Реактор для биопелетсов своими руками
Представляю вам статью о том, как можно изготовить термоядерный реактор своими руками!
Но сначала несколько предупреждений:
Эта самоделка использует при своей работе опасное для жизни напряжение. Для начала убедитесь, что вы ознакомлены с правилами техники безопасности при работе с высоким напряжением или имеете квалифицированного друга – электрика в качестве советчика.
При работе реактора будут излучаться потенциально опасные уровни рентгеновских лучей. Свинцовое экранирование смотровых окон является обязательным!
Дейтерий, что будет использоваться в поделке – взрывоопасный газ. Поэтому особое внимание следует уделить проверке на герметичность топливного отсека.
При работе соблюдайте правила ТБ, не забывайте надевать спецодежду и средства индивидуальной защиты.
Список необходимых материалов:
- Вакуумная камера;
- Форвакуумный насос;
- Диффузионный насос;
- Блок питания высокого напряжения, способный выдавать 40 кВ 10 мА. Должна присутствовать отрицательная полярность;
- Высоковольтный делитель – зонд, с возможностью подключения к цифровому мультиметру;
- Термопара или баратрон;
- Детектор нейтронного излучения;
- Счётчик Гейгера;
- Газ дейтерий;
- Большой балластный резистор в диапазоне 50-100 кОм и длиной около 30 см;
- Камера и телевизионный дисплей для отслеживания ситуации внутри реактора;
- Стекло покрытое свинцом;
- Инструменты общего плана (гравёр, дрель и т.д).
Шаг 1: Сборка вакуумной камеры
Для проекта потребуется изготовить вакуумную камеру высокого качества.
Приобретите две полусферы из нержавеющей стали, фланцы для вакуумных систем. Просверлим отверстия для вспомогательных фланцев, а затем сварим всё это вместе. Между фланцами располагаются уплотнительные кольца из мягкого металла. Если вы раньше никогда не варили, было бы разумно, чтобы кто-то с опытом сделал эту работу за вас. Поскольку сварные швы должны быть безупречны и без дефектов. После тщательно очистите камеру от отпечатков пальцев. Поскольку они будут загрязнять вакуум и будет трудно поддерживать стабильность плазмы.
Шаг 2: Подготовка насоса высокого вакуума
Установим диффузионный насос. Заполним его качественным маслом до положенного уровня (уровень масла указан в документации), закрепим выпускной клапан, который затем соединим с камерой (см схему). Прикрепим форвакуумный насос. Насосы высокого вакуума не способны работать с атмосферы.
Подключим воду, для охлаждения масла в рабочей камере диффузионного насоса.
Венчик будет присоединяться к проводам высокого напряжения, которые будут заходить в рабочий объём через сильфон. Лучше всего использовать вольфрамовую нить, так как она имеет очень высокую температуру плавления, и будет оставаться целой в течение многих циклов.
Электроды, к которым крепится вольфрамовая проволока должны быть рассчитаны на напряжение порядка 40 кВ.
Шаг 4: Монтаж газовой системы
Дейтерий используется в качестве топлива для термоядерного реактора. Вам нужно будет приобрести бак для этого газа. Газ добывается из тяжёлой воды путем электролиза с помощью небольшого аппарата Гофмана.
Присоединим регулятор высокого давления, непосредственно в бак, добавим микродозаторный игольчатый клапан, а затем прикрепим его к камере. Шаровой клапан следует установить между регулятором и игольчатым клапаном.
Шаг 5: Высокое напряжение
Если вы можете приобрести блок питания, подходящий для использования в термоядерном реакторе, то проблем возникнуть не должно. Просто возьмите выходной отрицательный 40 кВ электрод и прикрепите его к камере с большим балластным резистором высокого напряжения 50-100 кОм.
Проблема заключается в том, что часто затруднительно (если не невозможно) найти соответствующий источник постоянного тока с ВАХ (вольт-амперной характеристикой) которая полностью бы соответствовала заявленным требованиям ученого-любителя.
На фото представлена пара высокочастотных ферритовых трансформаторов, с 4-ступенчатым множителем (находится за ними).
Шаг 6: Установка детектора нейтронов
Нейтронное излучение является побочным продуктом реакции синтеза. Его можно фиксировать тремя различными приборами.
Пузырчатый дозиметр небольшое устройство с гелем, в котором формируются пузыри, во время ионизации нейтронным излучением. Недостатком является то, что это интегративный детектор, который сообщает общее количество выбросов нейтронов за время, что он использовался (невозможно получить данные о мгновенной скорости нейтронов). Кроме того, такие детекторы довольно трудно купить.
Активное серебро замедлителем [парафином, водой и т.д.], расположенное вблизи реактора становится радиоактивным, испуская приличные потоки нейтронов. Процесс имеет короткий период полураспада (только несколько минут), но если вы поставите счетчик Гейгера рядом с серебром, то результат можно документально зафиксировать. Недостатком этого метода является то, что серебро требует достаточно большого потока нейтронов. Кроме того, систему довольно трудно откалибровать.
Шаг 7: Запускаем реактор
Пришло время включить реактор (не забудьте установить смотровые стекла покрытые свинцом!). Включите форвакуумный насос и подождите, пока объём камеры не будет откачен на предварительный вакуум. Запустите диффузионный насос и подождите, пока он полностью разогреется и достигнет рабочего режима.
Перекройте доступ вакуумной системы к рабочему объёму камеры.
Чуть-чуть приоткройте игольчатый клапан в баке дейтерия.
Поднимайте высокое напряжение, пока вы не увидите плазму (она сформируется при 40 кВ). Помните о правилах электробезопасности.
Если всё пойдет хорошо, вы зафиксируете всплеск нейтронов.
Требуется много терпение, чтобы повысить давление до надлежащего уровня, но после того, как всё получится, управлять им станет довольно просто.
Представляем Вам не дорогой Reactor биопелетсов с диаметром 120 мм и 100 мм. Вариацию выбирайте необходимую.
Предназначен для удаления нитратов и фосфатов, также налаживает качество воды, придавая ей прозрачный вид. Контролирует уровень PO4 и NO3 в аквариуме и ускоряет рост полезных бактерий.
Данный фильтр представляет собой резервуар с наполнителем, в нижнем основании имеются прорези сделанные под углом, которые создают вращение воды протекающей через фильтр.
Особенности:
• Специальные прорези способствуют лучшему перемешиванию адсорбента
• Сохраняет чистую воду
• Контроль PO4 и NO3
• Рекомендуемый объем биопеллетов: 700 мл или 500 в зависимости от выбранного реактора.
Некоторое время назад я публиковал статью о самодельных микропроцессорах, сегодня же мы затронем более сложную и щекотливую тему (особенно в свете событий на Фокусиме) – создание ядерного реактора, способного генерировать энергию в домашних условиях. И перед тем как вы начнете волноваться, вспоминая о негативных опытах в прошлом (см. Радиоактивный бойскаут – наковырявший прилично амерция-241 из детекторов дыма) заранее скажу, что все что описано в этой статье – относительно безопасно (по крайней мере не опаснее работы с фтороводородной кислотой дома), но крайне не рекомендуется к повторению. Перед любыми действиями проконсультируйтесь со своим адвокатом — законы разные в разных странах. Много кто уже сидит.
Какие у нас есть пути создания домашнего ядерного реактора?
Термоядерная реакция
Тяжелый водород (дейтрий) относительно несложно получить и в домашних условиях — всего то нужен многостадийный электролиз обычной воды. Но вот с реактором до сих проблемы даже у ученых, и не первый десяток лет (и это не учитывая, что дейтрий — далеко не самое легкое в использовании термоядерное топливо)
Ядерная реакция деления
Тут в унынии нам остается обратить взоры в небо, и посмотреть на чем летают межпланетные корабли — там просто кусок радиоактивного материала, который за счет естественного распада нагревается, и элементами пельтье получают энергию. (Кстати естественный распад — собственно главная физическая причина всех бед на Фокусиме — после остановки ядерного реактора в первые минуты за счет распада выделяется 7% номинальной мощности, в первые недели — ~1%, затем падает до 0.1%. Т.е. от 700МВт реактора в первые недели надо отводить 7МВт тепла, и этот процесс не остановить)
Попробуем подумать в этом направлении: Есть 3 основных вида радиоактивного распада:
Гамма-распад
Источники гамма излучения широко используются в медицине и промышленности, в основном на основе Кобальта-60/Цезия-137 (печально известного по ядерным катастрофам). Проблема в том, что излучение их очень жесткое, крайне опасное, и от него и сантиметром свинца не защититься (см. веселое свечение Вавилова-Черенкова справа — выбитые гамма-квантами электроны, движущиеся в воде со сверхсветовой скоростью излучают энергию в видимом диапазоне). Так что обходим их стороной как можно дальше. Ну и кроме того, за нелегальную сбыт/покупку гамма-источников каждый год садится куча людей
PS. Справедливости ради стоит заметить, что гамма-квант в данных случаях выделяется не непосредственно, а в результате распада одного из дочерних короткоживущих элементов.
Альфа-распад
Источники альфа-излучения активно применяются в детекторах дыма, для облегчения зажигания искры, в некоторых радиолампах. Один из наиболее известных — упомянутый в начале Америций-241. От альфа-излучения легко защититься даже листком бумаги, но с ними другая опасность: они чрезвычайно опасны если их вдохнуть/проглотить. См. миф об отравлении Кровавой Гэбней Литвиненко. Кроме того, наковырять количества больше микрограммов нереально, потому о термоэлектрических генераторах придется забыть. А жаль — ведь на основе альфа-распада работают наиболее эффективные генераторы энергии. Самый лучший — Плутоний-238 (Не путать с 239) — отдает 0.5 Ватта тепла на 1 грамм массы, полураспад 87 лет (цена — 1 мегабакс за кило).
Бета-распад
О безопасности
Мягкое бета-излучение за пределы капсулы выйти не может, гелий не радиоактивен. Проблема может быть лишь в случае повреждения капсулы. Если тритий вдохнуть — то заражение будет минимальным, т.к. водород напрямую организмом не усваивается. Но если он сгорит, то вода может стать частью клеток, и тогда вы получите всё облучение, которое может только выжать этот микроскопический кусочек трития. Так что, не ломайте, не сжигайте и не вдыхайте то что получилось.
Для того, чтобы собрать как можно больше света, нашу капсулу с тритием помещаем в отражатель из фольги.
Для фокусировки используем 2 линзы по 10 диоптрий, видна солнечная батарея до приклеивания, капсула не установлена.
Подключаем, выключаем свет, ждем минуту для первоначального заряда ионистора, и вот результат:
Первая электроэнергия, произведенная ядерным реактором, созданным в домашних условиях :-)
Халява?
О нет :-) В среднем реактор выдает мощность около 7 милливатт (а через 12.32 года будет 3.5 ), и хоть для светодиода этого достаточно, ноутбук от него не зарядить ) Но с другой стороны, десяток таких модулей вполне сможет держать сотовый телефон в режиме ожидания пару десятков лет :-) Правда цена… Капсула стоит 9.7$, солнечная батарея 5$, линзы 13.8$*2 — уже 42$ за модуль. А за десяток придется отдать 420$… С другой стороны — на сайте есть капсулы побольше — но за 35.
Клетки животных во многом отличаются от прокариотических и грибных клеток: они медленнее растут, у них большая чувствительность к ранению и пузырькам воздуха. Эти свойства клеток оказывают влияние на конструкцию биореакторов, в особенности системы перемешивания и аэрации, которые при работе не должны создавать стрессовых условий для культуры.
Перемешивание должно быть гомогенным, чтобы избежать градиентов температуры и рН, повышенных концентраций субстрата и продуктов. При этом необходимо учитывать чувствительность клеток к ранению. Обычно перемешивание осуществляется большими лопастными мешалками при низких скоростях. Пневматическое (воздушное) перемешивание в эрлифтных реакторах или гидравлическое перемешивание с помощью внешних насосов в реакторах с взвешенной твердой фазой ( fluidized bed reactors) также решает проблемы, связанные с культивированием.
Для предотвращения пенообразования и повреждения клеток пузырьками воздуха можно уменьшить объем подаваемой газовой смеси, использовать поверхностную продувку или безпузырьковую аэрацию через мембраны. При сокращении объема подаваемого газа необходимо увеличить в нем концентрацию кислорода. Оптимальное снабжение кислородом, азотом, воздухом и углекислым газом создается с помощью систем перемешивания газов.
Выращивание животных клеток можно осуществлять в стационарной ( batch), стационарной с подпиткой ( fed- batch) или непрерывной ( continuous) культуре с задержанием биомассы или без. При стационарном культивировании клетки растут без добавления субстрата после посева культуры. Однако, недостаток субстрата или образование токсичных продуктов метаболизма может снизить продуктивность. Чтобы избежать этих проблем применяют стационарное культивирование с подпиткой, при котором субстрат или другие необходимые вещества добавляют порциями или непрерывно. При непрерывном культивировании продукты метаболизма, ингибирующие рост - лактат, аммоний, удаляют, добавляя компенсирующий объем свежей среды, чтобы избежать недостатка субстрата для роста. Из-за низкой продуктивности, связанной с медленным ростом, для клеток животных предпочтителен непрерывный процесс культивирования с задержанием клеток (перфузионная система). Это приводит к большей плотности культуры клеток и большему контакту с ними среды, что увеличивает продуктивность. Для задержания биомассы и предотвращения ее выноса с удаляемыми объемами культуральной жидкости используют различные системы фильтрации, например, роторные или вращающиеся фильтры.
Многие клетки млекопитающих растут только будучи прикрепленными к поверхности. Такие опорнозависимые клетки иммобилизуют на микроносителях, таких как стекло, целлюлоза, коллаген, желатин или пластик. Если носитель пористый, клетки могут расти внутри него, при этом они защищены от раневого стресса, что позволяет использовать более высокие скорости перемешивания и продувки в процессе культивирования.
Компания Bioengineering предлагает большой ассортимент реакторов для обеспечения наилучших условий культивирования различных типов клеток.
Клеточный ферментер - биореактор
Клеточный ферментер (биореактор) представляет собой резервуар с мешалкой, сконструированный для культивирования клеток животных. Он доступен в пилотном и производственном масштабе (общим объемом до 2000 л). Для минимизации стресса при ранении перемешивание осуществляется лопастной мешалкой морского типа.
Культивирование может быть стационарным, стационарным с подпиткой, а также непрерывным благодаря наличию тензодатчиков. Реактор используется для культивирования взвеси клеток или клеток, иммобилизованных на микроносителях. Для задержания биомассы при непрерывном культивировании можно использовать роторные или спиральные фильтры (см. ниже).
Встроенное устройство пробоотбора обеспечивает стерильный отбор контагиозных клеток (например, для производства вирусов).
Для того, чтобы не травмировать клетки в процессе продувки можно установить различные системы аэрации, например, пульверизаторы (барбатеры), систему поверхностной аэрации или использовать безпузырьковую продувку через силиконовые трубочки.
Эрлифтный ферментер
В этих ферментерах перемешивание осуществляется потоком воздуха, а не лопастью мешалки, обеспечивая эффективный массоперенос и низкие силы рассечения. Для контроля за циркуляцией жидкости можно установить вытяжную трубу, направляющую поток пузырьков по центру. Распределение газа может осуществляться с помощью перфорированных, пористых или гидрофобных трубок. Если клетки могут повредиться пузырьками газа, можно установить систему безпузырьковой аэрации через силиконовые трубочки.
Биореакторы доступны как лабораторные, так и промышленные. Последние имеют широкую верхнюю часть, действующую как сепаратор газов.
Компания Bioengineering предлагает также visual safety airlift fermenter с рабочим объемом в 20 л, с легко снимаемой стерилизуемой фольгой вместо стеклянной или стальной оболочки. Культивирование может быть стационарным, стационарным с подпиткой или непрерывным. Эрлифтные ферментеры подходят для культивирования суспензий клеток, включая клетки насекомых.
Биореактор с взвешенной твердой фазой ( Fluidized bed reactor )
Биореакторы, которые поддерживают носители с иммобилизованными клетками в состоянии суспензии, называются реакторами с взвешенной твердой фазой ( fluidized bed reators).
Обычно в этих реакторах присутствует три фазы – твердая, жидкая и газообразная. Для непрерывного культивирования с задержанием биомассы используется специально разработанная система сепарации. Она состоит из различных камер и обеспечивает полное задержание частиц при перфузионных процессах.
Перемешивание достигается с помощью продувки. Это обеспечивает низкий раневой стресс и равномерный массоперенос. Для чувствительных клеток имеется система безпузырьковой аэрации через силиконовые мембраны (Forschungszentrum J?lich (a), Informationsblatt).
Общий объем реактора составляет 7 л, он поставляется как со стеклянным, так и со стальным цилиндром. В этих реакторах была достигнута высокая плотность клеток CHO, BHK и гибридомы (Forschungszentrum J?lich (b), Informationsblatt).
Биореакторы с взвешенной твердой фазой рекомендуются для клеток на микроносителях (т.е. нуждающихся в опорной поверхности), для клеток, чувствительных к раневому стрессу, для заключенных в капсулу клеток и для продуцирования продуктов секреции в долговременной культуре клеток.
Для защиты чувствительных клеток в ферментерах с взвешенной твердой фазой можно использовать систему безпузырьковой продувки через силиконовые трубочки (со стенками, армированными стекловолокном), которая предотвращает возникновение градиента кислорода в потоке.
Автоклавируемый ферментер с взвешенной твердой фазой (Autoclavable fluidized bed reactor)
Для лабораторных целей удобен автоклавируемый ферментер с взвешенной твердой фазой ( AWS). Он оборудован магнитным циркуляционным насосом непрерывного действия. Температура контролируется посредством циркуляционного термостата. Ферментер AWS закреплен на раме и может автоклавироваться со всеми аксессуарами.
Биореактор с фиксированной твердой фазой (Fixed bed reactor)
Как альтернативу для культивирования клеток, нуждающихся в фиксации для роста, можно использовать биореактор с фиксированной твердой фазой, в котором клетки и их носители захватываются в закрепленную подложку. Эта система не нуждается в сепарационных приемах для удаления жидкой фазы. Раневой стресс и повреждение клеток пузырьками газа минимальны.
В процессе культивирования через фиксированную подложку циркулирует насыщенная кислородом среда. Поэтому при аксиальном потоке длина подложки является критическим параметром, поскольку обеспечение культуры кислородом и питательными веществами может быть недостаточным. В больших реакторах эту проблему можно решить с помощью радиально распространяющегося потока. Среда, обогащенная продуктами метаболизма, удаляется непрерывно или периодически.
Компания Bioengineering предлагает вставные корзины с подложками для маленьких лабораторных ферментеров ( KLF) и лабораторных ферментеров ( NLF, 19 л). Среда через подложки распространяется радиально. Возможно увеличение объема подложки до 40-75 л (500-1000 л реакторы). В таких реакторах выращивают нуждающиеся в имобилизации и чувствительные к ранению клетки. Система подходит и для долговременного выращивания культур клеток с продуктами метаболизма.
Мембранный ферментер
Мембранный ферментер состоит из внутренней и внешней камер, которые разделены диализной мембраной. Мембрана обеспечивает безпузырьковую продувку и задержание биомассы при непрерывном культивировании. С помощью мембранной технологии токсические (низкомолекулярные) метаболиты удаляются, а (высокомолекулярные) соединения удерживаются во внутренней камере (P?rtner et al. 1992). Перемешивание в каждой из камер осуществляется мешалкой. Среда и воздух поставляются во внешнюю камеру. Внешняя камера имеет общий объем 7.1 л, а внутренняя – 2.4 л. Биореактор был сконструирован для непрерывного культивирования, но может быть также использован в стационарных и стационарных с подпиткой процессах. Взвешенные клетки, а также клетки, нуждающиеся в закреплении на микроносителях, также могут выращиваться в этом биореакторе (Bohmann et al., 1992; Bohmann et al., 1993).
Системы фильтрации
Системы фильтрации используются при непрерывном культивировании клеток животных с задержанием биомассы. Компания Bioengineering предлагает два различных типа фильтров.
Роторный фильтр
Роторный фильтр основан на технологии просеивания при вращении. Он может быть вставлен непосредственно в сосуд биореактора или использоваться как внешняя проточная система. В первом случае преимущество состоит в компактности системы. Второй вариант более гибкий, поскольку в процессе культивирования фильтр может быть демонтирован, промыт, простерилизован и подключен заново. Превосходное задержание биомассы (80% и более) без ее повреждения достигается даже при крупномасштабном культивировании, которое характеризуется долговременностью и высокими скоростями потока (S?meghy).
Спиральный фильтр
Спиральный фильтр основан на принципе мембранной фильтрации. Он был специально разработан для больших объемов прокачиваемой среды при минимальной затрате энергии (Winzeler 1990).Спиральный фильтр соединяется с биореактором с помощью проточной системы и может стерилизоваться как на месте, так и в автоклаве. Он особенно удобен для задержания клеток, а также для свободного от клеток пробоотбора, поскольку силы травмирования очень малы.
Список литературы
A. Bohmann, R. P?rtner, H. M?rkl
The membrane dialysis bioreactor – a reactor concept for continuous cultivation of animal cells. In: DECHEMA Biotechnology and Bioengineering, Vol, 41, 1993,
1092-272
A. Bohmann, R. P?rtner, J. Schmiedling, V. Kasche, H. M?rkl
The membrane dialysis bioreactor with integrated radial-flow fixed bed-a new approach for continuous cultivation of animal cells. In: Cytotechnology, 9, 1992, 51-57
Forschungszentrum J?lich GmbH (ed.) a
Reaktorintegrierte blasenfreie Begasung von Wirbelschichtreaktoren.
Informationsblatt des Forschungszentrums J?lich GmbH, J?lich o.J.
Forschungszentrum J?lich GmbH (ed.) b
Integrated bioprocess engineering for antibody production. Informationsblatt des
Forschungszentrums J?lich GmbH, J?lich o. J.
R. P?rtner, A. Bohmann, J. Schmiedling, V. Kasche, H. M?rkl
Metabolic parameters and stability of suspended and immobilized hybridoma cells.
In: DECHEMA Biotechnology conferences 5, Frankfurt a. M., 1992, 309-312
Z. S?meghy
Improved cell retention system based on the rotating sieve technique. (A copy of the manuscript is available at Bioengineering AG)
Смотрите еще проекты
Проект Молдавия. ФАТы. Сверка с клиентом основных компонентов и комплектующих
Читайте также: