Преобразователь на одном транзисторе своими руками
На необъятных просторах нашей родины в городах и селах часто бывают перебои с электричеством, от этого никто не застрахован. Поэтому предлагаю собрать самодельный преобразователь напряжения с 12 на 220В 50Гц, который выручит Вас в трудную минуту и станет не заменимым помощником, где бы вы не находились: в лесу, на даче, дома, на рыбалке.
На этом рисунке изображена схема простого преобразователя напряжения с 12 на 220В с рабочей частотой 50Гц.
Схема преобразователя напряжения с 12 на 220В 50Гц
В основу схемы заложен старый добрый симметричный мультивибратор на двух биполярных транзисторах Т2 и Т3, который управляет мощными ключами на полевых транзисторах Т4, Т5, Т6 и Т7. Прямоугольные импульсы снимаемые с мультивибратора поочередно открывают полевые транзисторы и тем самым накачивают трансформатор, который преобразует входящее постоянное напряжение 12В в переменное напряжение 220В. Рабочая частота мультивибратора 50 Гц. Подстройку частоты мультивибратора можно выполнять на глаз подстречным резистором Р2, например сравнить гул пластин выходного трансформатора преобразователя напряжения с включенным в сеть обыкновенным сетевым трансформатором или с помощью осциллографа. Как это сделал я.
Защита от разряда аккумулятора собрана на транзисторе Т1 и реле Rel1. Минимальное напряжение срабатывания защиты устанавливается подстроечным резистором Р1. Как работает защита? При напряжении более 12В, ток через открытый транзистор Т1 поступает на обмотку реле Rel1. Контакты реле замыкаются и включается мультивибратор, зеленый светодиод сигнализирует о включении преобразователя напряжения. При разряде аккумулятора ниже 10В транзистор закрывается, контакты реле размыкаются, мультивибратор отключается и загорается красный светодиод.
На этом рисунке изображена печатная плата преобразователя напряжения с 12 на 220В 50Гц.
Печатная плата преобразователя напряжения с 12 на 220В 50Гц
Преобразователь напряжения собирается на печатной плате размером 70х100 мм. Биполярные транзисторы структуры n-p-n Т2 и Т3 можно ставить практически любые КТ815, BD139, КТ805, КТ819, TIP41, MJE13007, MJE13009 и многие другие.
Схема может качать до четырех пар мощных полевых транзисторов IRFZ40/44/46/48, IRF3205, IRL3705/ IRF3808 и другие N-канальные полевые транзисторы. Во время работы устройства транзисторы остаются холодными, поэтому радиатор ставить не надо. Мощность преобразователя напрямую зависит от габаритов трансформатора. С трансформатора габаритной мощностью в 100Вт , более 100Вт снять никак не получится. На холостом ходу преобразователь напряжения потребляет от 0.15А до 1А все зависит от мощности трансформатора.
Какой трансформатор подойдет для преобразователя напряжения?
В схеме установлен обыкновенный сетевой трансформатор с железным сердечником. Первичная сетевая обмотка трансформатора на 220В, а две вторичные обмотки по 15В соединенные последовательно и имеют общую среднюю точку. Идеальный вариант это конечно использовать тороидальный трансформатор от стереосистемы, такие трансформаторы более компактного размера и немного увеличенным КПД. Первичная обмотка трансформатора станет выходной, из нее будет выходить 220В, а вторичная обмотка подключается к мультивибратору согласно схеме.
Если у вас обычный трансформатор, например от лампового телевизора, то вторичную обмотку надо перемотать. Для этого вам понадобится медный провод в лаковой или полихлорвиниловой изоляции. Вторичная обмотка мотается в два провода и содержит всего 30 витков, из расчета два витка на один вольт в итоге получится две обмотки по 15 вольт. Конец первой обмотки соединяется с началом второй это и будет средняя точка.
Выходная мощность преобразователя зависит от размера трансформатора. Существуют специальные формулы расчета трансформатора для преобразователя напряжения, но все это очень сложно и проблематично. Как показала практика, чем толще провод намотан во вторичной обмотке, тем выше КПД преобразователя напряжения. Но не всегда размер окна трансформатора позволяет намотать толстый провод. Поэтому, должна быть золотая середина, диаметр провода вторичной обмотки должен быть в два раза, больше диаметра провода, которым намотана первичная обмотка.
Например, у Вас есть трансформатор у которого первичная сетевая обмотка намотана медным проводом диаметром 0.5 мм, тогда вторичную обмотку мотаем проводом диаметром 1 мм, намотать более толстый провод не получится, ограниченное пространство окна трансформатора не позволит этого сделать.
Мощность собранного мною преобразователя 100Вт, рабочая частота 50Гц. Выходное напряжение 220В.
К данному устройству можно подключить практически любой маломощный прибор, светодиодную лампу, ноутбук, вентилятор, шуруповерт, телевизор, электробритву.
Радиодетали для сборки
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как работает преобразователь напряжения с 12 на 220В 50Гц
Инвертор 12V/220V вещь на хозяйстве нужная. Иногда просто необходимая: сеть, допустим, пропала, а телефон разряжен и в холодильнике мясо. Спрос определяет предложение: за готовые модели на 1кВт и более, от которых можно запитывать любые электроприборы, придется выложить где-то от $150. Возможно, более $300. Однако сделать преобразователь напряжения своими руками в наше время дело доступное каждому, кто умеет паять: собрать его из готового набора компонент обойдется втрое-вчетверо дешевле + немного работы и металла из подручного хлама. Если есть зарядное устройство для автомобильных аккумуляторных батарей (АКБ), можно уложиться вообще в 300-500 руб. А если имеются еще и начальные радиолюбительские навыки, то, порывшись в загашниках, вполне возможно сделать инвертор 12V DC/220V AC 50Hz на 500-1200 Вт вовсе даром. Рассмотрим возможные варианты.
Варианты: глобально
Преобразователь напряжения 12-220 В для питания нагрузки до 1000 Вт и более в целом можно сделать самостоятельно такими способами (в порядке повышения затрат):
Из готового модуля
Готовые модули инверторов напряжения 12/220 В
Напр., в наборе (модуле) 2 ключа (их видно, они торчат из платы, см. слева на рис.); модули с ключами на радиаторе (справа на рис.) стоят дороже и рассчитаны на определенную, как правило, не очень большую мощность. Кулера нет, мощность нужна 1,5 кВт. Значит, нужен радиатор от 150 кв. см. Кроме него еще установочные комплекты для ключей: изолирующие теплопроводящие прокладки и фурнитура под крепежные винты – изолирующие чашечки и шайбы. Если модуль с теплозащитой (между ключами будет торчать еще какая-то фитюлька – термодатчик), то немного термопасты для приклеивания его к радиатору. Провода – само собой, см. далее.
Из ИБП (UPS)
Батарея и мощность
Автолюбители знают: гонял стартер 20 мин – покупай новый аккумулятор. Правда, в новых машинах есть ограничители времени его работы, так что, возможно, и не знают. И точно не все знают, что стартер легковушки, раскрутившись, берет ток ок. 75 А (в течение 0,1-0,2 с при запуске – до 600 А). Простейший расчет – и выходит, что, если в инверторе нет автоматики, ограничивающей разряд батареи, то наша за 15 мин сядет полностью. Так что выбирайте или конструируйте свой преобразователь с учетом возможностей наличной АКБ.
Примечание: из этого следует огромное преимущество преобразователей 12/220 в на основе компьютерных ИБП – их контроллер не даст полностью посадить батарею.
Ресурс кислотных АКБ заметно не уменьшается, если они разряжаются 2-х часовым током (12 А для 60 А/ч, 24 А для 120 А/ч и 42 А для 210 А/ч). С учетом КПД преобразования это дает допустимую долговременную мощность нагрузки в прим. 120 Вт, 230 Вт и 400 Вт соотв. Для 10 мин. нагрузки (напр., для запитки электроинструмента) она может быть увеличена в 2,5 раза, но после этого АБК должна отдохнуть не менее 20 мин.
В целом итог получается не совсем уж плохой. Из обычного бытового электроинструмента только болгарка может брать 1000-1300 Вт. Остальные, как правило, обходятся мощностью до 400 Вт, а шуруповерты до 250 Вт. Холодильник от АКБ 12 В 60 А/ч через инвертор проработает 1,5-5 час; вполне достаточно, чтобы принять необходимые меры. Поэтому делать преобразователь на 1кВт для батареи 60 А/ч смысл имеет.
Что будет на выходе?
Преобразователи напряжения ради уменьшения массогабаритов устройства за редкими исключениями (см. далее) работают на повышенных частотах от сотен Гц до единиц и десятков кГц. Ток такой частоты не примет никакой потребитель, а потери его энергии в обычной проводке будут огромны. Поэтому инверторы 12-200 строятся под выходное напряжение след. видов:
- Постоянное выпрямленное 220 В (220V AC). Пригодны для питания телефонных зарядок, большинства источников питания (ИП) планшетов, ламп накаливания, люминесцентных экономок и светодиодных. На мощность от 150-250 Вт отлично подойдут для ручного электроинструмента: потребляемая им мощность на постоянном токе немного снижается, а крутящий момент возрастает. Непригодны для импульсных блоков питания (ИБП) телевизоров, компьютеров, ноутбуков, микроволновок и т.п. мощностью более 40-50 Вт: в таких обязательно есть т. наз. пусковой узел, для нормальной работы которого сетевое напряжение должно периодически проходить через ноль. Непригодны и опасны для приборов с силовыми трансформаторами на железе и электромоторами переменного тока: стационарного электроинструмента, холодильников, кондиционеров, большей части Hi-Fi аудио, кухонных комбайнов, некоторых пылесосов, кофеварок, кофемолок и микроволновок (для последних – из-за наличия мотора вращения стола).
- Модифицированное синусоидальное (см. далее) – пригодны для любых потребителей, кроме Hi-Fi аудио с ИБП, прочих устройств с ИБП от 40-50 Вт (см. выше) и, часто локальных охранных систем, домашних метеостанций и т.п. с чувствительными аналоговыми датчиками.
- Чистое синусоидальное – пригодны без ограничений, кроме как по мощности, для любых потребителей электроэнергии.
Синус или псевдосинус?
С целью повышения экономичности преобразование напряжения осуществляется не только на повышенных частотах, но и разнополярными импульсами. Однако запитывать очень многие приборы-потребители последовательностью разнополярных прямоугольных импульсов (т. наз. меандром) нельзя: большие выбросы на фронтах меандра при хоть чуть-чуть реактивной нагрузке приведут к большим потерям энергии и могут вызвать неисправность потребителя. Однако проектировать преобразователь на синусодальный ток тоже нельзя – КПД не превысит прим. 0,6.
Преобразование постоянного напряжения в модифицированную и чистую синусоиду
Однако приборы с капризными аналоговыми узлами и ИБП запускать от модифицированной синусоиды нежелательно. Последние – крайне нежелательно. Дело в том, что средняя площадка модифицированной синусоиды не чистый ноль напряжения. Узел запуска ИБП от модифицированной синусоиды срабатывает нечетко и весь ИБП может не выйти из режима запуска в рабочий. Пользователь это видит сначала как безобразные глюки, а потом из девайса идет дым, как в анекдоте. Поэтому приборы в ИБП нужно запитывать от инверторов типа Чистый Синус.
Делаем инвертор сами
Приборы для контроля частоты сети электропитания
Стоят тот и другой недорого, продаются в интернете, а в больших городах в электротехнических спецмагазинах. Старый резонансный частотомер можно найти на на железном базаре, а тот или другой после наладки инвертора очень даже подойдут для контроля частоты сети в доме – счетчик на подключение их к сети не реагирует.
50 Гц от компьютера
Видео: простой преобразователь 12-220 из компьютерного БП
Ключи
Допустим, компьютерного ИБП нет или нужна мощность побольше. Тогда важное значение приобретает выбор ключевых элементов: они должны коммутировать большие токи с наименьшими потерями на переключение, быть надежными и доступными по цене. В этом отношении биполярные транзисторы и тиристоры в данной сфере применения уверенно уходят в прошлое.
Лучшие из мощных полевиков для преобразователей напряжения – с изолированным затвором и индуцированным каналом (MOSFET), напр. IFR3205, слева на рис.:
Мощные транзисторы для преобразователей напряжения
Благодаря ничтожной мощности переключения КПД инвертора с выходом DC на таких транзисторах может достигать 0,95, а с выходом AC 50 Гц 0,85-0,87. Аналоги MOSFET со встроенным каналом, напр. IFRZ44, дают КПД пониже, но стоят гораздо дешевле. Пара тех или других позволяет довести мощность в нагрузке до прим. 600 Вт; те и другие без проблем запараллеливаются (справа на рис.), что позволяет строить инверторы на мощность до 3 кВт.
Примечание: мощность потерь переключения ключей со встроенным каналом при работе на существенно реактивную нагрузку (напр., асинхронный электродвигатель) может достигать 1,5 Вт на ключ. Ключи с индуцированным каналом от этого недостатка свободны.
TL494
Третий элемент, который позволил довести преобразователи напряжения до теперешнего состояния – специализированная микросхема TL494 и ее аналоги. Все они представляют собой контроллер широтно-импульсной модуляции (ШИМ), формирующий на выходах сигнал модифицированной синусоиды. Выходы разнополярные, что позволяет управлять парами ключей. Опорная частота преобразования задается одной RC цепью, параметры которой можно менять в широких пределах.
Когда хватит постоянки
Круг потребителей тока 220 В DC ограничен, но как раз у них потребность в автономном электропитании возникает не только в аварийных ситуациях. Напр., при работе электроинструментом на выезде либо в дальнем углу своего же участка. Или присутствует всегда, скажем, у дежурного освещения входа в дом, прихожей, коридора, придомовой территории от солнечной батареи, днем подзаряжающей АКБ. Третий типичный случай – зарядка телефона на ходу от прикуривателя. Здесь мощность на выходе нужна совсем маленькая, так что инвертор может быть выполнен всего на 1 транзисторе по схеме релаксационного генератора, см. след. ролик.
Видео: повышающий преобразователь на одном транзисторе
Пример схемы с внешними времязадающими элементами дан на поз. 1 рис.:
Схемы простых преобразователей напряжения 12-200 В
Ошибочно выбранный магнитопровод трансформатора маломощного преобразователя напряжения
Порядок расчета данного инвертора дан в скане на рис.:
Ключевые величины в нем – частота преобразования и рабочая индукция в магнитопроводе. Частоту преобразования выбирают исходя из материала наличного сердечника и требуемой мощности:
Примечание: если в наличии есть стальной магнитопровод заведомо завышенного сечения, не выжимайте из него мощность! Пусть лучше индукция будет меньше – КПД преобразователя возрастет, а форма выходного напряжения улучшится.
Выпрямление
50 гц? Это очень просто!
Простой инвертор на 50 Гц (поз. 4 рис. выше со схемами) интересная конструкция. У некоторых видов типовых трансформаторов питания собственная постоянная времени близка к 10 мс, т.е. половине периода 50 Гц. Подкорректировав ее времязадающими резисторами, которые будут одновременно и ограничителями тока управления ключей, можно получить на выходе сразу сглаженный меандр 50 Гц без сложных схем формирования. Подойдут трансформаторы ТП, ТПП, ТН на 50-120 Вт, но не всякие. Возможно, придется изменить номиналы резисторов и/или включить параллельно им конденсаторы на 1-22 нФ. Если частота преобразования все равно далеко от 50 Гц, разбирать и перематывать трансформатор бесполезно: склеенный ферромагнитным клеем магнитопровод распушится, и параметры трансформатора резко ухудшатся.
Этот инвертор – дачный преобразователь выходного дня. Аккумулятор машины он не посадит по тем же причинам, что и предыдущий. Но его хватит на освещение домика с верандой светодиодными лампами и телевизор или вибрационный насос в скважине. Частота преобразования налаженного инвертора при изменениях тока нагрузки от 0 до максимального не выходит за пределы технормы для сетей электропитания.
DC от микросхемы
КПД описанных преобразователей не превышает 0,8, а частота в зависимости от тока нагрузки заметно плавает. Предельная мощность нагрузки менее 400 Вт, так что пришла пора вспомнить о современных схемных решениях.
Схема простого преобразователя 12 В DC/ 220 В DC на 500-600 Вт дана на рис.:
Схема преобразователя 12-220 В DC 1000 Вт
Основное его назначение – питание ручного электроинструмента. К качеству подводимого напряжения такая нагрузка не требовательна, поэтому ключи взяты подешевле; подойдут также IFRZ46, 48. Трансформатор мотается на феррите сечением 2-2,5 кв. см; подойдет сердечник силового трансформатора от компьютерного ИБП. Первичная обмотка – 2х5 витков жгута из 5-6 обмоточных проводов диаметром по меди 0,7-0,8 мм (см. ниже); вторичная – 80 витков такого же провода. Налаживание не требуется, но контроля разряда батареи нет, так что в процессе работы нужно прицепить к ее клеммам мультиметр и не забывать на него поглядывать (то же касается и всех прочих самодельных инверторов напряжения). Если напряжение упало до 10,8 В (1,8 В на банку) – стоп, выключаемся! Упало до1,75 В на банку (10,5 В вся батарея) – это уже пошла сульфатация!
Как мотать трансформатор на кольце
- Изолируют магнитопровод и с помощью намоточного челнока наматывают на него вторичную повышающую обмотку, укладывая витки как можно плотнее, поз. 1 на рис.:
Намотка трансформатора преобрзователя напряжения на ферритовом кольце
Примечание: на электрических принципиальных схемах начала обмоток, если это имеет значение, обозначаются точкой.
50 Гц сглаженные
- Первоначально определенная величина рабочей индукции делится на 1,1 и применяется во всех дальнейших расчетах. Так нужно, чтобы учесть т. наз. коэффициент формы несинусоидального напряжения Кф; у синусоиды Кф=1.
- Повышающая обмотка рассчитывается сначала как сетевая на 220 В для заданной мощности (или определенной по параметрам магнитопровода и величине рабочей индукции). Затем найденное количество ее витков умножается на 1,08 для мощности до 150 Вт, на 1,05 для мощностей 150-400 Вт и на 1,02 для мощностей 400-1300 Вт.
- Половина низковольтной обмотки рассчитывается как вторичная на напряжение 14,5 В под ключи биполярные или со встроенным каналом и на 13,2 В для ключей с индуцированным каналом.
Примеры схемных решений преобразователей 12-200 В 50 Гц с разделительным трансформатором даны на рис.:
Схемы преобразователей напряжения 12-220 В 50 Гц на 500-1000 Вт
Инвертор 12-220 В 50 Гц с задающим генератором на TL494 (справа на рис.) частоту держит железно во всех мыслимых немыслимых условиях эксплуатации. Для более эффективного сглаживания псевдосинусоиды используется явление т. наз. безразличного резонанса, при котором фазовые соотношения токов и напряжений в колебательном контуре становятся такими же, как при остром резонансе, но их амплитуды заметно не увеличиваются. Технически это решается просто: к повышающей обмотке подключают сглаживающий конденсатор, значение емкости которого подбирают по наилучшей форме тока (не напряжения!) под нагрузкой. Для контроля формы тока в цепь нагрузки на мощность 0,03-0,1 от номинальной включают резистор на 0,1-0,5 Ом, к которому и подключают осциллограф с закрытым входом. Сглаживающая емкость не уменьшает КПД инвертора, но пользоваться для настройки компьютерными программами симуляции НЧ осциллографа нельзя, т.к. вход звуковой карты, которая в них используется, не рассчитан на амплитуду в 220х1,4 = 310 В! Ключи и мощности такие же, как в пред. случае.
Более совершенная схема преобразователя 12-200 В 50 Гц дана на рис.:
Схема усовершенствованногопреобразователя 12-200 В 50 Гц
А нельзя ли без трансформатора?
Да, и такое решение нередко применяется в фирменных преобразователях. Это – электрический мост из ключей на высоковольтных силовых полевых транзисторах с напряжением пробоя от 400 В и током стока более 5 А. Подойдут из первичных цепей компьютерных ИБП, а из старого хлама – КП904 и т.п.
Мост запитывается постоянкой 220 В DC от несложного инвертора 12-220 с выпрямлением. Плечи моста открываются парами наперекрест поочередно, и ток в нагрузке, включенной в диагональ моста, меняет направление; цепи управления всех ключей гальванически разделены. В промышленных конструкциях ключи управляются от спец. ИМС с развязкой оптопарами, но в любительских условиях то и другое можно заменить дополнительным маломощным инвертором 12 В DC – 12 В 50 Гц, работающим на маленький трансформатор на железе, см. рис. Магнитопровод для него можно взять от китайского базарного маломощного трансформатора питания. За счет его электрической инерции качество выходного напряжения получается даже лучше, чем модифицированная синусоида.
Схема получения 220 В 50 Гц от преобразователя напряжения без мощного трансформатора на железе
Повышающие преобразователи напряжения позволяют питать электронные схемы от источников постоянного тока с напряжением ниже, чем того требует электронная схема. Самый широко известный пример использования такого преобразователя это "Power Bank"для телефонов.
В Power Bank установлены аккумуляторные батареи на 3,7 Вольта, а как известно телефон заряжается и питается от зарядных устройств с напряжением чуть более 5 Вольт.
Другой характерный пример, светодиодные фонарики работающие на одной или двух батарейках типа AA. Потребитель, как правило, не задумывается, а номинальное рабочее напряжение белого светодиода чуть более 3-х Вольт. Это напряжение не может обеспечить пара солевых или алкалиновых или литий-ионных батареек. Мы приведём 2 схемы повышающих преобразователей напряжения пригодных для питания светодиодов.
Первая принципиальная электрическая схема - это схема светодиодного фонарика с напряжением питания от 1 В на 1 транзисторе см рис.1.
Рис. 1. Схема светодиодного фонарика с питанием от 1 батарейки типа AA.
Схема сохраняет работоспособность при напряжении питания от 1 Вольта до 3 Вольт. Катушка L1 содержит 40 витков провода диаметром 0,2 . 0,3 мм с отводом от середины. Катушку наматывают в 2-4 слоя на маленьком ферритовом сердечнике, например, от старого радиоприёмника.
Вторая принципиальная электрическая схема - это схема светодиодного фонарика с напряжением питания от 2 В см. рис.2.
Рис. 2. Схема светодиодного фонарика с питанием от 2-х батареек типа AA.
Схема сохраняет работоспособность при напряжении питания от 2 Вольт до 3 Вольт. Катушка L1 содержит 40 витков провода диаметром 0,2 . 0,3 мм с отводом от середины. Катушку наматывают в 2-4 слоя на маленьком ферритовом сердечнике, например, от старого радиоприёмника.
Схемы преобразователей напряжения рис.1 и рис. 2 совершенно идентичны, но в схеме рис. 2 в 2 раза выше напряжение питания. В результате преобразователь напряжения работает более эффективно, что позволяет запитать сразу 5 светодиодов. Схема рис. 2. повышает напряжение до 6 и 9 Вольт.
Мы сняли осциллограмму в 2-х точках схемы см. рис. 3.
Рис. 3 Осциллограмма схемы рис. 2
Красный луч на осциллограмме рис. 3 получен на коллекторе транзистора, а жёлтый луч на крайнем правом конденсаторе см. рис. 2. Общая точка в схеме - эмиттер транзистора и - батареи питания.
Обратите внимание, жёлтый луч - отрицательное напряжение относительно общей точки, а красный луч - положительное. Преобразователь напряжения рис. 2 может создавать двухполярное напряжение питания. Частота на которой работает преобразователь равна 576 кГц, но она не стабильна, зависит от напряжения батарей, индуктивности катушки L1 и величины сопротивления резистора.
Мы измерили напряжение питания схемы во время работы и потребляемый ток см. рис. 4.
Рис. 4. Измерение потребляемого тока и напряжения питания схемы преобразователя напряжения.
Можно вспомнить много случаев, когда пригодился бы преобразователь из 12 вольт постоянного тока в 220 вольт переменного – например, приехав на дачу на автомобиле, можно вечером включить освещение или запитать от аккумулятора насос для полива. Также такой инвертор – неотъемлемая часть ветряных генераторов.
Купить готовое устройство не составит проблем – а автомагазинах можно найти автомобильные инверторы (импульсные преобразователи напряжения) различной мощности и цены.
Однако, цена подобного устройства средней мощности (300-500 Вт) составляет несколько тысяч рублей, а надежность многих китайских инверторов достаточно спорна. Изготовление своими руками простого преобразователя – это не только способ ощутимо сэкономить, но и возможность улучшить свои знания в электронике. В случае отказа же ремонт самодельной схемы окажется ощутимо проще.
Распространенные схемы
Простой импульсный преобразователь
Схема этого устройства очень проста, а большинство деталей могут быть извлечены из ненужного блока питания компьютера. Конечно, у нее есть и ощутимый недостаток – получаемое на выходе трансформатора напряжение 220 вольт далеко по форме от синусоидального и имеет частоту значительно больше, чем принятые 50 Гц. Напрямую подключать к нему электродвигатели или чувствительную электронику нельзя.
Для того, чтобы иметь возможность подключать к этому инвертору содержащую импульсные блоки питания технику (например, блок питания ноутбука), применено интересное решение – на выходе трансформатора установлен выпрямитель со сглаживающими конденсаторами. Правда, работать подключенный адаптер сможет только в одном положении розетки, когда полярность выходного напряжения совпадет с направлением встроенного в адаптер выпрямителя. Простые потребители типа ламп накаливания или паяльника можно подключать непосредственно к выходу трансформатора TR1.
Основа приведенной схемы – это ШИМ-контроллер TL494, наиболее распространенный в таких устройствах. Частоту работы преобразователя задают резистор R1 и конденсатор C2, их номиналы можно брать несколько отличающимися от указанных без заметного изменения в работе схемы.
Для большей эффективности схема преобразователя включает в себя два плеча на силовых полевых транзисторах Q1 и Q2. Эти транзисторы нужно разместить на алюминиевых радиаторах, если предполагается использовать общий радиатор – устанавливайте транзисторы через изоляционные прокладки. Вместо указанных на схеме IRFZ44 можно использовать близкие по параметрам IRFZ46 или IRFZ48.
Выходной дроссель наматывается на ферритовом кольце от дросселя, также извлекаемого из компьютерного блока питания. Первичная обмотка мотается проводом диаметром 0,6 мм и имеет 10 витков с отводом от середины. Поверх нее наматывается вторичная обмотка, содержащая 80 витков. Также можно взять выходной трансформатор из сломанного источника бесперебойного питания.
Вместо высокочастотных диодов D1 и D2 можно взять диоды типов FR107, FR207.
Так как схема очень проста, после включения при правильном монтаже она начнет работать сразу и не потребует никакой настройки. Отдавать в нагрузку она сможет ток до 2,5 А, но оптимальным режимом работы будет ток не более 1,5 А – а это более 300 Вт мощности.
Готовый инвертор такой мощности стоил бы порядка трех-четырех тысяч рублей.
Схема преобразователя с выходом переменного тока
Эта схема выполнена на отечественных комплектующих и достаточно стара, но это не делает ее менее эффективной. Главное ее достоинство – это получение на выходе полноценного переменного тока с напряжением 220 вольт и частотой 50 Гц.
Здесь генератор колебаний выполнен на микросхеме К561ТМ2, представляющей собой сдвоенный D-триггер. Она является полным аналогом зарубежной микросхемы CD4013 и может быть заменена ей без изменений в схеме.
Преобразователь также имеет два силовых плеча на биполярных транзисторах КТ827А. Их главный недостаток по сравнению с современными полевыми – это большее сопротивление в открытом состоянии, из-за чего нагрев при той же коммутируемой мощности у них сильнее.
Так как преобразователь работает на низкой частоте, трансформатор должен иметь мощный стальной сердечник. Автор схемы предлагает использовать распространенный советский сетевой трансформатор ТС-180.
Как и другие инверторы на основе простых ШИМ-схем, этот преобразователь имеет на выходе достаточно отличающуюся от синусоидальной форму напряжения, но это несколько сглаживается большой индуктивностью обмоток трансформатора и выходным конденсатором С7. Также из-за этого трансформатор во время работы может издавать ощутимый гул – это не является признаком неисправности схемы.
Простой инвертор на транзисторах
Этот преобразователь работает по тому же принципу, что и перечисленные выше схемы, но генератор прямоугольных импульсов (мультивибратор) в нем построен на биполярных транзисторах.
Особенность этой схемы в том, что она сохраняет работоспособность даже на сильно разряженном аккумуляторе: диапазон входных напряжений составляет 3,5…18 вольт. Но, так как в ней отсутствует какая-либо стабилизация выходного напряжения, при разрядке аккумулятора будет одновременно пропорционально падать и напряжение на нагрузке.
Так как эта схема также является низкочастотной, трансформатор потребуется аналогичный используемому в инверторе на основе К561ТМ2.
Усовершенствования схем инверторов
Приведенные в статье устройства крайне просты и по ряду функций не могут сравниться с заводскими аналогами. Для улучшения их характеристик можно прибегнуть к несложным переделкам, которые к тому же позволят лучше понять принципы работы импульсных преобразователей.
Увеличение выходной мощности
Все описанные устройства работают по одному принципу: через ключевой элемент (выходной транзистор плеча) первичная обмотка трансформатора соединяется с входом питания на время, заданное частотой и скважностью задающего генератора. При этом генерируются импульсы магнитного поля, возбуждающие во вторичной обмотке трансформатора синфазные импульсы с напряжением, равным напряжению в первичной обмотке, умноженному на отношение числа витков в обмотках.
Следовательно, ток, протекающий через выходной транзистор, равен току нагрузки, помноженному на обратное соотношение витков (коэффициент трансформации). Именно максимальный ток, который может пропускать через себя транзистор, и определяет максимальную мощность преобразователя.
Существуют два способа увеличения мощности инвертора: либо применить более мощный транзистор, либо применить параллельное включение нескольких менее мощных транзисторов в одном плече. Для самодельного преобразователя второй способ предпочтительнее, так как позволяет не только применить более дешевые детали, но и сохраняет работоспособность преобразователя при отказе одного из транзисторов. В отсутствие встроенной защиты от перегрузок такое решение значительно повысит надежность самодельного прибора. Уменьшится и нагрев транзисторов при их работе на прежней нагрузке.
На примере последней схемы это будет выглядеть так:
Автоматическое отключение при разряде аккумулятора
Отсутствие в схеме преобразователя устройства, автоматически отключающего его при критическом падении напряжения питания, может серьезно подвести Вас, если оставить такой инвертор подключенным к аккумулятору автомобиля. Дополнить самодельный инвертор автоматическим контролем будет крайне полезно.
Простейший автоматический выключатель нагрузки можно сделать из автомобильного реле:
Как известно, каждое реле имеет определенное напряжение, при котором замыкаются его контакты. Подбором сопротивления резистора R1 (оно будет составлять около 10% от сопротивления обмотки реле) настраивается момент, когда реле разорвет контакты и прекратит подачу тока на инвертор.
ПРИМЕР: Возьмем реле с напряжением срабатывания (Uр) 9 вольт и сопротивлением обмотки (Rо) 330 ом. Чтобы оно срабатывало при напряжении выше 11 вольт (Umin) , последовательно с обмоткой нужно включить резистор с сопротивлением Rн, рассчитываемым из условия равенства Uр/Rо=(Umin—Uр)/Rн. В нашем случае потребуется резистор на 73 ома, ближайший стандартный номинал – 68 ом.
Конечно, это устройство крайне примитивно и является скорее разминкой для ума. Для более стабильной работы его нужно дополнить несложной схемой управления, которая поддерживает порог отключения гораздо точнее:
Регулировка порога срабатывания осуществляется подбором резистора R3.
Предлагаем посмотреть видео по теме
Обнаружение неисправностей инвертора
Перечисленные простые схемы имеют две наиболее распространенных неисправности – либо на выходе трансформатора отсутствует напряжение, либо оно слишком мало.
- Первый случай – это либо одновременный отказ обоих плеч преобразователя, что маловероятно, либо отказ ШИМ-генератора. Для проверки воспользуйтесь светодиодным пробником, какой можно приобрести в любом магазине радиодеталей. Если ШИМ работает, на затворах транзисторов Вы увидите наличие сигнала по быстрым пульсациям свечения диода (особенно хорошо это заметно в низкочастотных схемах). При наличии управляющего сигнала проверьте, нет ли обрывов в соединениях трансформатора и целостность его обмотки.
- Большое падение напряжения – это явный признак отказа одного из силовых плеч инвертора. Найти отказавший транзистор можно простейшим образом – его радиатор останется холодным. Замена ключа вернет инвертору работоспособность.
Заключение
Как можно понять из материалов статьи, сделать своими руками несложный преобразователь 12 – 220 вольт не так и трудно.
И, хотя такие устройства и не смогут сравниться по набору дополнительных функций или привлекательности внешнего вида с заводскими, они обойдутся хозяину значительно дешевле. При соблюдении правил эксплуатации самодельный преобразователь будет работать очень долго, ведь в таком простом устройстве практически нечему ломаться.
Читайте также: