Подстроечный резистор своими руками
Здравствуйте уважаемый читатель блога Моя лаборатория радиолюбителя.
В сегодняшнем материале хотелось бы освятить довольно таки нужную тему о резисторах, в особенности вопрос о том, что такое резистор, возникает у новичков радиолюбителей. В этой обширной статейке я довольно таки подробно постараюсь объяснить, что такое резистор, как он выглядит и где применяется.
И так начнем повествование о резисторах, поэтому усаживаемся поудобнее за нашими мониторами, желательно сделать себе кофе и погрузиться в мир радиоэлектроники 🙂
—Что такое резистор? Резистор – это пассивный элемент электрической схемы, создающий сопротивление электрическому току.
Где применяются резисторы? Применяются резисторы во всех схемах, и чаще, в количественном отношении, чем другие элементы схемы. С помощью резисторов регулируют значения тока и напряжения.
Единица измерения сопротивления – Ом. Измерения записываются в сторону увеличения: Ом, кОм(1000Ом)-килоом, мОм(1.000.000Ом)-мегаом и Гом(1.000.000.000Ом)-гигаом.
Типы резисторов:
Постоянные резисторы – это резисторы имеющие постоянное, неизменное, сопротивление независимое от воздействия окружающих воздействий, таких как свет, температура.
— так обозначаются на схемах постоянные резисторы и подписываются буквой R
Так и не только так выглядят резисторы в жизни
Переменные резисторы — это резисторы меняющее свое сопротивление в зависимости от положения движка переменного резистора.
— так обозначаются переменные резисторы в схемах
Переменный резистор
Ползунковый переменный резистор
Такие переменные резисторы используются в многой бытовой технике вокруг нас, старые телевизоры, где звук регулировали крутя ручку звука и подобные
Подстроечные резисторы — это те же самые переменные резисторы, но используемые для точных настроек токов и напряжений схем. Устанавливаются преимущественно на самих печатных платах.
— обозначение подстроечных резисторов на схемах
Подстроечные резисторы в жизни
Фоторезисторы – это резисторы меняющие свое сопротивление под действием света.
— обозначение фоторезистора на схеме
Фоторезисторы
Терморезисторы – резисторы меняющие свое сопротивление в зависимости от температуры, приложенной к нему
— схематическое обозначение терморезистор
Пример терморезисторов
— Маркировка резисторов:
Маркировка по ГОСТу номинальный ряд
Все резисторы, выпускаемые нашей промышленностью, имеют свою особую сокращенную маркировку, дабы было удобно читать номинал на маленьких резисторах. Для сокращения используют буквы указывающие единицу измерения
E и R – единица Ома
К – единица кОм
M- мОм
А вот сотни единиц, обозначаются буквами, стоящими перед цифрами.
Например: 0,33Ом -E33, 33Ом-33E, 33кОм-33K, 330кОм-M33, 33мОм-33M.
Заграничный ГОСТ
Тут немного проще. По американским стандартам маркируются резисторы 3 буквами, две первые указывающие номинал, а третья — количество нулей добавляемых к номиналу
Например: 0,33Ом –R33, 33Ом-330, 33кОм-333, 330кОм-334, 33мОм-336.
Цветовая маркировка резисторов
На мой взгляд самая удобная и простая в использовании. Обозначается она разноцветными полосками на резисторе. Полосок бывает 4 и 5. Научится читать резисторы цветной маркировки очень просто:
-Первые две полосы указывают номинал резистора.
-Третья полоска, у резисторов с 4 полосами, указывает множитель, а у резисторов с 5 полосами, указывает третью цифру номинала.
-Четвертая полоса в 4 полосной маркировке говорит о точности номинала, а в 5 полосной указывает на множитель номинала.
-Пятая полоса указывает на точность
Что бы удобно было ориентироваться, вот табличка с цветовой кодировкой резисторов
К примеру, резистор номиналом 1 кОм с погрешностью 1% будет иметь код — коричневый черный красный коричневый
— Мощность резисторов и рассеиваемая мощность
Каждый резистор, пропуская через себя напряжение, создает определенное падение напряжение, что обусловлено законом Ома (R=U\I). Из-за этого на резисторе начинает рассеиваться тепло — это и есть рассеиваемая мощность. Эту мощность мы рассчитываем для сбережения целостности резистора, потому-то резистор имеют свою определенную рассеиваемую мощность, то есть сколько тепла он сможет выделить при падении на нем напряжения. Рассчитывается мощность по формуле P= I*U либо эти две для вычисления промежуточного параметра P=I^2*R или P=U^2/R
Для примера нам нужно рассчитать балластный резистор для блока питания 5В с током нагрузки 0,1А. Сначала по закону Ома рассчитаем, какое сопротивление резистора нам нужно R=5/0.1=50(Ом). Имея сопротивления резистора, рассчитываем мощность резистора P=5*0.1=0.5Вт.
То есть наш балластный резистор должен быть сопротивлением 50Ом и рассеиваемой мощностью 1ВТ, а 1 Вт — потому что всегда нужно брать резисторы с запасом в 1.5-2 раза, что бы небыло ситуаций как на этой очень удачно подобранной картинке 🙂
Сгоревший резистор
Поэтому запоминаем, что необходимо брать мощность резистора в 2 раза большей от расчетной!
Мощность резисторов на схемах указываются так:
— мощностью рассеивания 0,125 Вт
— мощностью рассеивания 0,25 Вт
— мощностью рассеивания 0,5 Вт
— мощностью рассеивания 1 Вт
— мощностью рассеивания 2 Вт
— мощностью рассеивания 5 Вт
Есть и далее продолжение маркировки, но это уже не обязательно, потому что это саамы ходовые мощности и больше редко используются в схемах
— Последовательное и параллельное соединение резисторов
Так же для достижения нужного нам сопротивления мы можем подключать последовательно резисторы
, где общее сопротивление будет равно сумме всех сопротивлений и считается по формуле R=R1+R2+R3
И подключать резисторы параллельно
, где общее сопротивление будет равно сумме величин, обратно пропорциональных сопротивлению 1/R=1/R1+1/R2+1/R3. А при параллельном соединении 2-х резисторов удобно пользоваться этой формулой R=R1*R2/(R1+R2)
— Делитель напряжения на резисторе
Делитель напряжения на резисторах часто используется в схемах для получения нужного напряжениях в отдельных цепях схемы.
Делитель напряжение, это два последовательно подключенные резистора. В нем выходное напряжение напрямую зависит от номиналов сопротивлений и питающего напряжения. Переменные резисторы так же являются делителями напряжения.
И прежде чем мы начнем рассматривать формулы, давайте выясним один очень важный момент.
Что бы четко рассчитывать нужное нам напряжение на выходе, используйте R2 сопротивлением в 100 раз меньше сопротивления нагрузки подключенной к выходу делителя
Рассмотрим самые нужные формулы для расчета делителя:
1. Нам известно входящее напряжение Uвх и сопротивление R1 и R2.
Uвых=Uвх*R2/(R1+R2)
Например, входящее напряжение 12В, резисторы R1=2.2к и R2=1к. Uвых=12В*1000Ом/3200Ом=3.75В
2. Известно нужное Uвых и сопротивление R1 и R2.
Uвх=Uвых*(R1+R2)/R2
Например, нам нужно получить 5 вольт для питания, резисторы R1=2.2к и R2=1к. Uвх=5В*3200Ом/1000Ом=16В
3. Определим значение R1 при известном Uвх, Uвых
R1=Uвх*R2/Uвых-R2
Например, входящее напряжение 12 вольт, выходящее напряжение 5В, значение R2=1к
R1= 12В*1000Ом/5В – 1000Ом=1400Ом
4. Определим значения R1 и R2, зная их суммарное сопротивление Rобщ и Uвх и Uвых
R2=Uвых*Rобщ/Uвх, R1= Rобщ-R2
Например R2=5В*3200Ом/12В=1333Ом, R1= 3200-1333=1867(Ом)
Это самые ходовый формулы, которые я использую уже около года, с тех пор, как только узнал о них
— Делитель тока на резисторе
Делитель тока на резисторах необходим для того, что бы определенную нужную часть тока перевести в другое плече делителя и после вернуть его обратно.
Делитель тока это параллельно соединенные резисторы, делящие между собой протекаемый ток.
Применяют делители тока для измерительных приборов, когда основной ток проходит через шунтирующий резистор, а малая часть тока проходит через катушки измерительного прибора, которая является вторым сопротивлением в схеме. Так же применяется для усиления тока, когда одного резистора не хватает
Формула расчета шунта для измерительных приборов R2 =I1*R1/(Iобщ-I1),где R1 это сопротивление прибора, а I1 это ток отклонения катушки прибора.
Предположим что максимальный ток отклонения катушки 2мА, а внутреннее сопротивление катушки 300Ом. Максимальный ток, проходящий через цепь 5А. Исходя их формулы R2=0.002*300/5-0.002=0.12Ом, рассчитаем рассеиваемую мощность по формуле P=I^2*R , где I2=Iобщ-I1, P=5*5*0,12=3Вт. Поэтому берем резистор 5Вт.
Расчет делителя проходит по формуле I1=Iобщ*R2/(R1+R2) и I2=Iобщ*R1/(R1+R2)
Для примера. Рассчитаем токи, проходящие через R1=0,1Ом и R2=0,2Ом, если сумарный ток 5А.
I1=5А*0,2Ом/0,3Ом=3,33А и I2=5А*0,1Ом/0,3Ом=1,66А, определили проходящие токи, а теперь рассчитаем рассеиваемую мощность по формуле P=I^2*R. P1=3.33*3.33*0.1=1.1(Вт), P2=1.66*1.66*0.2=0.55Вт
И на этой ноте можно заканчивать материал. Изучайте, понимайте, задавайте вопросы.
С ув. Admin-чек
Резисторы переменного сопротивления, или переменные резисторы являются радиокомпонентами, сопротивление которых можно изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений и разделяются на потенциометры и подстроечные резисторы.
1. Потенциометры.
Потенциометры применяются в качестве плавных регуляторов усиления, регуляторов громкости и тембра, служат для плавной регулировки различных напряжений, а также используются в следящих системах, в вычислительных и измерительных устройствах и т.п.
Потенциометром называют регулируемый резистор, имеющий два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.
Потенциометр представляет собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось, являющаяся ручкой потенциометра. На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.
При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. И если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение.
Схематично потенциометр можно представить, как показано на рисунке ниже: крайние выводы обозначены номерами 1 и 3, средний обозначен номером 2.
В зависимости от резистивного элемента потенциометры разделяются на непроволочные и проволочные.
1.1 Непроволочные.
В непроволочных потенциометрах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.
Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 — 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке ниже показан потенциометр типа СП3-4 с подковообразным резистивным элементом.
Отечественной промышленностью выпускались потенциометры типа СПО, у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.
Потенциометры типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток – сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.
1.2. Проволочные.
В проволочных потенциометрах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.
Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора (о законе изменения сопротивления будет сказано ниже). Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.
Для резисторов с точностью, не превышающей 10 – 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.
Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления потенциометров. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.
Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для потенциометров применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.
2. Основные параметры переменных резисторов.
Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п. Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику.
2.1. Номинальное сопротивление.
У зарубежных резисторов предпочтительными числами являются 1,0; 2,0; 3,0; 5.0 Ом, килоом и мегаом.
Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.
Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.
2.2. Форма функциональной характеристики.
Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные: у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.
Существуют три основных закона: А — Линейный, Б – Логарифмический, В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.
Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.
Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.
Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.
Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.
К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.
3. Обозначение переменных резисторов на схемах.
На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод.
Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования. А если есть необходимость, то дополнительно указывают и число ступеней.
Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т.д. применяются сдвоенные потенциометры, сопротивления которых изменяется одновременно при повороте общей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.
Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1 является первым по схеме резистором сдвоенного переменного резистора R1, а R1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.
Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.
В переносной бытовой аудиоаппаратуре, например, в приемниках, плеерах и т.д., часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.
Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.
4. Подстроечные резисторы.
В основной своей массе подстроечные резисторы специальной конструкции изготавливают прямоугольной формы с плоским или кольцевым резистивным элементом. Резисторы с плоским резистивным элементом (а) имеют поступательное перемещение контактной щетки, осуществляемое микрометрическим винтом. У резисторов с кольцевым резистивным элементом (б) перемещение контактной щетки осуществляется червячной передачей.
При больших нагрузках используются открытые цилиндрические конструкции резисторов, например, ПЭВР.
На принципиальных схемах подстроечные резисторы обозначаются также как и переменные, только вместо знака регулирования используется знак подстроечного регулирования.
5. Включение переменных резисторов в электрическую цепь.
В электрических схемах переменные резисторы могут применяться в качестве реостата (регулируемого резистора) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.
При включении резистора реостатом задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.
Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.
На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.
При включении резистора потенциометром задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.
По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.
Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.
Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления. В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — нелинейные резисторы.
Удачи!
Чтобы понять, что такое подстроечный резистор, и зачем он нужен, предлагаем ознакомиться с подробной статьей. Из нее вы узнаете все об области применения и тонкостях работы с данной деталью. А тех, кто дочитает интересный материал до конца, в конце статьи ждет небольшой бонус – документ с ГОСТ 24237-84 (Общие технические условия по резисторам).
В статье разобраны главные принципы работы подстроечных резисторов, характеристики и различия в этих деталях. В качестве бонуса в статье читатель найдет видео c наглядным разбором устройства. Интересующие подробности можно уточнить в комментариях, эксперты ответят на любые ваши вопросы.
Что это за резистор
Подстроечный резистор — это миниатюрная версия стандартного переменного резистора. Они разработаны для установки непосредственно на печатную плату и регулируются только при настройке схемы. Например, для настройки чувствительности какого-нибудь датчика или установки усиления усилителя мощности.
В литературе зачастую под подстроечными резисторами и переменными понимаются разные элементы цепи, хотя, строго говоря, любой подстроечный резистор также является и переменным в силу того факта, что его сопротивление можно изменить.
Для управления подстроечным резистором нужна маленькая отвертка или что-то другое, похожее на нее. Так же, как и подстроечные конденсаторы, подстроечные резисторы бывают однооборотные и многооборотный, сделанные по принципу червячной передачи.
Но в отличие от них, для работы с подстроечным резистором не нужна специальная настроечная отвертка. Близкое нахождение вблизи резистора руки или стальной отвертки никак не влияет на его сопротивление. Подстроечный резистор регулируется обычной отверткой, которая вставляется в специальный паз регулировочного механизма, связанного с круговым ползунком.
Многооборотные подстроечные резисторы используются в тех участках схемы, где нужна прецизионная точность в установке нужного сопротивления. Однооборотными подстроечными резисторами большой точности настройки добиться невозможно.
Подстроечные резисторы служат для одноразовой настройки сопротивления, например в качестве потенциометров на схемах обратной связи импульсных источников питания всегда можно встретить подстроечные резисторы. Существуют также многооборотные подстроечные резисторы.
Подстроечные резисторы имеют небольшие габаритные размеры, и рассчитаны всего на несколько циклов регулировки с целью предварительной или профилактической настройки оборудования, и больше их, как правило, не трогают.
Поэтому подстроечные резисторы не являются очень стойкими и прочными, по сравнению с переменными резисторами, и рассчитаны максимум на несколько десятков циклов регулировки. Очевидно, что подстроечный резистор никогда не заменит переменный, и если этот принцип нарушить, то можно поплатиться низкой надежностью конструируемого устройства.
Как проверить исправность мультиметром
Для измерения сопротивления понадобится цифровой мультиметр. Для того, чтобы замерять сопротивление, нам нужно повернуть крутилку на “измерение сопротивления”. С помощью палочки мы можем крутить резистор по часовой стрелке, либо против часовой стрелки, тем самым меняя сопротивление между средним контактом и двумя крайними контактами. Правила при измерении сопротивления:
- Прижимайте щупы с некоторой силой к выводам резистора. Тем самым вы исключите появление контактного сопротивления, которое при слабом нажатии будет суммироваться с измеряемым сопротивлением.
- При измерении сопротивления резистора на печатной плате, еще раз убедитесь, что плата обесточена. Потом отпаяйте один конец резистора и уже тогда замеряйте его сопротивление.
- Не касайтесь выводов резистора при измерении его сопротивления! Тело человека в среднем обладает сопротивлением около 1 КилоОма и зависит от многих факторов. Поэтому, касаясь выводов резистора при измерении сопротивления вы вносите погрешность в измерения.
- Если вы хотите, как можно точнее измерить сопротивления резистора, зачистите его выводы либо с помощью ножа, либо с помощью самой нежной наждачной бумаги. В этом случае вы уберете слой окисла, который в некоторых случаях вносит ощутимую погрешность в измерение сопротивления.
Не измеряйте сопротивление под напряжением! Тем самым вы можете повредить мультиметр или получить удар электрическим током!
Ставим щупы по крайним контактам. Замеряем полное сопротивление переменного резистора. Для того, чтобы проверить рабочий ли он, крутим ручку переменного резистора до упора против часовой стрелки и замеряем сопротивление между левым и средним контактом. Должно получиться близко к нулю.
Далее крутим ручку по часовой стрелке, но не до конца. Замеряем снова сопротивление между средним и левым контактом, далее между средним и правым. В сумме должен получиться результат сопротивления двух крайних контактов.
Предлагаем также почитать интересный материал про малоизвестные факты о двигателях постоянного тока в другой нашей статье.
Типы и виды устройства
Типов подстроечных резисторов на современном рынке множество. Это и неразборные подстроечные резисторы типа СП4-1, залитые эпоксидным компаундом, и предназначенные для аппаратуры оборонного назначения и подстроечные типа СП3-16б для вертикального монтажа на плату.
При изготовлении бытовой аппаратуры, на платы впаивают маленькие подстроечные резисторы, которые, кстати, могут по мощности достигать 0,5 ватт. В некоторых из них, например в СП3-19а, в качестве резистивного слоя применяется металлокерамика.
Есть и совсем простые подстроечные резисторы на основе лаковой пленки, такие как СП3-38 с открытым корпусом, уязвимые для влаги и пыли, и мощностью не более 0,25 ватт. Такие резисторы регулируются диэлектрической отверткой, дабы избежать случайного короткого замыкания. Такие простые резисторы часто встречаются в бытовой электронике, например в блоках питания мониторов.
Некоторые подстроечные резисторы имеют герметичный корпус, например R-16N2, они регулируются специальной отверткой, и являются более надежными, поскольку на резистивную дорожку не попадает пыль и не конденсируется влага.
Мощные трехваттные резисторы типа СП5-50МА в корпусе имеют отверстия для вентиляции, в них проводник намотан в форме тороида, а контактный ползунок скользит по нему при повороте ручки отверткой.
В некоторых телевизорах с ЭЛТ до сих пор можно встретить высоковольтные подстроечные резисторы, такие как НР1-9А, сопротивлением 68 МОм и номинальной мощностью 4 ватта. По сути, это набор металлокерамических резисторов в одном корпусе, а типичное рабочее напряжение для данного резистора составляет 8,5 кВ, при максимуме в 15 кВ. Сегодня подобные резисторы встроены в ТДКС.
В аналоговой аудиоаппаратуре можно встретить ползунковые или движковые переменные резисторы, типа СП3-23а, которые отвечают за регулировку громкости, тембра, баланса и т. д. Это линейные резисторы, которые бывают и сдвоенными, как например СП3-23б.
Подстроечные многооборотные резисторы часто встречаются в электронной аппаратуре, в измерительных приборах и т. д. Их механизм позволяет точно регулировать сопротивление, и количество оборотов измеряется несколькими десятками.
Червячная передача делает возможным медленный поворот и плавное перемещение скользящего контакта по резистивной дорожке, благодаря чему схемы настраиваются очень и очень точно.
Например, подстроечный многооборотный резистор СП5-2ВБ настраивается именно посредством червячной передачи внутри корпуса, и для полного прохода всей резистивной дорожки нужно совершить 40 оборотов отверткой. Резисторы данного типа в разных модификациях имеют мощность от 0,125 до 1 ватта, и рассчитаны на 100 — 200 циклов регулировки.
Это далеко не полный обзор типов и видов детали. Как мы видим из предыдущего описания, подстроечные резисторы по своей сути близки к переменным, но строго говоря, ими не являются. В данном видеоролике кратко, но доходчиво рассказано о том, как переделать подстроечный резистор в переменный.
Получение значения с устройства при помощи ардуино
То, что ножка резистора подключена к аналоговому пину ардуино, позволяет отловить 1024 положения потенциометра, это даст возможность довольно точно производить подстройку.
Ниже приведен код с подробными комментариями. Чтобы посмотреть значения с подстроечного резистора можно выводить информацию на дисплей или индикатор, но в примере все проще – результат можно посмотреть в мониторе порта.
// пин для получения данных
int pin_rezistor = A0;
// переменная для хранения значения
// порт работает на чтение
// соединение с компьютером для дебага
// получаем значение с пина
У резистора есть три ножки: первая, отставленная отдельно, будет использоваться для считывания значения, а к двум другим будут подключены плюс и минус. Для считывания данных необходимо использовать аналоговый пин arduino, например, pin A0.
Чистка подстроечника обычным спиртом
Резистор в схемах может стать грязным, его ползунковая дорожка со временем покрывается слоем пыли. И чтобы вернуть электрическому сопротивлению прежнюю работоспособность его нужно просто почистить.
Делается чистка подстроечных резисторов достаточно просто и быстро. Лучше всего для этих целей использовать чистый спирт. Различные средства типа для снятия лака, самогон, очистители лучше не применять, так как в них могут содержаться примеси, отрицательно влияющие на чистоту резистора.
Чтобы лучше овладеть материалом, рекомендуем также прочитать следующий материал: все что нужно знать о шаговых электродвигателях.
Итак, разбираем резистор (если на нем имеется защитный кожух), для этого обычно достаточно разогнуть небольшие металлические зажимчики на самом корпусе резистора после чего нужно снять эту крышку. Внутри резистора мы увидим дорожку, по которой двигается ползунок среднего вывода резистора. Именно эту дорожку и нужно почистить спиртом от грязи.
Удобно делать так: взять шприц (допустим на 2 куба), набрать в него спирта, и аккуратно через иголку шприца нанести несколько капель прямо на дорожку резистора. После этого мы начинаем в разные стороны вращать это сопротивление, чтобы спирт разошелся по всей дорожке и тем самым расчистил путь для ползунка.
В принципе и этого достаточно, чтобы после сборки и установки подстроечного резистора на свое рабочее место схемы мы наслаждались нормальной его работой без прежних неполадок. Хотя если позволяет место на самом резисторе, можно еще аккуратно пройтись и ваткой, что полностью уберет всю грязь с ползунковой дорожки.
Ну, а далее нам нужно обратно собрать наш обновленный резистор и поставить его на свое рабочее место. В большинстве случаев после такой чистки электрическое сопротивление полностью восстанавливается, пропадает прерывистость его работы.
Сложные случаи очистки
В очень редких случаях дело не в грязи, а например разрушении этой дорожки в результате чрезмерного перегрева. Это может произойти в случае, когда случайно на этот резистор было подано слишком большое напряжение, а мощность этого сопротивления недостаточно большая, чтобы быстро рассеять выделяемое тепло от большого тока. Вот и происходит сильный нагрев дорожки переменного резистора с последующим ее разрушением. Тут уж чистка спиртом не поможет.
Нужна полная замена этого резистора на новый, заведомо рабочий. И, естественно, перед установкой нового резистора на старую схему проверьте ее, чтобы не повторился процесс разрушения дорожки уже с новым сопротивлением.
К сожалению, не все типы переменных и подстроечных резисторов можно почистить вышеперечисленным способом. Иногда встречаются сопротивления в цельном корпусе, что не дает возможности добраться до ползунковой дорожки.
Можно этот переменный резистор немного подогреть (градусов так до 50), это ускорит испарение спирта. Хотя чистый спирт является диэлектриком, ток он через себя не проводит. Следовательно, и не будет отрицательно влиять на работу переменного резистора, если даже на нем и останется немного спирта, который все равно испарится.
Заключение
Всевозможные переменные резисторы находят широкое применение в роли потенциометров в различных приборах, начиная с бытовых, таких как обогреватели, водонагреватели, акустические системы, заканчивая музыкальными инструментами, такими как электрогитары и синтезаторы.
Подстроечные резисторы можно встретить практически на любых печатных платах, начиная с телевизоров, заканчивая цифровыми осциллографами и техникой оборонного значения. Подробно с устройством данного типа можно ознакомиться, скачав файл с ГОСТ 24237-84. Резисторы переменные непроволочные. Общие технические условия.
Как известно, переменные резисторы, которые во всевозможной звуковой аппаратуре служат для регулировки громкости, тембра и прочего стереобаланса, со временем изнашиваются. И при вращении ручек регуляторов из колонок раздаётся хрип, треск, щёлканье, и другие немузыкальные звуки.
Причём громкость их по мере износа меняется от едва заметного шороха до треска вполне сравнимого с уровнем полезного сигнала.
Сейчас, когда в продажу хлынула музыкальная техника с цифровым кнопочным управлением, для многих меломанов проблема отошла в прошлое.
Но и сейчас ещё много найдётся любителей музыки предпочитают слушать её через старый добрый советский, импортный или самодельный усилитель со старыми добрыми переменниками.
Надеюсь, что кому-то из вас эта статья пригодится. Хотя возможно, что я очередной раз берусь с умным видом объяснять очевидные вещи.
Содержание / Contents
Приходит время и регулятор, верой и правдой прослуживший не один десяток лет и переживший иногда сам аппарат, в котором был установлен изначально, начинает хрипеть. Обычно за это ругают советские переменные резисторы. Но, рано или поздно, беда настигает регулятор независимо от страны-производителя.
У того, кто взялся сию беду устранять, есть два пути решения проблемы. Попытаться вернуть работоспособность старому переменнику или заменить на новый.
Заменить, конечно, хороший выход, только на что?
Если повезёт, в куче запчастей, скопившихся у радиолюбителя с незапамятных времён, можно найти другой такой же переменник или с близкими параметрами. Но где гарантия, что и он скоро не захрипит. По возрасту он, возможно, почти ровесник заменяемому и неизвестно где стоял, как часто его крутили и в каких условиях аппарат эксплуатировался.
Возможно, где-то поближе к цивилизации можно добыть качественную деталь, но судя по ценам в музыкальных магазинах, где иногда продаются переменники для электрогитар, цена может составить очень большую долю от цены самого ремонтируемого изделия.
Поэтому я рекомендую вскрыть хрипящий переменник и оценить возможность приведения его в чувство своими силами.
↑ Вскрытие покажет. Потенциометр СПЗ-30 изнутри
Отгибаем 4 усика, помеченные стрелками, и снимаем крышку. Любуемся на нехитрый внутренний мир:
Вот так и выглядят обычные советы, которые гуляют в народе и даже иногда помогают (иначе б не гуляли).
Разгибаем упорное кольцо:
Пришло время заняться угольной щёткой подвижного контакта
Перед установкой щётки на законное место я делал ещё одну вещь. Кончик пружинного контакта, примерно от отверстия для щётки, отгибал на небольшой угол (зелёная стрелка на фото). А также стачивал мелкой шкуркой, надфилем или, в крайнем случае, ножом заусенцы на краях этого отверстия и торцах пружины, если были. Как-то спокойней потом, хотя в реальной пользе от этого действия не уверен.
После подобных процедур все посторонние звуки обычно пропадают и надолго.
↑ Немного про СП-1
Недавно попало в руки одно устройство, где для регулировки громкости использовался великий и ужасный… СП-1. И та же самая проблема с хрипом треском и пропаданием звука.
А значит, появилась возможность рассказать об одном его отличии от СП3, которое очень даже может служить причиной неполадок, и на которое можно сразу не обратить внимание. В магнитофоне, который у меня был в школьные времена, несколько раз регулятор громкости перебирал, пока случайно не наткнулся.
Кстати разборка происходит точно так же, как и в предыдущем примере.
Но в отличии от СП3, у СП-1 неподвижный контакт, приклёпанный к центральному выводу не пружинный, а плоский, кольцеобразный. Этот самый контакт спокойно себе лежит в предназначенном для него пазу. И если его специально не пошевелить, то можно и не заметить что он иногда свободно болтается на заклёпке.
И контакт этот между выводом и движком переменника появляется и пропадает по собственному желанию. Не исключено, что встречаются и СП3 с болтающимся на заклёпке центральным контактом, но мне такие пока не попадались.
Для устранения неисправности, как многие догадались, достаточно пропаять это соединение. Для большей надёжности можно пропаять и со стороны вывода, хотя чаще всего это не требуется.
Кстати, угольный слой очень даже неплохо сохранился для переменного резистора с металлическими щётками из устройства конца 70-х годов.
Вот такие достаточно простые рекомендации по возвращению к активной жизни захрипевших переменных резисторов. Правда, здесь я рассмотрел только один тип, но повторюсь — другие отличаются только способом разборки-сборки. Составные части и места возможного появления неисправностей одинаковы.
Читайте также: