушки с магнитопроводами, электрические звонки, и т.п.) нужно параллельно нагрузке включать RC-цепь (снабберную цепь из последовательных резистора и конденсатора) для уменьшения влияния противо-ЭДС. Кроме того, эта цепь уменьшает общую индуктивность нагрузки, т.е. делает её более активной. И ТТР легче работать.
Напоследок – защита при КЗ
Производители рекомендуют использовать специальные предохранители для твердотельных приборов:
- gR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов(более быстродействующие , чем gS)
- gS – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов, при повышенной загрузке линии.
- aR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов от короткого замыкания.
Такие предохранители стоят дорого (сравнимы со стоимостью самого твердотельного реле), поэтому в большинстве случаев можно использовать защитные автоматы класса В. Чем же они хороши и как они спасут наши твердотельные реле от выгорания при КЗ?
Напомню, в 99% везде встречаются автоматы класса С. Класс D ставят в качестве вводных рубильников и при больших пусковых токах (мощные двигатели, трансформаторы). А класс В – самый чувствительный, срабатывает раньше всех.
Почему – поясню на графике.
Кривые отключения или токо-временные характеристики
Подробно про выбор защитного автомата рассказано в другой статье.
Но мы вернёмся к нашему трехфазному твердотельному реле Fotek TSR-40AA-H на 40А, про которое я писал выше. Чтобы его гарантированно защитить от КЗ, надо обязательно поставить вот такой автомат:
Автомат с характеристикой В6 (обведено красным)
Он мгновенно сработает при токе 20…30 Ампер и спасет твердотелку. А от перегруза надо будет поставить мотор-автомат на ток 4-6,3 А. И это всё будет питать двигатель на 2,2 кВт, лучше меньше. Либо ТЭН, тогда мотор-автомат не нужен.
Пишите в комментариях, у кого какой опыт по применению!
Полезные файлы, возможно, написано информативнее, чем у меня:
• Твердотельные реле Фотек / Твердотельные реле Фотек. Руководство пользователя. Рассмотрена вся линейка Fotek, даны рекомендации по применению и схемы включения., pdf, 757.78 kB, скачан: 4103 раз./
• Твердотельные реле – устройство и принцип работы / Подробно изложено, как устроены и работают твердотельные реле, приведены схемы включения, и т.п. Автор, отзовись!, pdf, 414.19 kB, скачан: 4611 раз./
Где купить твердотельные реле
Если вы живете в крупном городе, то лучше конечно поехать в ближайший магазин – и через час реле можно устанавливать. Но, например, у меня в Таганроге такие реле – только под заказ, и купить их можно только через фирмы в Ростове.
Поэтому, на сегодняшний день лучший вариант – покупать твердотельные реле в интернете, через АлиЭкспресс. Цены примерно те же, но минус в том, что доставка может быть около месяца.
Пишите в комментариях, у кого какие вопросы, отзывы и опыт по применению!
В этой статье я приведу несколько примеров реле применяемых в автомобилях, их отличия и некоторые варианты использования.
Отечественные реле и их характеристики:
- Диапазон электропитания: 8. 16В.
- Номинальное напряжение: 12В.
- Ток управления: не более 0,2А.
- Напряжение срабатывания: не менее 8,0В.
- Напряжение отпускания: 1,5. 5,0В.
- Максимальный ток в силовой цепи: 30А.
- Активное сопротивление обмотки: 80±10 Ом
Силовые реле, импортные и отечественные, выполняют одинаковую функцию.
Основное их различие в качестве и коммутируемых контактах. Существуют реле с четырьмя и пятью контактами, но все реле имеют контакты обмотки, это 85 и 86 контакты.
В некоторых импортных реле между этими контактами устанавливают гасящие резисторы или диоды, а иногда и то и другое. Эти элементы используют для защиты управляющих цепей от перегрузок возникающих в момент размыкания цепи катушки реле.
На следующем рисунке изображено оригинальное реле, используемое в автомобиле Audi с встроенным гасящим резистором.
Если на корпусе реле изображен значок диода, значит при его включении необходимо соблюдать полярность на контактах управления. Часто эти диоды устанавливают в разъеме, (ответная часть - колодка или soket) в который вставляется реле.
Схема реле содержащее диод и подключение его обмотки:
При подаче напряжения на контакты управления реле срабатывает и замыкает или размыкает электрическую цепь силовыми контактами. Силовые контакты маркируются всегда как 30, 87 и 87а. 30-й контакт всегда присутствует в реле. Он, без подачи напряжения на контакты обмотки, постоянно замкнут на контакт 87а. Если на обмотку подан сигнал, то 30 контакт отключается от 87а и подключается к 87. 87а или 87 контакт могут отсутствовать, тогда реле будет работать только на включение или выключение (замыкание или размыкание) силовой цепи.
Необходимо внимательно следить за маркировкой контактов на реле, т.к. некоторые производители выпускают реле с не стандартным расположением контактов. На рисунке изображено реле фирмы BOSCH, другим расположением контактов. Контакты 30 и 86 поменяны местами.
Реле используют в тех случаях когда исполнительное устройство потребляет больший ток (до 30-40 ампер), чем способен выдать управляющий выход (потребление катушек реле как правило не превышает 200миллиампер). Примеры использования реле для коммутации различных устройств приведены в конце статьи.
Важно отметить, если реле долго эксплуатировалось при коммутации силовых цепей в предельных режимах, то искра проскакивающая при замыкании или размыкании контактов создает нагар между контактами и из-за этого возможно исполнительное устройство не будет работать или будет работать не корректно. Плохой контакт выделяет на себе тепло. При этом в силовых цепях может повышаться потребляемый ток (при плохом контакте ток электродвигателя или лампочки становится импульсно-пусковым), что влечет разогрев мест плохого контакта в коммутируемых цепях и как следствие оплавление пластмассовых деталей крепления контактов. При оплавлении деталей крепления, контакты смещаются и добавляется процесс искрения, что еще больше разогревает место контакта. На рисунке показан появляющийся нагар на контактах отечественного реле. Переключающий контакт отогнут для наглядности. Белые точки - пробой нагара искрой при подключении потребителя, через эти места ответный контакт может привариваться, оставляя подключенным потребитель.
Как наиболее надежные и доступные в продаже, себя зарекомендовали импортные реле под маркой Saturn и San Hold, применяются так же реле других производителей.
Напротив - отечественные реле неудовлетворительны по таким параметрам, как герметичность и износостойкость.
Важно так же покрытие выходных контактов и ответной части (разъема или сокета). Наиболее удачное покрытие контактов реле - лужение. Примеры окисляющихся контактов реле.
Схемы инверсии сигналов и управления нагрузкой.
Схемы инверсии сигналов могут применяться для инвертирования сигналов концевиков дверей или багажника при подключении к сигнализации или в других случаях.
Так же данные схемы могут использоваться для умощнения сигнала при подключении нагрузки управляемой дополнительным каналом сигнализации. При подключении соленоида замка багажника, управления дополнительным замком капота, дополнительных противотуманных фар, дополнительных звуковых сигналов или при подключении другого электро - оборудования, необходимо устанавливать защитный предохранитель в силовой цепи (+)12Вольт (правая схема).
Схема блокировки двигателя с самоподхватом (самоблокировкой).
Для управления реле блокировки можно использовать секретную кнопку, пару геркон-магнит или штатный орган управления выдающий сигнал управления положительной полярности при включенном зажигании (например силовой сигнал на стеклоподъёмнике или обогрев заднего стекла). При управлении кнопкой или герконом, диод D2 не нужен. При управлении штатным органом для разблокировки, кнопка или геркон не нужны, диод D2 необходим.
Приложение 1.
Краткий обзор отечественных стандартных реле в корпусах как изображено ниже на фотографии.
Ниже будет приведена информация одного производителя, существуют другие производители и зарубежные аналоги. Для этой части статьи главное дать понять рядовому автолюбителю, что реле могут быть взаимозаменяемы, иметь разные схемы, разное количество контактов в зависимости от назначения.
Отечественные реле этой серии маркируют нормально замкнутый контакт как 88. В импортных реле этот контакт везде назван как 87а
Отличия и разнообразия номеров реле означает разные крепления, конструкция корпуса, степень защиты, напряжение управления катушкой, коммутируемые токи и прочие параметры. Иногда при выборе аналога необходимо учитывать некоторые параметры.
Типовые схемы реле. Цоколевка.
Схема 1 | Схема 1а |
По схеме 1 выпускаются следующие 5-и контактные (переключающие) реле:
С управлением 12Вольт – 90.3747, 75.3777, 75.3777-01, 75.3777-02, 75.3777-40, 75.3777-41, 75.3777-42
С управлением 24Вольт – 901.3747, 901.3747-11, 905.3747, 751.3777, 751.3777-01, 751.3777-02, 751.3777-40, 751.3777-41, 751.3777-42
По схеме 1а с помехозащитным резистором:
С управлением 12Вольт – 902.3747, 906.3747, 752.101, 752.3777, 752.3777-01, 752.3777-02, 752.3777-40, 752.3777-41, 752.3777-42
С управлением 24Вольт – 903.3747, 903.3747-01, 907.3747, 753.3777, 753.3777-01, 753.3777-02, 753.3777-40, 753.3777-41, 753.3777-42
Схема 2 | Схема 2а |
По схеме 2 выпускаются следующие 4-х контактные (замыкающие/включающие) реле:
С управлением 12Вольт – 90.3747-10, , 75.3777-10, 75.3777-11, 75.3777-12, 75.3777-50, 75.3777-51, 75.3777-52, 754.3777, 754.3777-01, 754.3777-02, 754.3777-10, 754.3777-11, 754.3777-12, 754.3777-20, 754.3777-21, 754.3777-22, 754.3777-30, 754.3777-31, 754.3777-32
С управлением 24Вольт – 904.3747-10, 90.3747-11, 901.3747-11, 905.3747-10, 751.3777-10, 751.3777-11, 751.3777-12, 751.3777-50, 751.3777-51, 751.3777-52, 755.3777, 755.3777-01, 755.3777-02, 755.3777-10, 755.3777-11, 755.3777-12, 755.3777-20, 755.3777-21, 755.3777-22, 755.3777-30, 755.3777-31, 755.3777-32
По схеме 2а с помехозащитным резистором:
С управлением 12Вольт – 902.3747-10, 906.3747-10
С управлением 24Вольт – 902.3747-11, 903.3747-11, 907.3747-10
Схема 3 | Схема 3а |
По схеме 3 выпускаются следующие 4-х контактные (размыкающие/выключающие) реле:
С управлением 12Вольт – 90-3747-20, 904-3747-20, 90-3747-21, 75.3777-20, 75.3777-202, 75.3777-21, 75.3777-22, 75.3777-60, 75.3777-602, 75.3777-61, 75.3777-62
С управлением 24Вольт - 901-3747-21, 905-3747-20, 751.3777-20, 751.3777-202, 751.3777-21, 751.3777-22, 751.3777-60, 751.3777-602, 751.3777-61, 751.3777-62
По схеме 3а с помехозащитным резистором:
С управлением 12Вольт – 902-3747-20, 906-3747-20, 902-3747-21, 752.3777-20, 752.3777-21, 752.3777-22, 751.3777-60, 751.3777-61, 751.3777-62,
С управлением 24Вольт – 903-3747-21, 907-3747-20, 753.3777-20, 753.3777-21, 753.3777-22, 753.3777-60, 753.3777-61, 753.3777-62,
ВНИМАНИЕ.
Реле серии 19.3777 имеют корпус аналогичный выше приведенному. Схема этих реле имеет защитный и развязывающий диоды. Такие реле имеют полярное включение обмотки. Здесь в статье эти реле не упоминаются, поскольку имеют ограниченное применение.
Реле современных автомобилей.
Отличия и разнообразия номеров реле означает разные крепления, конструкция корпуса, степень защиты, напряжение управления катушкой, коммутируемые токи и прочие параметры. Иногда при выборе аналога необходимо учитывать некоторые параметры.
Схема 4 | Схема 4а |
По схеме 4 выпускаются следующие 5-и контактные (переключающие) реле:
С управлением 12Вольт - 98.3747, 982.3747
С управлением 24Вольт - 981.3747, 983.3747
По схеме 4а с помехозащитным резистором:
С управлением 12Вольт – 98. 3747-01, 98.3747-011, 982.3747-01
С управлением 24Вольт - 981.3747-01, 983.3747-01
Схема 5 | Схема 5а |
По схеме 5 выпускаются следующие 4-х контактные (замыкающие/включающие) реле:
С управлением 12Вольт - 98.3747-10, 982.3747-10
С управлением 24Вольт - 981.3747-10, 983.3747-10
По схеме 5а с помехозащитным резистором:
С управлением 12Вольт - 98.3747-11, 98.3747-111, 982.3747-11
С управлением 24Вольт - 981.3747-11, 983.3747-11
Схема 6 | Схема 6а |
По схеме 6 выпускаются следующие 4-х контактные (размыкающие/отключающие) реле:
С управлением 12Вольт - 98.3747-20, 982.3747-20
С управлением 24Вольт - 981.3747-20, 983.3747-20
По схеме 6а с помехозащитным резистором:
С управлением 12Вольт - 98.3747-21, 982.3747-21
С управлением 24Вольт - 981.3747-21, 983.3747-21
Приложение 2.
Здесь будут размещены фотографии реле с которыми мне приходилось работать. Это обычные реле из комплекта сигнализаций, и другого дополнительного оборудования.
5. Основные параметры электромагнитных реле.
Основными параметрами, определяющими нормальную работоспособность реле и характеризующие эксплуатационные возможности, являются: 1. Чувствительность. 2. Ток (напряжение) срабатывания. 3. Ток (напряжение) отпускания. 4. Ток (напряжение) удержания. 5. Коэффициент запаса. 6. Рабочий ток (напряжение). 7. Сопротивление обмотки. 8. Коммутационная способность. 9. Износостойкость и количество коммутаций. 10. Количество контактных групп. 11. Временны́е параметры: время срабатывания, время отпускания, время дребезга контактов. 12. Вид нагрузки. 13. Частота коммутаций. 14. Электрическая изоляция.
Все эти параметры подробно приводятся в технических условиях (ТУ), справочниках или в руководствах по применению реле. Однако мы рассмотрим лишь некоторые из них, которыми, как правило, пользуются при повторении радиолюбительских конструкций.
1. Чувствительность реле определяется минимальной мощностью тока, подаваемой в обмотку реле и достаточной для приведения в движение якоря и переключения контактов. Чувствительность различных реле неодинаковая и зависит от конструкции реле и намоточных данных катушки. Чем меньше электрическая мощность тока, необходимая для срабатывания реле, тем реле чувствительнее. Как правило, обмотка более чувствительного реле содержит бо́льшее число витков и имеет бо́льшее сопротивление.
Однако в технической документации параметр чувствительность не указывается, а определяется как мощность срабатывания (Рср) и вычисляется из сопротивления обмотки и тока (напряжения) срабатывания:
2. Ток (напряжение) срабатывания определяет чувствительность реле при питании обмотки минимальным током или напряжением, при котором реле должно четко сработать и переключить контакты. А для их удержания в сработанном положении на обмотку подаются рабочие значения тока или напряжения.
Ток или напряжение срабатывания указывается в технической документации для нормальных условий и является контрольным параметром для проверки реле при их изготовлении и не является рабочим параметром.
3. Ток (напряжение) отпускания приводится в технической документации для нормальных условий и не является рабочим параметром. Отпускание реле (возвращение контактов в исходное состояние) происходит при снижении тока или напряжения в обмотке до значения, при котором якорь и контакты возвращаются в исходное положение.
4. Рабочий ток (напряжение) обмотки указывается в виде номинального значения с двухсторонними допусками, в пределах которых гарантируется работоспособность реле.
Верхнее значение рабочего тока или напряжения ограничивается в основном температурой нагрева провода обмотки, а нижнее значение определяется надежностью работы реле при снижении напряжения источника питания. При подаче на обмотку реле тока или напряжения в указанных пределах реле должно четко срабатывать.
5. Коммутационная способность контактов реле характеризуется величиной мощности, коммутируемой контактами. В технической документации коммутируемая мощность указывается верхним и нижним диапазоном коммутируемых токов и напряжений, в пределах которых гарантируется определенное число коммутаций (срабатываний).
Нижний предел токов и напряжений, коммутируемых контактами, ограничивается величиной переходного сопротивления материала, из которого выполнены контакты. Для большинства промежуточных электромагнитных реле нижним пределом является нагрузка контактов током 10 – 50 мкА при напряжении на контактах 10 – 50 мВ.
Верхним пределом токов и напряжений является нагрузка контактов максимальным коммутирующим током, предусмотренным в технической документации. Верхний предел ограничивается температурой нагрева контактов, при которой снижается механическая прочность контактных материалов, что может привести к нарушению рабочей поверхности.
6. Подключение промежуточных реле.
Схемы включения промежуточных реле практически ни чем не отличаются от схем включения контакторов и магнитных пускателей. Разница состоит лишь в мощности коммутируемой нагрузки. Если контакты промежуточных реле ограничены коммутационной мощностью контактов, составляющей около 5 А, то магнитные пускатели и контакторы способны коммутировать токи более 50 А и напряжения свыше 1000 В.
Разберем подключение реле на примере простых схем.
6.1. Схема с нормально разомкнутым контактом.
Схема питается от источника постоянного тока GB1 напряжением 12 В и состоит из кнопочного выключателя SB1, катушки реле KL1 и лампы накаливания HL1.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, напряжение питания на катушке реле KL1 отсутствует. Контакт реле KL1.1, стоящий в цепи питания лампы HL1, разомкнут, и на лампу не поступает напряжение.
При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 замыкается и включает лампу HL1.
При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.
6.2. Схема с нормально замкнутым контактом.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено, его нормально замкнутый контакт KL1.1 замкнут и напряжение питания 12 В поступает на лампу HL1. Лампа горит.
При замыкании контактов выключателя SB1 напряжение поступает на обмотку реле KL1. Реле срабатывает, его контакт KL1.1 размыкается и разрывает цепь питания лампы HL1. Лампа гаснет.
При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в исходное положение.
6.3. Схема с нормально замкнутым и нормально разомкнутым контактами.
В этой схеме используются сразу два контакта реле KL1.
В исходном состоянии, когда контакты выключателя SB1 разомкнуты, реле KL1 обесточено и его нормально разомкнутый контакт KL1.1 разомкнут, а нормально замкнутый KL1.2 замкнут. При этом лампа HL1 не горит, а лампа HL2 горит.
При замыкании контактов выключателя SB1 реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкается и включает лампу HL1, а контакт KL1.2 размыкается и выключает лампу HL2.
При размыкании контактов выключателя SB1 движение тока через обмотку реле прекращается и реле возвращается в первоначальное положение.
Рассмотренная схема включения реле не обеспечивает гальваническую развязку между обмоткой реле и нагрузкой, так как они питаются от общего источника напряжения. Т.е. если необходимо коммутировать нагрузку, например, с рабочим переменным напряжением 220 В, то и реле необходимо использовать с обмоткой, рассчитанной на такое же рабочее напряжение. Если же разделить управление обмоткой и нагрузкой, то их можно применять с любым напряжением.
6.4. Схема с гальванической развязкой.
На схеме показаны две цепи – управляющая и исполнительная (силовая):
управляющая цепь питается напряжением 12 В и включает в себя источник постоянного тока GB1, кнопочный выключатель SB1 и катушку реле KL1;
исполнительная цепь, или ее еще называют силовой, питается переменным напряжением 220 В. В нее входят две лампы накаливания HL1 и HL2, рассчитанные на рабочее напряжение 220 В, и два контакта реле KL1.1 и KL1.2, служащие для управления лампами.
При замыкании контактов выключателя SB1 напряжение от батареи GB1 поступает на обмотку реле KL1. Реле срабатывает и его контакт KL1.1 замыкается, а KL1.2 размыкается. Контакт KL1.1 замыкаясь включает лампу HL1, а контакт KL1.2 размыкаясь выключает лампу HL2.
6.5. Схема технологической сигнализации.
А теперь рассмотрим схему технологической сигнализации, используемую в системах управления технологическими процессами. Работа такой схемы заключается в контролировании технологических параметров (температура, давление, уровень) и выдаче световой и звуковой информации об отклонении этих параметров за пределы заданных значений.
Для контроля за технологическими параметрами применяют специализированные датчики и приборы, например, сигнализаторы, электроконтактные манометры и т.д., контакты которых задействованы в схеме сигнализации. При выходе параметра за пределы допустимого значения контакт датчика или прибора замыкается или размыкается и этот сигнал запускает сигнализацию в работу.
Рассмотрим упрощенную схему с одним контролируемым параметром.
Схема состоит из двух кнопок SB1 и SB2, двух промежуточных реле KL1 и KL2, сирены HA1, лампы накаливания HL1 и контакта датчика Р1.
При отклонении технологического параметра от заданного значения замыкается контакт датчика Р1 и включаются световая и звуковая сигнализации. Световая сигнализация HL1 включается при срабатывании реле KL2, которое своим нормально разомкнутым контактом KL2.1 подает фазу А1 на лампу. Звуковая сигнализация НА1 включается через замкнутый контакт датчика Р1 и нормально разомкнутый контакт KL1.2. И пока контакт Р1 не разомкнется лампа будет светить, а сирена звенеть.
Чтобы сирена постоянно не звенела, ее отключают нажатием кнопки SB2. При этом фаза А1 через контакт Р1 и контакты кнопки SB2 поступит на катушку реле KL1. Реле сработает и своим нормально разомкнутым контактом KL1.1 встанет на самоподхват, а нормально замкнутым контактом KL1.2 разорвет цепь питания звонка НА1. При возвращении технологического параметра в норму контакт датчика Р1 разомкнется и схема сигнализации вернется в первоначальное состояние.
Для проверки работоспособности сигнализации предусмотрена кнопка SВ1. При ее нажатии фаза А1 через нормально замкнутый контакт KL1.2 поступает на сирену НА1 и сирена начинает звенеть. И одновременно фаза А1 поступает на катушку реле KL2, которое срабатывает и своим контактом KL2.1 включает лампу HL1.
И в дополнение к статье видеоролик о промежуточных реле.
Ну вот в принципе и все, что хотел сказать о промежуточных реле.
Удачи!
Читайте также: