Разговор по сотовому телефону какой канал передачи информации
Сотовая связь является основой современных коммуникаций. Технически это одна из разновидностей радиосвязи, в которой абоненты связываются друг с другом с помощью сети базовых станций, принимающих и ретранслирующих сигнал от приемопередатчиков пользователей. Для того, чтобы связь была доступна везде, в любом месте и любое время, независимо от того, где находитесь вы и ваш собеседник, таких базовых станций должно быть очень много, чтобы покрыть максимум площади и обеспечить одновременную связь сразу множеству абонентов.
Именно из-за карты покрытия сети этот вид связи и назвали «сотовой». Все дело в том, что зоны покрытия от каждой станции немного накладываются на соседние, чтобы обеспечить непрерывность нахождения пользователя в сети. Поэтому, когда вы смотрите на схему размещения и покрытия сверху, то круги, показывающие зону действия каждой базовой станции, пересекаясь друг с другом, образуют контур, напоминающий пчелиные соты.
Сотовая связь стала привычным явлением, поэтому сейчас сложно представить, что относительно недавно ее не было: например, в России мобильная связь начала массово распространяться только в начале XXI века. В силу того, что в России массовая сотовая связь появилась несколько позже, чем в остальном мире, у нас быстро появились сети 2G, а сети первого поколения разворачивались не везде и проработали недолго. Поэтому коротко расскажем об особенностях сотовых сетей, начиная со второго поколения 2G и заканчивая 5G, внедрения которого все ждут.
Сотовые сети 2G, 3G, 4G, 5G: в чем основное отличие
Если говорить коротко, то основным отличием сотовых сетей разных поколений является скорость передачи данных, становившаяся все быстрее по мере развития технологий и быстродействия оборудования. Немного остановимся на особенностях каждого из стандартов.
Сотовые сети 2G
Ситуация изменилась в 1997 году, когда разработали и внедрили сервис «General Packet Radio Service» (GPRS) – надстройку над телефонным каналом мобильной связи, предназначенную для передачи данных. Максимальная скорость передачи данных через GPRS теоретически составляла до 171,2 кБит/с, практически — значительно ниже. На сегодня это уже откровенно мало, но на момент запуска было очень хорошо, потому что это было время, когда пользователи начали в массовом порядке осваивать электронную почту.
Сети с использованием GPRS получили индекс 2,5G, потому что до уже утвержденных к тому моменту норм стандарта 3G они не дотягивали. В дальнейшем появилось еще и 2,75G – технология EDGE, отличающаяся от GPRS способом кодирования и увеличенной скоростью передачи данных. Внедрение EDGE позволило повысить скорость передачи данных до 474 кбит/с в теории и до 220 кбит/с на практике. В некоторых случаях EDGE даже относят к технологии 3G, если способ ее реализации позволяет обеспечивать требования к этому стандарту (скорость передачи данных — до 384 кбит/с).
Сотовые сети 3G
Первые коммерческие сети этого стандарта были запущены в 2001-2003 году. Сначала появилась сеть в Японии, потом в Норвегии. В США первую сеть 3G запустили в 2002 году, а в России сети третьего поколения начали работу в тестовом режиме в 2002 году. Массовый запуск в регионах начался с 2008 года.
Основой 3G сети в России является стандарт UMTS (или W-CDMA). Первоначально скорость передачи данных в них достигала 384 кбит/с. В дальнейшем скорости быстро выросли с появлением 3,5G, то есть с внедрением стандартов HSPA и HSPA+, способных, в идеале, развивать скорости до 14,4 Мбит/с и 42 Мбит/с соответственно.
Важная особенность 3G — по мере движения и удаления пользователя от одной базовой станции, его «подхватывает» другая, забирая на себя часть потока данных. При этом «старая» базовая станция постепенно уменьшает поток данных, пока абонент совсем не покинет зону ее действия. Благодаря такой работе и при наличии хорошего покрытия сети вероятность того, что случится обрыв связи, становится меньше, чем в GSM, где используется жесткое переключение пользователя между базовыми станциями.
Сотовые сети 4G
Следующим шагом по повышению скорости передачи данных стало внедрение сотовых сетей четвертого поколения. На сегодня это самые актуальные сети для мобильной связи и высокоскоростного мобильного доступа в Интернет. В России сети 4G работают на частотах 1800 МГц, 2600 МГц и реже на частоте 800 МГц.
Теоретически стандарты связи в сетях четвертого поколения могут выдать скорость загрузки до 1 Гбит/с для стационарного абонента. На практике все очень сильно зависит от качества сигнала и загрузки базовых станций, поэтому реальные скорости намного меньше. В лучшем случае вы получите соединение со скоростью 100 Мбит/с и то, это если говорить о Москве. Например, «Билайн» заявляет максимальную скорость в своих сетях 4G до 73 Мбит/с, в сетях 4G+ – до 110 Мбит/с. Реальная скорость получается ниже.
Особенность 4G заключается в том, что сначала были запущены сети LTE для передачи данных. LTE — это стандарт беспроводной высокоскоростной передачи данных с увеличенной пропускной способностью, разработанный на основе предыдущих стандартов EDGE и HSPA. У LTE есть важная особенность: сети этого стандарта умеют передавать только данные, но не голос, так как LTE поддерживает только коммутацию пакетов данных, а голосовые вызовы в GSM и UMTS осуществляются на основе коммутации каналов.
Поэтому первоначально сети на основе LTE использовались только для передачи данных, а голосовая связь осуществлялась за счет переключения смартфонов в сети 3G или даже 2G. В дальнейшем реализовали технологию VoLTE — передачу голоса в сетях LTE. После этого стало возможно внедрение полноценных 4G-сетей. На момент написания статьи это наиболее актуальный и быстродействующий стандарт, а сотовые операторы постепенно расширяют зону покрытия сетями 4G.
Сотовые сети 5G
Следующий шаг в развитии беспроводных сетей — 5G. Разработчики обещают, что скорости передачи данных в новой сети будут в 10 раз выше, чем в сетях 4G. 5G — это стабильный широкополосный доступ в сеть, позволяющий широко использовать «Интернет вещей» не только в бытовой сфере, но и в промышленности. Кроме того, 5G за счет стабильной и надежной связи позволит реализовать удаленное управление и полный контроль за происходящим в таких критически важных отраслях, как, например, медицина. Подробнее о сетях 5G рассказывается в статье Клуба 5G. Реальность и перспективы.
Выбор сети на смартфоне. Как разные сети отображаются на экране
Нужно ли обычному пользователю знать, в какой сети он в данный момент находится, есть ли от этого польза и требуется ли что-то настраивать вручную?
Понимание того, в какой сети вы в данный момент находитесь, позволит оценить скорость загрузки данных и понять, что сделать реально, а что не стоит даже пробовать. Например, находясь в сети GPRS бессмысленно пытаться посмотреть ролики в YouTube или TikTok. Для этого нужна как минимум сеть 3G, причем в своей быстрой версии —HSPA или HSPA+.
Тип сети на экране смартфона отображается рядом со значком уровня сигнала и передачи данных. Так при включении сети 2G вы можете увидеть значок «2G» или «E», которые сообщают вам о том, что смартфон подключился к сети GPRS или EDGE, соответственно.
При подключении к сети 3G в наше время, скорее всего, вы увидите значок «Н» или «Н+», сообщающий о том, что устройство подключено к сети HSPA или HSPA+. Возможно, где-то вам удастся и поймать сигнал только со значком «3G» — это также сети третьего поколения.
Сети 4G обозначаются значком «4G» или «LTE». Например, вот таким.
Теперь разберемся с тем, как самостоятельно выбирать сети и принудительно назначать, в каком стандарте работать. Автоматическое подключение к новейшему стандарту не всегда хорошо. Если вы находитесь на границе действия сети 4G, но при этом рядом имеется хороший сигнал 3G, лучше переключиться на него, так как скорость будет быстрее.
Делается это так. В настройках надо зайти в раздел «Мобильная сеть». Далее — «Мобильная передача данных», где надо выбрать пункт меню «Предпочтительный режим сети».
У вас могут быть доступны, в зависимости от смартфона, следующие опции: «Авто 4G/3G/2G», «Авто 3G/2G», «Только 4G», «Только 3G», «Только 2G».
«Авто» обозначает, что смартфон сам выбирает сеть из имеющихся в наличии. Если вы указали одну из сетей, например, «Только 3G», то устройство станет соединяться только с сетями этого стандарта. Выбрать в глухой деревне «Только 2G» полезно — и соединение будет стабильнее и заряд аккумулятора сэкономите.
Сотовым телефоном пользовались практически все, но мало кто задумывался – как же все это работает? В данном литературном опусе мы попытаемся рассмотреть, как же происходит связь с точки зрения Вашего оператора связи.
Когда Вы набираете номер и начинаете звонить, ну, или Вам кто-нибудь звонит, то Ваш аппарат по радиоканалу связывается с одной из антенн ближайшей базовой станции.
Каждая из базовых станций содержит от одной до двенадцати приемо-передающих антенн, направленных в разные стороны, чтобы обеспечить связью абонентов со всех сторон. На профессиональном жаргоне антенны также называют «секторами». Вы их сами наверняка неоднократно видели – большие серые прямоугольные блоки.
От антенны сигнал по кабелю передается непосредственно в управляющий блок базовой станции. Совокупность секторов и управляющего блока обычно и называется – BS, Base Station, базовая станция. Несколько базовых станций, чьи антенны обслуживают какую-либо определенную территорию или район города, подсоединены к специальному блоку – так называемому LAC, Local Area Controller, «контроллер локальной зоны», часто называемому просто контроллером. К одному контроллеру обычно подключается до 15 базовых станций.
В свою очередь, контроллеры, которых также может быть несколько, подключены к самому центральному «мозговому» блоку – MSC, Mobile services Switching Center, Центр Управления Мобильными услугами, в простонародье более известный как коммутатор. Коммутатор обеспечивает выход (и вход) на городские телефонные линии, на других операторов сотовой связи и так далее.
То есть в итоге вся схема выглядит примерно так:
В небольших GSM-сетях используется только один коммутатор, в более крупных, обслуживающих более миллиона абонентов, могут использоваться два, три и более MSC, объединенных между собой.
Зачем же такая сложность? Казалось бы, можно антенны просто подключить к коммутатору – и все, никаких проблем бы не было. Но не все так просто. Дело тут в одном простом английском слове – handover. Этим термином обозначается эстафетная передача обслуживания в сотовых сетях. То есть, когда вы идете по улице или едите на машине (электричке, велосипеде, роликовых коньках, асфальтоукладчике. ) и при этом разговариваете по телефону, то, для того чтобы связь не прерывалась (а она не прерывается), необходимо вовремя переключать Ваш телефон из одного сектора в другой, из одной BS в другую, из одной Local Area в другую и так далее. Соответственно, если бы сектора были напрямую подключены к коммутатору, то всеми этими переключениями пришлось бы управлять коммутатору, которому и без того есть, чем заняться. Многоуровневая схема сети дает возможность равномерно распределить нагрузку, что снижает вероятность отказа оборудования и, как следствие, потери связи.
Пример – если вы с телефоном переходите из зоны действия одного сектора в зону действия другого, то переводом телефона занимается управляющий блок BS, не затрагивая при этом «вышестоящие» устройства – LAC и MSC. Соответственно, если переход происходит между разными BS, то им управляет LAC и так далее.
Работу коммутатора следует рассмотреть чуть подробнее. Коммутатор в сотовой сети осуществляет практически те же функции, что и АТС в проводных телефонных сетях. Именно он определяет, куда Вы звоните, кто Вам звонит, отвечает за работу дополнительных услуг, и, в конце концов – вообще, определяет, можно ли звонить или нет.
На последнем пункте остановимся – а что происходит, когда Вы включаете свой телефон?
Вот, включаете Вы свой телефон. На Вашей SIM-карте есть специальный номер, так называемый IMSI – International Subscriber Identification Number, Международный Опознавательный Номер Абонента. Это номер уникален для каждой SIM-карты в мире, и как раз по нему операторы отличают одного абонента от другого. При включении телефона он посылает этот код, базовая станция передает его на LAC, LAC – на коммутатор, в свою очередь. Тут в действие вступают два дополнительных модуля, связанных с коммутатором – HLR, Home Location Register и VLR, Visitor Location Register. Соответственно, Регистр Домашних Абонентов и Регистр Гостевых Абонентов. В HLR хранятся IMSI всех абонентов, которые подключены к данному оператору. В VLR в свою очередь содержатся данные обо всех абонентах, которые в данный момент пользуются сетью данного оператора. IMSI передается в HLR (разумеется, в сильно зашифрованном виде; вдаваться подробно в особенности шифрования мы не будет, скажем только, что за этот процесс отвечает еще один блок – AuC, Центр Аутентификации), HLR, в свою очередь, проверяет – есть ли у него такой абонент, и, если есть, то не заблокирован ли он, например, за неуплату. Если все в порядке, то этот абонент прописывается в VLR и с этого момента может совершать звонки. У крупных операторов может быть не один, а несколько параллельно работающих HLR и VLR. А теперь попробуем все вышесказанное отобразить на рисунке:
Вот мы вкратце рассмотрели, как работает сотовая сеть. На самом деле там все куда сложнее, но если описывать все как есть досконально, то данное изложение по объему вполне может превысить «Войну и мир».
Далее мы рассмотрим, а как (и главное – за что!) оператор списывает у нас деньги со счета. Как Вы уже наверное слышали, тарифные планы бывают трех разных типов – так называемые «кредитные», «авансовые» и «припейд», от английского Pre-Paid, то есть предоплаченный. В чем же различие? Рассмотрим, как может происходить списание денег при разговоре:
Допустим, Вы куда-либо позвонили. На коммутаторе зафиксировалось – абонент такой-то звонил туда-то, поговорил, допустим, сорок пять секунд.
Первый случай – у Вас кредитная или авансовая система оплаты. В таком случае происходит следующее: данные о Ваших и не только Ваших звонках накапливаются в коммутаторе и затем, в порядке общей очереди, передаются в специальный блок, называемый Биллингом, от английского to bill – платить по счетам. Биллинг отвечает за все вопросы, связанные с деньгами абонентов – рассчитывает стоимость звонков, списывает абонентскую плату, списывает деньги за услуги и так далее.
Скорость передачи информации из MSC в Биллинг зависит от того, какова вычислительная мощность биллинга, или, другими словами, с какой скоростью он успевает переводить технические данные о совершенных звонках в непосредственные деньги. Соответственно, чем больше абоненты разговаривают, или чем более «тормозной» биллинг, тем медленнее будет двигаться очередь, соответственно, тем больше будет задержка между самим разговором и фактическим списанием денег за этот разговор. С этим фактом связано часто высказываемое некоторыми абонентами недовольство – «Мол, деньги воруют! Два дня не разговаривал – энную сумму списали. ». Но при этом совсем не учитывается, что за разговоры, которые происходили, например, три дня назад, деньги-то сразу и не списали. Хорошее люди стараются не замечать. А в эти дни, например, биллинг мог просто не работать – из-за аварии, или из-за того, что его как-нибудь модернизировали.
В обратную сторону – от биллинга к MSC – стоит другая очередь, в которой биллинг сообщает коммутатору о состоянии счетов абонентов. Опять же довольно частый случай – задолженность счета может достигать нескольких десятков долларов, а по телефону еще можно звонить – это как раз из-за того, что «обратная» очередь еще не подошла и коммутатор пока не знает о том, что Вы злостные неплательщик и Вас давно надо заблокировать.
Авансовый же от кредитного тарифы отличаются лишь способом расчета с абонентом – в первом случае человек вносит какую-либо сумму на счет, и деньги за разговоры постепенно вычитаются из этой суммы. Это способ удобен тем, что позволяет в какой-то мере планировать и ограничивать свои расходы на связь. Второй вариант – кредитный, при котором суммарная стоимость всех разговоров за какой-либо период («биллинговый цикл»), обычно за месяц, выставляется в виде счета, который абонент должен оплатить. Кредитная система удобна тем, что страхует Вас от тех случаев, когда срочно необходимо позвонить, а деньги на счету вдруг закончились и телефон заблокирован.
Припейды устроены совсем по-другому:
В припейде биллинг как таковой обычно называют «Припейд платформой».
Непосредственно в момент начала телефонного соединения устанавливается прямая связь между коммутатором и припейд платформой. Никаких очередей, данные передаются в обе стороны непосредственно в процессе разговора, в режиме реального времени. В связи с этим припейдам присущи следующие характерные черты – это отсутствие абонентской платы (так как нет такого понятия, как биллинговый период), ограниченный набор дополнительных услуг (их технически трудно тарифицировать в режиме «реального времени»), невозможность «уйти в минус» - разговор просто прервется, как только кончатся деньги на счету. Явным достоинством припейдов является возможность точно контролировать количество денег на счету, и, как следствие, свои расходы.
В припейдах еще иногда наблюдается некоторое забавное явление – если припейд платформа по каким либо причинам отказывается работать, например, из-за перегрузки, то, соответственно, для абонентов припейд-тарифов в это время все звонки становятся абсолютно бесплатными. Что, собственно, их – абонентов - не может не радовать.
А как же рассчитываются наши деньги, когда мы разговариваем, находясь в роуминге? Да и как вообще телефон работает в роуминге? Что же, попробуем ответить и на эти вопросы:
Номер IMSI состоит из 15-ти цифр, и первые 5 цифр, так называемые СС – Country Code (3 цифры) и NC – Network Code (5 цифр) – четко характеризуют оператора, к которому подключен данный абонент. По этим пяти цифрам VLR гостевого оператора находит HLR домашнего оператора и смотрит в нем – а, собственно, можно ли этому абоненту пользоваться роумингом у данного оператора? Если да, то IMSI прописывается у VLR гостевого оператора, а в HLR домашнего – ссылка на тот самый гостевой VLR, чтобы знать, где искать абонента.
Со списанием денег в биллинге ситуация тоже не очень простая. Из-за того, что звонки обрабатывает гостевой коммутатор, но деньги подсчитывает свой, «домашний» биллинг, вполне возможны большие задержки в списании средств – до месяца. Хотя существуют и системы, например, «Camel2», которые и в роуминге работают по принципу припейда, то есть списывают деньги в реальном времени.
Тут возникает очередной вопрос – а за что списываются деньги в роуминге? Если «дома» все понятно – есть четко прописанные тарифные планы, то с роумингом ситуация другая – денег списывают много и непонятно, за что. Ну что же, попробуем разобраться:
Все телефонные звонки в роуминге делятся на 3 основных категории:
Стоимости международного звонка из дома в гостевой регион
+
Стоимость входящего звонка у гостевого оператора
+
Некая надбавка, зависящая от конкретного гостевого оператора
Исходящий звонок домой:
Стоимость международного звонка из гостевого региона домой
+
Стоимость исходящего звонка у гостевого оператора
Исходящий звонок по гостевому региону:
Стоимость исходящего звонка у гостевого оператора
+
Некая надбавка, зависящая от конкретного оператора
Как видно, стоимость звонков в роуминге зависит только от двух вещей – от того, к какому оператору абонент подключен дома и того, каким оператором абонент пользуется в гостях. При этом выявляется одна очень важная вещь – стоимость минуты в роуминге абсолютно не зависит от выбранного абонентом тарифного плана.
Хотелось бы добавить еще одно замечание – если два телефона одного оператора вместе находятся в роуминге у другого оператора (ну, например, двое друзей поехали отдыхать), то разговаривать им друг с другом выйдет весьма накладно – звонящий платит, как за исходящий домой, а принимающий звонок – как за входящий из дома. Это один из недостатков стандарта GSM – то, что связь в этом случае идет через дом. Хотя технически вполне реально устроить связь «напрямую», но кто из операторов на это пойдет, если можно оставить все как есть и зарабатывать деньги?
Еще один вопрос, в последнее время часто интересующий владельцев более чем одного мобильного телефона – а сколько будет стоить переадресованный звонок с одного телефона на другой? И на этот вопрос ответить вполне реально:
Допустим, с телефона B установлена переадресация на телефон С. С телефона А звонят на телефон B – соответственно, звонок переадресовывается на аппарат С. В этом случае платят:
В завершении тем хотелось бы упомянуть еще один тонкий момент – а сколько будет стоить переадресация в роуминге? А вот тут начинается самое интересное:
Например, в телефоне стоит переадресация по условию занятости на домашний номер. Тогда при входящем звонке образуется так называемая «роуминговая петля» - звонок пойдет на домашний телефон через гостевой коммутатор, соответственно, стоимость такого переадресованного звонка для роумера будет равна сумме стоимостей входящего и исходящего домой звонков плюс еще стоимость самой переадресации. И что забавно при этом – роумер может даже не знать, что подобный звонок имел место быть, и впоследствии удивиться, увидев счет за связь.
Отсюда следует практический совет – при поездках желательно отключать все виды переадресации (можно оставить только безусловную – в этом случае «роуминговой петли» не получается), особенно переадресации на голосовую почту – иначе впоследствии можно долго удивляться – «Куда ж это деньги делись-то, а?»
Список терминов, использовавшихся в тексте:
AuC – Autentification Center, Центр Аутентификации, отвечает за кодирование информации при передаче в сети и приеме из сети
Billing – Биллинг, система учета денежных средств у оператора
BS – Base Station, базовая станция, несколько приемо-передающих антенн, принадлежащих одному управляющему устройству.
Camel2 – одна из систем Prepaid, в которой реализовано мгновенное списывание средств в роуминге
CC – Country Code, код страны в стандарте GSM (для России – 250)
GSM – Global System for Mobile Communications, самый распрострастраненный в мире стандарт сотовой связи
Handover – передача управления трубкой от одной антенны/базовой станции/LAC к другой
HLR – Home Location Register, реестр домашних абонентов, содержит подробную информацию о всех абонентах, подключенных к данному оператору.
IMEI – International Mobile Equipment Identification, международный серийный номер оборудования в стандарте GSM, уникален у каждого аппарата
IMSI – International Mobile Subscriber Identification, международный серийный номер подписчика на услуги стандарта GSM, уникален у каждого абонента
LAC – Local Area Controller, Контроллер Локальной Зоны, устройство, управляющее работой некоторого количества базовых станций, чьи антенны обслуживают опеределенную территорию.
Local Area – Локальная зона, территория, обслуживаемая BS, входящими в состав одного LAC
MSC - Mobile services Switching Center, Центр Управления Мобильными услугами, коммутатор – центральное звено сети GSM.
NC – Network Code, Сетевой Код, код конкретного оператора в данной стране в стандарте GSM (для MTS – 01, BeeLine – 99).
Prepaid – Припейд, предоплата – система биллинга, основанная на мгновенном списании средств.
Roaming – Роуминг, пользование сетью другого, «гостевого» оператора.
SIM – Subscriber Identification Module, Модуль Опознавания Абонента, СИМ-карта – электронный блок, вставляемые в телефон, на котором записан IMSI абонента.
VLR – Visitor Location Register, реестр активных абонентов – содержит информацию об всех абонентах, кто в данный момент пользуется услугами данного оператора.
Для большинства из нас мобильный телефон давно уже стал неотъемлемой частью жизни, однако наверняка многие из вас задавались вопросом, о том каким образом вы можете звонить с мобильника или о том почему существуют разные поколения мобильной связи.
p, blockquote 1,0,0,0,0 -->
p, blockquote 2,0,0,0,0 -->
Как устроена сотовая связь
Давайте рассмотрим, что из себя представляет технология мобильной связи. Когда вы говорите по телефону, звук вашего голоса улавливается мембраной встроенного микрофона. Микрофон преобразует ваш голос в цифровой сигнал, с помощью МЭМС датчика и интегральное микросхемы.
p, blockquote 3,0,0,0,0 -->
Цифровой сигнал представляет собой ваш голос зашифрованный в виде последовательности нулей и единиц, а встроенная антенна принимает эти нули и единицы преобразуя их в электромагнитные волны. В электромагнитных волнах последовательность нулей и единиц представлены меняющимися характеристиками волны, такими как амплитуда, частота, фаза или их комбинацией. Например, в случае с частотой, 0 и 1 передаются посредством использования низких и высоких частот соответственно.
p, blockquote 4,0,0,0,0 -->
p, blockquote 5,0,1,0,0 -->
Если найти способ передачи этих электромагнитных волн на мобильный телефон вашего друга, вы сможете с ним говорить. Однако электромагнитные волны не способны преодолевать большие расстояния. Они теряют свою силу из-за препятствий, физических объектов, электрооборудования и некоторых факторов окружающей среды и даже, если бы этих проблем не было, электромагнитные волны не могут достичь всех точек поверхности земли поскольку она изогнута.
p, blockquote 6,0,0,0,0 -->
Технология сотовой связи
Чтобы решить эти проблемы используется технология сотовой связи, которая задействует сеть вышек. Эта технология подразумевает деление географической зоны на шестиугольные ячейки или соты, в каждой из которых устанавливается вышка со своим частотным интервалом. Как правило, эти вышки соединены между собой оптоволоконным кабелем. Такие оптоволоконные кабели проложены под землей или по дну океанов и обеспечивают национальную и международную связь.
p, blockquote 7,0,0,0,0 -->
p, blockquote 8,0,0,0,0 -->
Вышка вашей ячейки принимает электромагнитные волны посылаемые вашим телефоном и преобразует их в высокочастотные световые импульсы. Эти световые импульсы доставляются к приёмо-передатчику расположенному у основания вышки для дальнейшей обработки сигнала. После обработки сигнал вашего голоса направляется к принимающей вышки, а та в свою очередь ретранслирует полученные световые импульсы в форме электромагнитных волн, которые принимает антенна телефона вашего друга. Далее проходит процесс обратной переработки сигнала и ваш друг слышит ваш голос. И так получается, что мобильная связь не является полностью беспроводной, в ее обеспечении также участвует проводная связь, так устроена сотовая связь.
p, blockquote 9,0,0,0,0 -->
Центр коммутации мобильной связи
Однако есть вопрос, который мы пока не затрагивали. Сотовая связь действует только тогда, когда сигнал с вышки в вашем районе транслируется на вышку ближайшую к местонахождению вашего друга, но как ваша вышка узнает в какой ячейке он сейчас находится, и на какую вышку направлять сигнал. Для того, чтобы это произошло вышка сотовой связи должна получить помощь от так называемого “Центра коммутации мобильной связи” (MSC). Центр коммутации является связующим компонентом группы вышек сотовой связи, прежде чем двинуться дальше давайте подробнее разберем функции центра коммутации.
p, blockquote 10,0,0,0,0 -->
Функции центра коммутации
При покупке sim-карты вся информация об абоненте регистрируется в некотором центре коммутации, назовем этот центр домашним. Домашний MSC хранит информацию об абоненте, такую как тарифный план, текущее местоположение и статус активности. Если вы выходите за пределы своего домашнего центра, вас начинает обслуживать новый, который мы назовем гостевым центром коммутации. Когда вы входите в зону гостевого центра, он связывается с вашим домашним MSC, таким образом ваш домашний центр всегда знает в какой зоне вы находитесь.
p, blockquote 11,1,0,0,0 -->
Чтобы понять в какой из ячеек связанные с данным MSC находится абонент, центр коммутации использует несколько методов:
- Один из них постоянное обновление информации о положении абонента через определенный промежуток времени.
- Также обновление выполняется, если мобильное устройство пересекает заранее определенное количество ячеек.
- Наконец, обновление данных о местоположении происходит при включении мобильного телефона. Давайте разберем все три случая на примере.
Предположим Анель хочет позвонить Роме. Когда Анель набирает номер, запрос на вызов поступает на ее домашний центр коммутации, после получения информации о номере Ромы, запрос будет отправлен на его домашний центр, затем следует проверка текущего MSC Ромы.
p, blockquote 13,0,0,0,0 -->
Если Рома находится в зоне своего домашнего центра, запрос вызова будет немедленно отправлен на ближайшую к его местоположению вышку с целью первичной проверки, активен ли его телефон или не занят ли он разговором с другим абонентом.
p, blockquote 14,0,0,0,0 -->
Если все в порядке, телефон Ромы зазвонит и начнется разговор. Однако если Рома находится вне зоны своего домашнего MSC, то его домашний центр коммутации просто перенаправляет запрос вызова на гостевой центр. Гостевой центр коммутации следуя ранее описанной процедуре определит местоположение телефона Ромы, после чего установятся соединение.
p, blockquote 15,0,0,0,0 -->
Частотный спектр и мобильная связь
Теперь давайте обсудим, почему частотный спектр очень важен для мобильной связи. Для передачи последовательности нулей и единиц посредством цифровой связи, каждому абоненту выделяется частотный диапазон, однако частотный спектр сотовой связи весьма ограничен, при том что пользуются ей миллиарды абонентов.
p, blockquote 16,0,0,0,0 -->
p, blockquote 17,0,0,1,0 -->
Чем отличаются поколения мобильной связи
Технология 1G позволила абонентам связываться по телефону без подключенного к нему провода, но у этого поколения было две проблемы: первая заключалась в том, что беспроводная передача велась в аналоговом формате. Аналоговый сигнал может быть легко искажен помехами, поэтому его качество и безопасность были очень низкими. Вторая проблема заключалась в использовании технологии FDMA множественный доступ с разделением каналов по частоте. Доступный частотный спектр при нём используются неэффективно. Эти негативные факторы стали причиной появления мобильной связи второго поколения.
p, blockquote 18,0,0,0,0 -->
p, blockquote 19,0,0,0,0 -->
В мобильной связи 2G использовались цифровые технологии множественного доступа с разделением по времени TDMA или с кодовым разделением CDMA. Второе поколение также представила революционную услугу передачи данных SMS и доступа в интернет.
p, blockquote 20,0,0,0,0 -->
Технология 3G была нацелена на повышение скорости передачи данных. Для этого наряду с увеличением пропускной способности использовалась технология W-CDMA широкополосный множественный доступ с кодовым разделением. В результате была получена скорость 2 Мбита в секунду, что позволило передавать данные для таких целей как GPS, видео, голосовые вызовы и тому подобное. С появлением этой технологии мобильные телефоны стали быстро вытесняться смартфонами.
p, blockquote 21,0,0,0,0 -->
Затем появилась технология 4G, которая позволила достичь скорости передачи данных от 20 до 100 Мбит в секунду, этого было достаточно для просмотра фильмов с высоким разрешением и телевидения. Более высокая скорость стала возможной благодаря технологиям OFDM и MIMO. MIMO задействует одновременно несколько передающих и принимающих антенн, как в мобильном телефоне так и на вышки сотовой связи.
p, blockquote 22,0,0,0,0 --> p, blockquote 23,0,0,0,1 -->
Следующее поколение мобильной связи 5G, которая будет внедрена в скором будущем, будет использовать усовершенствованную технологию MIMO и миллиметровые волны. Это сделает возможной бесперебойную связь для так называемого интернета вещей, обеспечивающего функционирование беспилотных автомобилей и умных домов.
Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам.
После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети. Сложно? Давайте разберемся подробнее. Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице +40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше:
2.
3.
4.
На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно.
5.
6.
7.
В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую. Гораздо интереснее выглядит коммутатор:
8.
9.
Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием:
10.
11.
12.
13.
14.
Вся крыша такого автомобиля утыкана антеннами:
15.
Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию:
16.
Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС):
17.
18.
На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит:
19.
Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети:
22.
21.
Читайте также: