Регулятор оборотов для болгарки своими руками на кр1182пм1
Микросхема КР1182ПМ1 представляет собой фазовый регулятор мощности в сети 220 В, позволяет создавать простые и стабильно работающие регулирующие устройства. Микросхема КР1182ПМ1 позволяет управлять нагрузкой мощностью до 150 Вт и обеспечивает плавное включение и выключение питания нагрузки, в качестве которых могут быть применены лампы накаливания, электропаяльники, или электрические двигатели малой мощности. Диапазон напряжений, в которых может стабильно работать регулятор – от 80-и до 276 вольт.
Регулятор мощности КР1182ПМ1 оформлен в пластмассовом корпусе (см.рис.1):
На рис. 2 показана принципиальная схема регулятора КР1182ПМ1.
В качестве примера на рис. 2 показана схема внешней цепи управления (элементы СЗ, R1, SB1), для использования регулятора в устройстве плавного включения и выключения осветительной лампы EL1. Внешние конденсаторы С1, С2 обеспечивают необходимую задержку включения тринисторов в каждой полуволне сетевого напряжения относительно момента его перехода через "нуль". Эти конденсаторы также не позволяют тринисторам открываться в момент подачи напряжения сети.
На рис. 3 показана типовая схема включения микросхемы КР1182ПМ1 для ручного регулятора мощности лампы накаливания, электропаяльника или частоты вращения бытового вентилятора. Сетевой выключатель SA1 желательно совместить с регулятором мощности — резистором R1, причем контакты SA1 должны размыкаться после установки движка резистора R1 в положение минимального сопротивления, что соответствует выключению нагрузки. В этом положении и рекомендуется включать регулятор в сеть.
Микросхемы КР1182ПМ1 допускают параллельное включение двух и более приборов, что позволяет увеличить выходную мощность регулятора. Устройство, схема которого изображена на рис. 4, может работать с нагрузкой, мощностью до 300 Вт.
Существенно увеличить мощность нагрузки (до 1 кВт) можно введением в регулятор мощного симистора VS1 (рис. 5).
Более подробную информацию о фазовом регуляторе типа КР1182ПМ можно скачать здесь…
Сборка электрощитов, автоматика и автоматизация для квартир и частных домов. Программы для ПЛК. Сценический свет (световые шоу, настройка оборудования). Консультации, мастер-классы.
Щит с автоматикой IPM для коттеджа (Поварово)
Автоматика моего санузла на логическом реле ABB CL
Щиты TwinLine в Долгопрудный (таунхаус) и Солнечногорск
Щит для котельной на базе сенсорного ПЛК ОВЕН (Папушево)
Щиты с IPM (сеть, генератор, UPS) в Ядромино и Победа-2
Щит в ЖК Монэ на ПЛК ОВЕН со сценарным управлением светом
Силовой щит в Весёлово (Тула): Простой трёхфазный
Щит для квартиры в Митино на ПЛК ОВЕН (свет, отопление)
Плавное включение освещения большой мощности на КР1182ПМ1
Старинный "диммер" - Темнитель
Будьте острожны! Эта микросхема и тот способ плавного включения освещения, который она реализует, подходит под обычные лампы накаливания! Для включения мощных светодиодных ламп или блоков питания для LED-лент она не годится! Используйте специальные компенсаторы стартовых токов — почитайте мой пост про них.
На заглавном фото к статье — вообще раритет, прародитель современных диммеров — резисторный темнитель, который примерно до 2007 года использовался в ДК ФСБ России для плавного гашения и зажигания света в зрительном зале (этот ДК ещё засветился тут на фотках старого сценического света). Устроен он до невозможности просто: мотор с редуктором крутит вал, по резьбе которого перемещается бегунок мощного графитового резистора. Ну и есть ручка, чтобы самому крутить, если что-то откажет… Это был небольшой бонус, а теперь немного грузилова и теории.
Плавное включение галогеновых (и обычных) ламп
Так вот. Пока вольфрамовая спираль холодная, её сопротивление примерно раз в 10 меньше, чем при работе лампы. Из-за этого через тончайшую проволочку при включении лампы (а если синусоида сетевого напряжения в этот момент попадёт на амплитудный максимум, то вообще кошмар) протекает аналогично — ток в десять раз больше рабочего. Вольфрамовая спираль может не выдержать такого издевательства и в один из прекрасных дней (или вечеров) попросту сгореть. А если лампа используется в качестве временного источника освещения и её дёргают по нескольку раз за день/ночь? Например — прожектор с датчиком движения на садовом участке: пошли в туалет типа сортир — включилась. Вышли — опять включилась… Да ещё и на морозе? Вот и служат лампочки, особенно галогеновые, вместо 1000 часов, всего два-три дня (особенно китайские и дешёвые).
Микросхема КР11182МП1 — фазовый регулятор мощности
Это Российское творение является обособленным вариантом фазового регулятора мощности наравне с турецкими диммерами типа Vi-Ko и MAKEL, которые умеют делать это только переменным резистором и имеют всего ничего деталей. Наши пошли чуть дальше, оставив небольшой простор для кулибинства. У микросхемы КР1182ПМ1 есть два отдельных управляющих входа, и она выполнена в корпусе PDIP16, что делает монтаж схемы на ней удобнее. Я положил на хостинг наиболее полный DataSheet на неё от производителя — Ссылка на DataSheet, где по этой микросхеме выдана наиболее полная информация и характеристики. Все комментарии и пояснения будут далее относиться только к этому DataSheet’у.
Итак, давайте почитаем, что эта микросхема умеет:
В PDFнике приводится несколько типовых схем (копировать оттуда лень) — переменный резистор, выключатель и система плавного включения с конденсатором. Дополнительно с Сети встречались ещё варианты с фоторезистором (фотореле, датчик освещённости) и прочие приблуды.
Так как мы затачиваемся на плавное включение наших галогеновых ламп (для примера буду говорить о китайских прожекторах, которыми сейчас всё везде освещают, и лампы там горят чуть ли не каждую неделю), то рассмотрим подробнее эту схему с конденсатором и, заодно, включение и обвязку микросхемы.
Схема включения КР1182ПМ1 с конденсатором для плавного включения ламп
Но давайте выключим схему и через полминуты включим снова? Что? Обломились? Плавного включения нет? Ага! А потому что конденсаторы (особенно современные) имеют офигенно малые токи утечки, и разрядятся может быть через дня два;) Так как мы делаем МОЩНУЮ схему, то морочиться не будем и введём сюда реле с нормально замкнутой группой контактов и дополнительное сопротивление R1. Вот что у нас получится:
Схема подключения реле для разряда конденсатора выдержки времени для КР1182ПМ1
Реле может быть любым, я использую миниатюрные с катушкой на ~220 вольт, которое имеет две переключающие группы контактов, например ABB CR-P230AC2 (вот пост про реле CR-P от ABB). Выбор реле вообще не принципиален, оно может быть любое, чуть ли не совковое РПУ-1 ;)
Резистор R1 нужен для того, чтобы более-менее плавно разряжать конденсатор (не замыкать его накоротко — иначе от искры при разряде сварятся контакты реле) и может варьироваться около килоома.
Система плавного включения освещения (первый вариант)
Что получается: нормально замкнутыми контактами наш конденсатор и управляющий вход всегда замкнуты при отключённом напряжении питания. Конденсатор C3, если он был заряжен, разряжается через резистор R1. Заодно выполняется требование из DataSheet на микросхему КР1182ПМ1: желательно включать её в режиме нулевой мощности на нагрузке (замкнутые контакты C- и C+).
При подаче питания срабатывает реле, размыкая разряжающую цепочку и позволяя конденсатору спокойно заряжаться, как в предыдущей схеме — нашал лампочка опять зажигается плавно, в том числе при повторном включении. Этот баг пофиксили.
Увеличение выходной мощности КР1182ПМ1 (подключение тиристоров и симистора)
Но я же обещал мощную схему? А тут всего лишь микросхема в штатном режиме работы, с лампочкой не больше 150 ватт? Я исправляюсь и выкладываю следующие схемы.
Вот как надо подключать к микросхеме КР1182ПМ1 симистор.
Подключение симистора к КР1182ПМ1 для увеличения мощности ламп
Резистор R1 здесь ограничивает ток управляющего электрода симистора. Выбор его номинала зависит от типа самого симистора (надо смотреть DataSheet) и управляющего тока через него. Не забывайте о том, что на этом резисторе может выделяться большая мощность! Например для одной из версий схемы с симистором ТС-160А (160-амперный) этот резистор был около 3-4,7 ом 5-тиваттной мощности! Сейчас есть хорошие резисторы серии SQP, которые отлично подходят под эти условия эксплуатации. Для симистора ТС-25 резистор R1 был 82 ома и 1-ваттный.
Подключение двух тиристоров к КР1182ПМ1 для увеличения мощности
Правило для выбора резисторов R1 и R2 здесь такое же, как для предыдущей схемы. Не забывайте про мощность! В наших разработках использовались T-50 и T-160 с резисторами мощностью 1 Вт и сопротивлением 82 Ом.
Схема плавного включения ламп (мощная)
А теперь вспоминаем про нашу обвязку с реле и конденсатором и получаем вот такую итоговую конструкцию одного канала (однофазную) на примере тиристоров.
Общая схема одного канала плавного включения на КР1182ПМ1
Если мы хотим собрать трёхфазную систему, то надо просто набрать три однофазных, соединив их вот так.
Трёхфазное подключение нескольких каналов для КР1182ПМ1
В этом случае реле можно применить с тремя переключащими группами одно на все три фазы при условии одновременного их включения. Сама схема, конечно же, может варьироваться в зависимости от нужд. И для примера я покажу два варианта её изготовления и применения.
Плавное включение дежурного освещения на сцене в ДК ФСБ России
Собственно в этом самом ДК ФСБ и происходила разработка и обкатка мощной версии этой системы, а дальше она собиралась на заказ под нужды клиентов.
Система плавного включения освещения на 10 кВт
Из-за такого использования реле схема включения вентилятора напоминала логическое ИЛИ, и он автоматически запускался при включении любого из каналов системы.
Реле и схемы управления на КР1182ПМ1
Памятный шильдик о запуске изделия
Данная система, как видно из шильдика, была запущена в 2002 году и работает до сих пор (на момент написания статьи), часто весь день, вытягивая по 5 кВт на канал легко и непринуждённо. За полсуток работы радиаторы нагреваются примерно до 30-40 градусов, то-есть почти холодные из-за применения мощных тиристоров с запасом (какие были, такие и поставили).
Плавное включение ночной подсветки вывесок магазина мебельной фабрики АБТ в Люблино
Магазин фабрики АБТ в Люблино
Аналогичная система, но на два канала, была изготовлена для подсветки магазина от фабрики АБТ, где я когда-то работал Админом, Электриком и 1Сером — короче на все руки Мастером ^_^ (подробнее почитать и поржать можно тут).
Вывеска представляла собой девять галогеновых прожекторов по 250Вт (итого 2,2 кВт) и световой короб из ламп дневного света, с которым при его подключении было порядочно возни (все дроссели проржавели нахер, пришлось снимать баннер и всё перебирать, меняя лампы).
Всё это чудо техники управлялось при помощи реле времени, которое вечером включало трёхфазный контактор, коммутировавший питание вывесок.
Часть схемы управления автоматическим включением рекламы
Две фазы отводилось на прожектора, и одна фаза на световой короб. Схема была мило запихана в щиток и работала как часы, которые собственно и были в её составе;)
Мы с отцом решили сделать им подарок от фирмы и собрать на эти дешёвые прожектора аналогичную систему плавного включения.
Сисема плавного включения галогеновых ламп
Единственное, мы не позаботились о корпусе для неё — и его роль прекрасно сыграл обычный Vi-Koшный щиток на 24 модуля с вынутыми нафик внутренностями.
Место для установки системы плавного включения
Вся эта силовая конструкция была запихана в корпус, подключена, собрана и испытана.
Общий вид на все щитки магазинной электрики
Закрытый бокс с системой плавного включения
Всё то время, что я работал на фабрике (до 2008 года), лампочки никто не менял.
Установленная и подключённая система (вид на все щитки вместе)
В каком состоянии эта система на данный момент — неизвестно, да и в принципе наплевать. Итак — спасибо за внимание, экскурс в историю окончен — кулибинствуйте!
Применение микросхемы КР1182ПМ1. Плавный пуск электродвигателя
Плавный пуск электродвигателя в последнее время применяется все чаще. Области его применения разнообразны и многочисленны. Это промышленность, электротранспорт, коммунальное и сельское хозяйство. Применение подобных устройств позволяет значительно снизить пусковые нагрузки на электродвигатель и исполнительные механизмы, тем самым, продлив срок их службы.
Пусковые токи
Устройства плавного пуска позволяют значительно снизить пусковые нагрузки на электродвигатель и электросеть, что особенно актуально в сельской местности либо при питании двигателя от автономной электростанции.
Перегрузки исполнительных механизмов
В момент запуска двигателя момент на его валу очень нестабилен и превышает номинальное значение более чем в пять раз. Поэтому пусковые нагрузки исполнительных механизмов также повышены по сравнению с работой в установившемся режиме и могут достигать до 500 процентов. Нестабильность момента при пуске приводит к ударным нагрузкам на зубья шестерен, срезанию шпонок и иногда даже к скручиванию валов.
Устройства плавного пуска электродвигателя значительно уменьшают пусковые нагрузки на механизм: плавно выбираются зазоры между зубьями шестерен, что препятствует их поломке. В ременных передачах также плавно натягиваются приводные ремни, что уменьшает износ механизмов.
Кроме плавного пуска на работе механизмов благотворно сказывается режим плавного торможения. Если двигатель приводит в движение насос, то плавное торможение позволяет избежать гидравлического удара при выключении агрегата.
Устройства плавного пуска промышленного изготовления
Устройства плавного пуска в настоящее время выпускается многими фирмами, например Siemens, Danfoss, Schneider Electric. Такие устройства обладают многими функциями, которые программируются пользователем. Это время разгона, время торможения, защита от перегрузок и множество других дополнительных функций.
При всех достоинствах фирменные устройства обладают одним недостатком, - достаточно высокой ценой. Вместе с тем можно создать подобное устройство самостоятельно. Стоимость его при этом получится небольшой.
Устройство плавного пуска на микросхеме КР1182ПМ1
В первой части статьи рассказывалось о специализированной микросхеме КР1182ПМ1, представляющей фазовый регулятор мощности. Были рассмотрены типовые схемы ее включения, устройства плавного запуска ламп накаливания и просто регуляторы мощности в нагрузке. На основе этой микросхемы возможно создание достаточно простого устройства плавного пуска трехфазного электродвигателя. Схема устройства показана на рисунке 1.
Рисунок 1. Схема устройства плавного пуска двигателя.
Плавный пуск осуществляется при помощи постепенного увеличения напряжения на обмотках двигателя от нулевого значения до номинального. Это достигается за счет увеличения угла открывания тиристорных ключей за время, называемое временем запуска.
Описание схемы
Выходные ключи выполнены на тиристорах включенных встречно – параллельно. В конструкции применены импортные тиристоры типа 40TPS12. При небольшой стоимости они обладают достаточно большим током – до 35 А, а их обратное напряжение 1200 В. Кроме них в ключах присутствуют еще несколько элементов. Их назначение следующее: демпфирующие RC цепочки, включенные параллельно тиристорам, предотвращают ложные включения последних (на схеме это R8C11, R9C12, R10C13), а с помощью варисторов RU1…RU3 поглощаются коммутационные помехи, амплитуда которых превышает 500 В.
В качестве управляющих узлов для выходных ключей используются микросхемы DA1…DA3 типа КР1182ПМ1. Эти микросхемы достаточно подробно были рассмотрены в первой части статьи. Конденсаторы С5…С10 внутри микросхемы формируют пилообразное напряжение, которое синхронизировано сетевым. Сигналы управления тиристорами в микросхеме формируются путем сравнения пилообразного напряжения с напряжением между выводами микросхемы 3 и 6.
Для питания реле К1…К3 в устройстве имеется блок питания, который состоит всего из нескольких элементов. Это трансформатор Т1, выпрямительный мостик VD1, сглаживающий конденсатор С4. На выходе выпрямителя установлен интегральный стабилизатор DA4 типа 7812 обеспечивающий на выходе напряжение 12 В, и защиту от коротких замыканий и перегрузок на выходе.
Описание работы устройства плавного пуска электродвигателей
Сетевое напряжение на схему подается при замыкании силового выключателя Q1. Однако, двигатель еще не запускается. Это происходит потому, что обмотки реле К1…К3 пока обесточены, и их нормально-замкнутые контакты шунтируют выводы 3 и 6 микросхем DA1…DA3 через резисторы R1…R3. Это обстоятельство не дает заряжаться конденсаторам С1…С3, поэтому управляющие импульсы микросхемы не вырабатывают.
Пуск устройства в работу
При замыкании тумблера SA1 напряжение 12 В включает реле К1…К3. Их нормально-замкнутые контакты размыкаются, что обеспечивает возможность зарядки конденсаторов С1…С3 от внутренних генераторов тока. Вместе с увеличением напряжения на этих конденсаторах увеличивается и угол открывания тиристоров. Тем самым достигается плавное увеличение напряжения на обмотках двигателя. Когда конденсаторы зарядятся полностью, угол включения тиристоров достигнет максимальной величины, и частота вращения электродвигателя достигнет номинальной.
Отключение двигателя, плавное торможение
Для выключения двигателя следует разомкнуть выключатель SA1, Это приведет к отключению реле К1…К3. Их нормально – замкнутые контакты замкнутся, что приведет к разряду конденсаторов С1…С3 через резисторы R1…R3. Разряд конденсаторов будет длиться несколько секунд, за это же время произойдет останов двигателя.
Детали и конструкция
Для сборки устройства необходимы следующие детали:
Трансформатор мощностью не более 15 Вт, с напряжением выходной обмотки 15…17 В.
В качестве реле К1…К3 подойдут любые с напряжением катушки 12 В, имеющие нормально-замкнутый или переключающий контакт, например TRU-12VDC-SB-SL.
Конденсаторы С11…С13 типа К73-17 на рабочее напряжение не менее 600 В.
Устройство выполнено на печатной плате. Собранное устройство следует поместить в пластмассовый корпус подходящих размеров, на лицевой панели которого разместить выключатель SA1 и светодиоды HL1 и HL2.
Подключение двигателя
Подключение выключателя Q1 и двигателя выполняется проводами, сечение которых соответствует мощности последнего. Нулевой провод выполняется тем же проводом, что и фазные. При указанных на схеме номиналах деталей возможно подключение двигателей мощностью до четырех киловатт.
Если предполагается использовать двигатель мощностью не более полутора киловатт, а частота пусков не будет превышать 10…15 в час, то мощность, рассеиваемая на тиристорных ключах незначительна, поэтому радиаторы можно не ставить.
Если же предполагается использовать более мощный двигатель или запуски будут более частыми, потребуется установка тиристоров на радиаторы, изготовленные из алюминиевой полосы. Если же радиатор предполагается использовать общий, то тиристоры следует изолировать от него при помощи слюдяных прокладок. Для улучшения условий охлаждения можно воспользоваться теплопроводящей пастой КПТ – 8.
Проверка и наладка устройства
Неравномерность времени включения обусловлена разбросом емкостей конденсаторов С1…С3, которые имеют значительный допуск по емкости. Поэтому лучше перед установкой сразу подобрать их с помощью прибора, хотя бы с точностью процентов до десяти.
Время выключения обусловлено еще сопротивлением резисторов R1…R3. С их помощью можно выровнять время выключения. Эти настройки следует выполнять в том случае, если разброс времени включения – выключения в разных фазах превышает 30 процентов.
Двигатель можно подключать лишь после того, как вышеуказанные проверки прошли нормально, не сказать бы даже на отлично.
Что можно еще добавить в конструкцию
Выше уже было сказано, что такие устройства в настоящее время выпускаются разными фирмами. Конечно, все функции фирменных устройств в подобном самодельном повторить невозможно, но одну все-таки, скопировать, наверно, удастся.
Речь идет о так называемом шунтирующем контакторе. Назначение его следующее: после того, как двигатель достиг номинальных оборотов, контактор просто перемыкает тиристорные ключи своими контактами. Ток идет через них в обход тиристоров. Такую конструкцию часто называют байпасом (от английского bypass – обход). Для такого усовершенствования придется ввести дополнительные элементы в блок управления.
Если болгарка не оснащена регулятором оборотов, можно ли установить его самостоятельно?
Большинство угловых шлифовальных машин (УШМ), в простонародье болгарок, имеют регулятор оборотов.
Регулятор оборотов расположен на корпусе УШМ
Рассмотрение различных регулировок нужно начать с анализа электрической схемы болгарки.
простейшее представление электросхемы шлифовальной машины
Более продвинутые модели автоматически поддерживают скорость вращения вне зависимости от нагрузки, но чаще встречаются инструменты с ручной регулировкой оборотов диска. Если на дрели или электрическом шуруповерте используется регулятор куркового типа, то на УШМ такой принцип регулирование невозможен. Во-первых – особенности инструмента предполагают другой хват при работе. Во-вторых – регулировка во время работы недопустима, поэтому значение оборотов выставляется при выключенном моторе.
Для чего вообще регулировать скорость вращения диска болгарки?
- При резке металла разной толщины, качество работы сильно зависит от скорости вращения диска.
Если резать твердый и толстый материал – необходимо поддерживать максимальную скорость вращения. При обработке тонкой жести или мягкого металла (например, алюминия) высокие обороты приведут к оплавлению кромки или быстрому замыливанию рабочей поверхности диска; - Резка и раскрой камня и кафеля на высокой скорости может быть опасной.
К тому же диск, который крутится с высокими оборотами, выбивает из материала мелкие куски, делая поверхность реза щербатой. Причем для разных видов камня выбирается разная скорость. Некоторые минералы как раз обрабатываются на высоких оборотах; - Шлифовальные работы и полировка в принципе невозможны без регулирования скорости вращения.
Неправильно выставив обороты, можно испортить поверхность, особенно – если это лакокрасочное покрытие на автомобиле или материал с низкой температурой плавления; - Использование дисков разного диаметра автоматически подразумевает обязательное наличие регулятора.
Меняя диск Ø115 мм на Ø230 мм, скорость вращения необходимо уменьшить практически вдвое. Да и удержать в руках болгарку с 230 мм диском, вращающимся на скорости 10000 об/мин практически нереально; - Полировка каменных и бетонных поверхностей в зависимости от типа используемых коронок производится на разных скоростях. Причем при уменьшении скорости вращения крутящий момент не должен снижаться;
- При использовании алмазных дисков необходимо уменьшать количество оборотов, так как от перегрева их поверхность быстро выходит из строя.
Разумеется, если ваша болгарка работает только в качестве резака для труб, уголка и профиля – регулятор оборотов не потребуется. А при универсальном и разностороннем применении УШМ он жизненно необходим.
Типовая схема регулятора оборотов
Вот так выглядит плата регулятора оборотов в сборе
Регулятор оборотов двигателя – это не просто переменный резистор, понижающий напряжение. Необходим электронный контроль величины силы тока, иначе с падением оборотов будет пропорционально снижаться мощность, а соответственно и крутящий момент. В конце концов, наступит критически малая величина напряжения, когда при малейшем сопротивлении диска электродвигатель просто не сможет повернуть вал.
Поэтому, даже самый простой регулятор необходимо рассчитать и выполнить в виде проработанной схемы.
А более продвинутые (и соответственно дорогие) модели оснащаются регуляторами на основе интегральной микросхемы.
Интегральная схема регулятора. (наиболее продвинутый вариант)
Если рассматривать электрическую схему болгарки в принципе, то она состоит из регулятора оборотов и модуля плавного пуска. Электроинструменты, оснащенные продвинутыми электронными системами, существенно дороже своих простых собратьев. Поэтому далеко не каждый домашний мастер в состоянии приобрести такую модель. А без этих электронных блоков останется лишь обмотка электромотора и клавиша включения.
Надежность современных электронных компонентов УШМ превосходит ресурс обмоток двигателя, поэтому не стоит бояться приобретения электроинструмента, оснащенного такими приспособлениями. Ограничителем может быть лишь цена изделия. Мало того, пользователи недорогих моделей без регулятора рано или поздно приходят к самостоятельной его установке. Блок можно приобрести в готовом виде или изготовить самостоятельно.
Изготовление регулятора оборотов своими руками
Попытки приспособить обычный диммер мдля регулировки яркости лампы ничего не даст. Во-первых, эти устройства рассчитаны на совершенно другую нагрузку. Во-вторых, принцип работы диммера не совместим с управлением обмоткой электромотора. Поэтому приходится монтировать отдельную схему, и придумывать, как ее разместить в корпусе инструмента.
ВАЖНО! Если вы не имеете навыков работы с электросхемами – лучше приобрести готовый фабричный регулятор, или УШМ с этой функцией.
Самоделный регулятор скорости
Простейший тиристорный регулятор скорости вращения легко можно сделать самостоятельно. Для этого понадобится пять радиоэлементов, которые продаются на любом радиорынке.
Электрическая схема тиристорного регулятор скорости для вашего инструмента
Компактность исполнения позволяют разместить схему в корпусе УШМ без ущерба эргономике и надежности. Однако такая схема не позволяет сохранять крутящий момент при падении оборотов. Вариант подойдет для снижения оборотов при резке тонкой жести, проведении полировальных работ, обработке мягких металлов.
Если ваша болгарка используется для обработки камня, или на нее можно установить диски размером более 180 мм, необходимо собрать более сложную схему, где в качестве модуля управления используется микросхема КР1182ПМ1, или ее зарубежный аналог.
Электросхема регулировки оборотов с применением микросхемы КР1182ПМ1
Такая схема контролирует силу тока при любых оборотах, и позволяет минимизировать потерю крутящего момента при их снижении. К тому же, эта схема бережнее относится к двигателю, продлевая его ресурс.
Вопрос, как сделать регулировку оборотов инструмента, возникает при стационарном его размещении. Например, при использовании болгарки в качестве циркулярной пилы. В таком случае, регулятором оснащается точка подключения (автомат или розетка), и регулировка оборотов происходит дистанционно.
Вне зависимости от способа исполнения, регулятор оборотов УШМ расширяет возможности инструмента и добавляет комфорта при его использовании.
Читайте также: