Поляризационный фильтр своими руками
Какую плёнку выбрать?
Лучше пользоваться плёнкой Fujichrome Velvia 100F или Agfachrome RSX II 100 которая даёт ничуть не худший результат.
Как работают ИК-камеры?
Свет лампы фильтруется таким образом, чтобы происходило излучение только заранее определенных длин волн 715 нм, 850 нм и 940 нм.
Инфракрасный фильтр своими руками для креативного освещения никон
Эти цифры являются отправными точками в отношении частоты излучаемых волн — они являются абсолютным нижним пределом спектра, используемым камерой. Если человек подойдет достаточно близко, то он сможет понять, что камера является инфракрасной, хотя не сможет видеть используемые длины волн.
Способность камеры для захвата изображений в зависимости от уровня освещенности измеряется в люксах. Чем ниже значение люкс, тем лучше камера может видеть в условиях низкой освещенности. Все ИК-камеры имеют значение 0 люкс, что означает, что они могут видеть в кромешной тьме. Цветные ИК-камеры переключаются в черно-белый режим для видеонаблюдения ночью, чтобы достичь максимальной чувствительности. Фотоэлемент внутри камеры отслеживает дневной свет и определяет, когда необходимо переключение. Следует различать ИК-камеры и камеры День/ночь. День/ночь камеры могут эффективно работать в условиях низкой освещенности, но они не оснащены светодиодами, что делает невозможным их работу в полной темноте, в отличие от камер с ИК-подсветкой.
При использовании ИК-камер для уличного применения, лучше применять готовые комплекты уличных видеокамер с кожухом или камеры с ИК-прожектором. Сочетание ИК камер для помещений с уличным кожухом может работать недостаточно хорошо, ведь ИК свет может отражаться от стекла кожуха. Кроме того, при покупке ИК-камеры или осветителя надо всегда смотреть на значение дальности луча. Установив в помещении ИК камеры с более широким диапазоном, чем размеры помещения, можно получить размытые изображения. Следует отметить, что ИК-камеры не могут видеть сквозь дым. Для того чтобы добиться этого, должна быть использована тепловизионная камера.
Самодельный инфракрасный светофильтр
Категории:ФототехникаСтили в фотографииСвоими рукамиРедактированиеТеория
Инфракрасный фильтр своими руками из CD диска на мыльницу
Думаю, что такое инфракрасная фотография, знает не каждый, а зря, это довольно-таки интересная штука. Можно сделать инфракрасный фильтр из фотопленки, но в этой статье речь пойдёт о том, как из CD диска сделать ИК фильтр. Сам CD диск должен быть темно-красного цвета, такие диски продают во многих магазинах. Что нам нужно в первую очередь — взять крышку от любой пластиковой бутылки, в моём случае это минералка, и вырезать отверстие как можно большего диаметра. Крышка от пластиковой бутылки хорошо подошла в качестве насадки на объектив.
Далее вырезанное отверстие нужно очистить от заусениц и покрасить чёрной автокраской из баллончика или любой другой — лишь бы держалась.
Чтобы очистить диск от верхнего слоя, нужно ножом от середины до края провести линию, и под напором воды верхний слой быстро смоется. Затем из диска нужно вырезать три или два квадрата одинакового размера и склеить. Наш самодельный фильтр готов, осталось только его наклеить на заранее подготовленную крышку из пластиковой бутылки. Готово, надеваем фильтр на мыльницу и идём фотографировать.
При дополнительной обработке в Adobe Photoshop можно получить самые разные результаты: понизить шум, тонировать или покрасить фотографию как вашей душе угодно.
На снимках видно что инфракрасный фильтр из CD диска недостаточно резкий, более того скорее он создаёт эффект монокля. Если посмотреть каналы снимка, то красный постоянно засвечен, а если и присутствует, то его резкость крайне низка, синий канал самый контрастный, зелёный не так, но изображение достаточно хорошо просматривается.
Фотографии, сделанные с помощью этого фильтра, напоминают инфракрасные снимки: зелёная листва светлеет, синее небо и вода темнеет.
А если ваша мыльница поддерживает формат RAW, изображение можно сделать намного привлекательнее, попробуйте, и я уверен, у вас получится не хуже! О сайте fotomtv.
Зачем мне нужна SplitCam?
Бесплатная программа для веб камеры SplitCam позволяет добавлять к видео красочные вебкам эффекты, которые добавят веселья вам и вашим друзьям! Кроме того SplitCam – это простой и удобный способ разделения видеопотока от вебкамеры.
Инфракрасная цифровая камера своими руками
С помощью SplitCam вы можете общаться в видеочате со всеми друзьями, раздавать видео на онлайн-сервисах и все это одновременно! Подробнее…
Красочные эффекты для веб камеры
� азделение видео потока и подключение нескольких приложений
� еалистичные 3D маски
Поддержка всех популярных сервисов
Трансляция видео на популярных сервисах
Поддержка различных разрешений видео, в том числе HD
� азличные источники видео
��спользование IP камеры как источника
Небольшие, но полезные видео функции
Увеличение/уменьшение видео (Zoom)
Кроме всем известных красок для малярных работ существуют и специальные виды красок. Они применяются для защиты штрих кода и блокировки инфракрасных лучей. Знания о них расширят наш кругозор и может даже пригодятся.
- Краски для защиты штрих-кода (бар-кода). Предназначены для предохранения оригинального штрих-кода от фотокопирования.
- IR-blocking — краски, блокирующие инфракрасные лучи. Предназначены для печати на прозрачных ПВХ-пленках, для производства прозрачных пластиковых карт. Эти краски, блокируют или отражают инфракрасный свет. Источники излучения: банковские автоматы или другие аналогичные считывающие устройства.
Краски для защиты штрих-кода (бар-кода)
Данные краски предназначены для предохранения оригинального штрих-кода от фотокопирования. В случае использования такой краски черного цвета оригинальный штрих-код всегда будет невидим и для человеческого зрения. Можно также нанести эту блокирующую краску под ламинационной пленкой, а затем напечатать оригинальный штрих-код на карте сверху. После ламинирования уже невозможно отделить верхний слой от основы, не повредив штрих-код. Все эти краски не содержат углеродов.
Стандартные цвета:
- S 3374 – красная краска, блокирующая штрих-код, который можно считывать с помощью оптических считывающих устройств.
- S 4500 – черно-голубая краска, блокирующая штрих-код, который можно считывать с помощью инфракрасных считывающих устройств.
- S 4501 – черно-коричневая краска, блокирующая штрих-код, который можно считывать с помощью инфракрасных считывающих устройств.
Печать: Подходит для всех типов трафаретов, кроме самоклеющихся пленок Stenplex Amber и Solvent. Рекомендуется использовать моноволоконные сетки 77 Т-90 Т. При использовании сетки с ячейками 90Т кроющая способность краски составляет 35-35 кв.м/кг.
Разбавители: Обычно рекомендуется добавлять 10-15% разбавителя. При печати в условиях высокой температуры можно использовать замедлитель. Разбавитель: R 112 Замедлитель: R 104
Закрепление:
Сушка занимает от 30 минут до 1 часа в зависимости от условий. Можно использовать струйную сушку.
Ламинирование: Этими красками можно печатать непосредственно поверх напечатанного штрих-кода или на ламинационной пленке, а затем заламинировать обычным способом.
Использование: Изготовление кредитных карточек и билетов, где требуется защита штрих-кода от фотокопирования.
Могут также поставляться краски, блокирующие штрих-код, для печати на полиэстровых пленках
IR-blocking
Эти краски представляют собой прозрачные краски, блокирующие или отражающие инфракрасный свет. Источники излучения: банковские автоматы или другие аналогичные считывающие устройства.
Стандартные цвета – прозрачный желтый и зеленый.
Инфракрасный фильтр своими руками из CD диска на мыльницу
Эти краски имеют разную отражающую способность. Они предназначены для печати на прозрачных ПВХ-пленках, для производства прозрачных пластиковых карт. Этими красками можно печатать, как на пленках-основах, так и на ламинационных пленках.
Стандартные цвета:
- S 17699 — зеленый ИК-блокер с максимальной степенью поглощения 860-900 нм
- S 18203 — желтый ИК-блокер с максимальной степенью поглощения 980 нм
Обе эти краски соответствуют стандарту ISO при печати через сетку 90Т. - S21143 — высококонцентрированный ИК-блокер с максимальной степенью поглощения 980 нм
Эта краска соответствуют стандарту ISO при печати через сетку 120Т.
Для получения других цветовых оттенков поверх данных красок можно напечатать другими прозрачными красками.
Печать:
Подходит для любого типа трафарета, кроме клейких пленок Stenplex Amber и Solvent. Рекомендуется использовать моноволоконную сетку № 90Т, при этом кроющая способность краски составляет 60 кв.м/кг.
Разбавители:
Обычно рекомендуется добавлять 5-10% разбавителя. При печати в условиях высокой температуры можно использовать замедлитель.
Разбавитель: R112
Замедлитель: R104
Закрепление:
Сушка занимает от 30 минут до 1 часа в зависимости от условий сушки. Можно использовать струйную сушку.
Ламинирование:
Эти краски можно использовать для печати непосредственно на пленке- основе или на ламинате, затем ламинировать обычным способом.
Использование:
Изготовление прозрачных кредитных карт для считывания информации посредством инфракрасных считывающих устройств и для идентификации банковскими автоматами.
Инфракрасное и ультрафиолетовое излучения.
Шкала электромагнитных волн
Инфракрасное излучение
Электромагнитное излучение с частотами в диапазоне от 3 • 10 11 до 3,75 • 10 14 Гц называется инфракрасным излучением.
Его испускает любое нагретое тело даже в том случае, когда оно не светится.
Например, батареи отопления в квартире испускают инфракрасные волны, вызывающие заметное нагревание окружающих тел.
Поэтому инфракрасные волны часто называют тепловыми.
Не воспринимаемые глазом инфракрасные волны имеют длины волн, превышающие длину волны красного света (длина волны λ = 780 нм — 1 мм).
Максимум энергии излучения электрической дуги и лампы накаливания приходится на инфракрасные лучи.
Инфракрасное излучение применяют для сушки лакокрасочных покрытий, овощей, фруктов и т. д.
Созданы приборы, в которых не видимое глазом инфракрасное изображение объекта преобразуется в видимое.
Изготовляются бинокли и оптические прицелы, позволяющие видеть в темноте.
Ультрафиолетовое излучение
Электромагнитное излучение с частотами в диапазоне от 8 • 10 14 до 3 • 10 16 Гц называется ультрафиолетовым излучением (длина волны λ = 10—380 нм).
Обнаружить ультрафиолетовое излучение можно с помощью экрана, покрытого люминесцирующим веществом.
Экран начинает светиться в той части, на которую падают лучи, лежащие за фиолетовой областью спектра.
Ультрафиолетовое излучение отличается высокой химической активностью.
Повышенную чувствительность к ультрафиолетовому излучению имеет фотоэмульсия.
В этом можно убедиться, спроецировав спектр в затемненном помещении на фотобумагу.
После проявления бумага почернеет за фиолетовым концом спектра сильнее, чем в области видимого спектра.
Ультрафиолетовые лучи не вызывают зрительных образов: они невидимы.
Но действие их на сетчатку глаза и кожу велико и разрушительно.
Ультрафиолетовое излучение Солнца недостаточно поглощается верхними слоями атмосферы.
Поэтому высоко в горах нельзя оставаться длительное время без одежды и без темных очков.
Стеклянные очки, прозрачные для видимого спектра, защищают глаза от ультрафиолетового излучения, так как стекло сильно поглощает ультрафиолетовые лучи.
Впрочем, в малых дозах ультрафиолетовые лучи оказывают целебное действие.
Умеренное пребывание на солнце полезно, особенно в юном возрасте: ультрафиолетовые лучи способствуют росту и укреплению организма.
Кроме прямого действия на ткани кожи (образование защитного пигмента — загара, витамина D2), ультрафиолетовые лучи оказывают влияние на центральную нервную систему, стимулируя ряд важных жизненных функций в организме.
Ультрафиолетовые лучи оказывают также бактерицидное действие.
Они убивают болезнетворные бактерии и используются с этой целью в медицине.
Итак,
Нагретое тело испускает преимущественно инфракрасное излучение с длинами волн, превышающими длины волн видимого излучения.
Инфракрасный фильтр своими руками №2
Ультрафиолетовое излучение — более коротковолновое и обладает высокой химической активностью.
Шкала электромагнитных волн
Длина электромагнитных волн изменяется в широком диапазоне. Независимо от длины волны все электромагнитные волны обладают одинаковыми свойствами. Существенные различия наблюдаются при взаимодействии с веществом: коэффициенты поглощения и отражения зависят от длины волны.
Длина электромагнитных волн бывает самой различной: от 10 3 м (радиоволны) до 10 -10 м (рентгеновские лучи).
Свет составляет ничтожную часть широкого спектра электромагнитных волн.
При изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
На рисунке изображена шкала электромагнитных волн с указанием длин волн и частот различных излучений:
Принято выделять:
низкочастотное излучение,
радиоизлучение,
инфракрасные лучи,
видимый свет,
ультрафиолетовые лучи,
рентгеновские лучи,
γ-излучение.
Принципиального различия между отдельными излучениями нет.
Все они представляют собой электромагнитные волны, порождаемые заряженными частицами.
Обнаруживаются электромагнитные волны в основном по их действию на заряженные частицы.
В вакууме электромагнитное излучение любой длины волны распространяется со скоростью 300 000 км/с.
Границы между отдельными областями шкалы излучений весьма условны.
Излучения различных длин волн отличаются друг от друга по способам их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.
Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей.
В первую очередь это относится к рентгеновскому и у-излучениям, сильно поглощаемым атмосферой.
По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.
Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом.
Коротковолновые излучения (рентгеновское и особенно γ-лучи) поглощаются слабо.
Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений.
Коэффициент отражения электромагнитных волн также зависит от длины волны.
Излучение и спектры. Физика, учебник для 11 класса — Класс!ная физика
Виды излучений. Источники света — Спектры и спектральные аппараты — Виды спектров.
Спектральный анализ — Рентгеновские лучи — Инфракрасное и ультрафиолетовое излучения. Шкала электромагнитных волн — Краткие итоги главы
Поляризационные (антибликовые) очки незаменимы на рыбалке или во время работы при очень ярком освещении. Они предохраняют глаза от ярких бликов на поверхности воды и, кроме того, вы сможете различить каждую кувшинку на воде даже на далеком расстоянии. Как сделать такие очки?
- Как сделать поляризационные очки
- Как сделать 3D-очки в домашних условиях
- CPL-фильтр с круговой поляризацией: уроки фотографии
Конечно, самый легкий способ стать обладателем таких поляризационных очков – просто купить их в специальном магазине. Стоимость вариьруется от 200 рублей до 150 долларов, поэтому можно подобрать очки на любой вкус. Можно выбрать удобную и красивую оправу, кроме того, разные типы очков помогают при разном освещении: в пасмурную погоду, на ярком солнце и так далее. Но все же интереснее и дешевле будет сделать такой прибор своими руками.
Для изготовления антибликовых очков подберите необходимые материалы. Вам нужно взять два поляризационных фильтра лучше всего марки ПФ-40, которые устанавливаются в объективе фотоаппарата. Приобрести их можно в магазине фотопринадлежностей. Также вам понадобится оправа. Материал подберите с учетов личного вкуса и вопросов удобства. От обыкновенных старых очков можно взять металлическую оправу, а если купить дешевые солнцезащитные очки, тогда у вас в руках будет оправа из пластика. Пластиковые очки легче носить, и они красивее смотрятся, однако если вам нужны очки с диоптриями, то лучше оставить металлическую оправу. Также вам понадобятся мелкие саморезы для очков, которые можно взять в оптике, и клей для пластмассы.
Аккуратно выньте стекла из очков и вырежьте такие же по форме пластинки из плаксигласса. В них проделайте маленькие круглые отверстия и прикрутите к ним фильтры с помощью саморезов.
Если вам нужны очки с диоптриями, тогда можно прикрепить фильтры на линзы из ваших постоянных очков. Получившийся прибор будет не только устранять блики и рябь на воде, но и позволит вам хорошо видеть.
2. На первом фото поляризатор почти полностью убрал отражение с воды и с мокрой крыши мостика. Второе фото - без поляризатора
Canon 5D Mrk II, поляризатор Marumi DHG Super Circular PL(D)
3. На этом снимке поляризатор сыграл двойную роль - как нейтрально-серый фильтр увеличил выдержку и как именно поляризатор - убрал блики с листвы
Canon 500D, поляризатор Marumi DHG Super Circular PL(D)
4. В горах надо аккуратно пользоваться поляриком, чтобы не сделать небо абсолютно черным
Canon 500D, поляризатор Marumi DHG Super Circular PL(D)
Кроме улучшения цвета неба поляризатор насыщает и цвет листвы. Днем листья отражают солнечный свет, действуя как небольшие отражающие поверхности, таким образом уменьшая насыщенность цвета. Поляризатор же убираает эти блики, делая цвет листьев, травы более насыщенным. Полярик также используют для того чтобы убрать отражение с поверхности воды или стекла. В данном случае надо быть аккуратным, потому что убирая отражение с поверхности воды можно проявить и сделать видимыми на снимке нежелательные элементы под водой – коряги, камни и различный мусор. Кроме того для того чтобы насытить небо и убрать отражение требуются разные положения поляризатора, в таком случае надо балансировать, выбирать какое-то среднее оптимальное положение или делать несколько кадров с различным поворотом поляризатора, а затем объединять их в графическом редакторе.
Следует также осторожно применять поляризатор при съемке радуги – он может как усилить цвета, так и вовсе убрать ее из кадра. Кроме того с особым вниманием надо относится к съемке с поляризатором в горных условиях. Высоко в горах атмосферная дымка практически отсутствует и небо имеет глубокий синий цвет. Поляризатор же может сделать это небо очень темным, вплоть до черного цвета.
Кроме того надо не забывать, что любая грязь, пыль или царапины на фильтре может вызвать появления нежелательных бликов и переотражений, особенно при съемке в контровом свете. Поэтому надо держать фильтр в недоступном для пыли чехле, периодически чистить его специальными средствами.
5. Я пользуюсь таким поляризатором - Marumi DHG Super Circular PL(D). Поляризатор любезно предоставлен компанией ПРОФОТО
Поляризационные фильтры широко используются не только в науке или фотографии. В быту мы с ними тоже сталкиваемся — они есть в жидкокристаллических экранах, некоторые солнцезащитные очки так же могут иметь эффект поляризатора.
Какими бывают поляризационные фильтры
По физическим свойствам поляризационные фильтры делятся на два типа. Линейные широко использовались в пленочной фотографии. Сейчас из-за некоторой несовместимости с цифровыми камерами почти не используются.
Принцип действия линейного поляризатора.
В фотофильтрах используется два поляризатора и внешний установлен на вращающейся оправе. На практике эффект от вращения можно увидеть если посмотреть через солнцезащитные очки с поляризатором на экран смартфона и покрутить его: при одном положении смартфона экран будет очень темным, а при повороте на 90° — максимально ярким.
И раз уж речь зашла об очках. Солнцезащитные очки с поляризацией не только защищают от ультрафиолета и избыточной яркости, но и снижают количество бликов. Особенно хорошо это заметят те, кто много времени проводит у воды и на воде — например, рыбаки. Впрочем, и на снегу в горах от таких очков будет польза. Одно время такие очки рекомендовались и водителям — они действительно снижают блики на лобовом стекле и асфальте, делая картинку четче, но с активным использованием электронных приборов с LCD-экранами можно сесть в авто и не увидеть показаний спидометра или картинки с навигатора. А чтобы увидеть, придется повернуть голову пол определенным углом — это никак не способствует безопасному вождению.
Изменение светопропускания при вращении оправы — основной минус линейных поляризационных фильтров, но именно он позволил создать нейтральные фильтры переменной плотности, позволяющие снимать с длинными выдержками при ярком свете.
Циркулярные поляризационные фильтры (маркируются CPL или Circular PL) лишены этого недостатка — они уменьшают количество света примерно на две ступени независимо от положения вращающейся оправы.
Что дает поляризатор фотографу
Свет при отражении от неметаллических поверхностей поляризуется определенным образом, а поляризационный фильтр вращением оправы позволяет пропускать свет с одним направлением поляризации и задерживать все остальные.
На круговой панораме видно, как меняется яркость неба в зависимости от направления.
Синее небо, облака и зеленая листва часто служат примерами работы поляризационного фильтра. В воздухе содержится много аэрозольных частиц, отражаясь от которых свет поляризуется. Именно поэтому чистое небо часто выглядит бледным на фотографиях. Использование поляризационного фильтра позволяет добиться более глубокого цвета неба и зеленой листвы, а белые облака станут более контрастными. Особенно это хорошо заметно в ясный солнечный день, но только если объектив направлен перпендикулярно солнечным лучам. Такова особенность работы поляризационного фильтра — максимальный эффект достигается перпендикулярно солнечному свету, а минимальный, если объектив направлен параллельно солнечным лучам.
Более темное небо на правой стороне правого кадра подскажет, где использовался CPL-фильтр.
Если небо, снятое без фильтра, ярче только в направлении солнца, то с использованием фильтра хорошо заметны затемнения в плоскости, перпендикулярной направлению солнечных лучей, и изменившиеся отражения на воде.
Пропуская свет с одним направлением поляризации и задерживая со всеми остальными, поляризационный фильтр меняет не только интенсивность света, но и его качество. Поэтому эффект от его использования невозможно повторить в графическом редакторе. Если с контрастом и тоном неба или листвы еще можно что-то сделать, то с отражениями в стекле и воде вариантов уже нет.
Два соседних кадра: одна экспозиция и одинаковые параметры конвертации из RAW, все отличия только в повороте оправы поляризационного фильтра.
И снова между кадрами поворот оправы на 90° — как инструмент, контролирующий отражения, поляризационный фильтр не имеет аналогов.
Поляризационные фильтры одни из самых дорогих, поэтому если вы хотите снимать с ними на разные объективы, купите фильтр с диаметром резьбы под самый большой ваш объектив, а на остальные устанавливайте его с помощью переходных колец — не так удобно, но зато экономно.
При съемке через стекло так же, как и на примере выше, свет, отраженный от стекла, и свет, отраженный от предметов за стеклом, имеют разную поляризацию и вращая оправу фильтра можно контролировать то, что зафиксирует матрица фотоаппарата.
Слева снимок сделан без фильтра, справа — с CPL фильтром.
Поляризаторы незаменимы при работе с отражениями, но они не работают при съемке металла и отражениях от металлических поверхностей. В пейзажах они могут помочь прорисовать облака, сделать насыщеннее небо и зелень листвы в определенных условиях, но при съемке панорам или на широкоугольный объектив фильтры добавят темные переходы, которые никак не украсят картинку. А вот съемка через стекло или воду с этим фотоаксессуаром добавит немало интересных кадров в ваше портфолио.
Читайте также: