Пьезоматериал своими руками
Пьезоэлектрики, пьезоэлектричество - физика явления, виды, свойства и применение
Пьезоэлектрики — это диэлектрики, обладающие ярко выраженным пьезоэлектрическим эффектом.
Явление пьезоэлектричества было обнаружено и изучено в 1880 - 1881 гг. известными французскими физиками Пьером и Поль-Жаком Кюри.
После этого изучением пьезоэлектрических свойств кварца и некоторых других кристаллов и их практическими приложениями заинтересовался ряд физиков. Среди многих их работ было несколько, весьма важных применений.
Так, например, в 1915 г. С. Баттерворс показал, что кварцевая пластинка как одномерная механическая система, получающая возбуждение вследствие взаимодействия между электрическим полем и электрическими зарядами, может быть представлена как эквивалентная электрическая схема из последовательно включенных емкости, индуктивности и резистора.
Представив кварцевую пластинку как колебательный контур, Баттерворс впервые предложил эквивалентную схему кварцевого резонатора, которая легла в основу всех дальнейших теоретических работ по кварцевым резонаторам.
Пьезоэлектрический эффект бывает прямым и обратным. Для прямого пьезоэффекта характерна электрическая поляризация диэлектрика, наступающая вследствие действия на него внешнего механического напряжения, при этом индуцируемый на поверхности диэлектрика заряд оказывается пропорционален приложенному механическому напряжению:
При обратном пьезоэффекте явление проявляет себя наоборот - диэлектрик изменяет свои размеры под действием приложенного к нему внешнего электрического поля, при этом величина механической деформации (относительная деформация) будет пропорциональна напряженности приложенного к образцу электрического поля:
Коэффициентом пропорциональности и в том и в другом случае выступает пьезомодуль d. Для одного и того же пьезоэлектрика пьезомодули для прямого (dпр) и обратного (dобр) пьезоэффекта равны между собой. Таким образом, пьезоэлектрики — это своеобразные обратимые электромеханические преобразователи.
Продольный и поперечный пьезоэлектрический эффект
Пьезоэлектрический эффект, в зависимости от вида образца, может быть продольным или поперечным. В случае с продольным пьезоэлектрическим эффектом, заряды в ответ на деформацию или деформация в ответ на действие внешним электрическим полем, возникают в том же направлении, что и инициирующее воздействие. При поперечном пьезоэлектрическом эффекте возникновение зарядов или направление деформации окажутся перпендикулярны направлению вызывающего их воздействия.
Если на пьезоэлектрик начать действовать переменным электрическим полем, то в нем возникнет той же частоты переменная деформация. Если пьезоэффект продольный, то деформации будут носить характер сжатия и растяжения по направлению приложенного электрического поля, а если поперечный, то станут наблюдаться поперечные волны.
Если частоту приложенного переменного электрического поля сделать равной резонансной частоте пьезоэлектрика, то амплитуда механической деформации будет максимальной. Резонансную частоту образца можно определить по формуле (V - скорость распространения механических волн, h - толщина образца):
Важнейшей характеристикой пьезоэлектрического материала служит коэффициент электромеханической связи, показывающий, соотношение между мощностью механических колебаний Pа и электрической мощностью Pэ, затрачиваемой на их возбуждение посредством действия на образец. Данный коэффициент обычно принимает значение из диапазона от 0,01 до 0,3.
Для пьезоэлектриков характерна кристаллическая структура материала с ковалентной или ионной связью без центра симметрии. Материалы с низкой удельной проводимостью, в которых свободных носителей заряда пренебрежимо мало, отличаются высокими пьезоэлектрическими показателями. К пьезоэлектрикам относятся все сегнетоэлектрики, а также обилие известных материалов, в том числе кристаллическая модификация кварца.
Монокристаллические пьезоэлектрики
Данный класс пьезоэлектриков включает в себя ионные сегнетоэлектрики и кристаллическую модификацию кварца (бета-кварц SiO2).
Монокристалл бета-кварца имеет форму шестигранной призмы с двумя пирамидами по бокам. Выделим здесь несколько кристаллографических направлений. Ось Z проходит через вершины пирамид, и является оптической осью кристалла. Если вырезать пластину из такого кристалла в направлении перпендикулярном данной оси (Z), то пьезоэлектрический эффект получить не удастся.
Оси X проведем через вершины шестигранника, здесь три таких оси X. Если вырезать пластины перпендикулярно осям X, то получим образец с наилучшим пьезоэффектом. Оси X называются поэтому у кварца электрическими осями. А три оси Y, проведенные перпендикулярно боковым граням кристалла кварца — механические оси.
Данный вид кварца относится к слабым пьезоэлектрикам, его коэффициент электромеханической связи находится в пределах от 0,05 до 0,1.
Кристаллический кварц возымел наибольшую применимость в силу способности сохранять пьезоэлектрические свойства при температурах до 573°C. Пьезоэлектрические резонаторы на базе кварца — это есть ни что иное, как плоскопараллельные пластины с прикрепленными к ним электродами. Такие элементы отличаются ярко выраженной собственной резонансной частотой.
Ниобит лития (LiNbO3) — широко применяемый пьезоэлектрический материал, относящийся к ионным сегнетоэлектрикам (наравне с танталатом лития LiTaO3 и германатом висмута Bi12GeO20). Ионные сегнетоэлектрики предварительно отжигают в сильном электрическом поле при температуре ниже точки Кюри, чтобы привести их в однодоменное состояние. Такие материалы обладают более высокими коэффициентами электромеханической связи (до 0,3).
Сульфид кадмия CdS, оксид цинка ZnO, сульфид цинка ZnS, селенид кадмия CdSe, арсенид галлия GaAs и т. д. — примеры соединений полупроводникового типа с ионно-ковалентной связью. Это так называемые пьезополупроводники.
Этилендиаминтартрат C6H14N8O8, турмалин, монокристаллы сегнетовой соли, сульфат лития Li2SO4H2O — на основе этих дипольных сегнетоэлектриков также получают пьезоэлектрики.
Поликристаллические пьезоэлектрики
К поликристаллическим пьезоэлектрикам относится сегнетоэлектрическая керамика. Для придания сегнетокерамике пьезоэлектричексих свойств, такую керамику необходимо в течение часа поляризовать в сильном электрическом поле (напряженностью от 2 до 4 МВ/м) при температуре от 100 до 150°C, чтобы по завершении этого воздействия в ней осталась поляризация, позволяющая в дальнейшем получать пьезоэлектрический эффект. Так получают сильную пьезоэлектрическую керамику с коэффициентами пьезоэлектрической связи от 0,2 до 0,4.
Из пьезокерамики изготавливают пьезоэлементы требуемой формы, чтобы потом получать механические колебания необходимого характера (продольные, поперечные, изгибыне). Главные представители промышленной пьезокерамики изготавливаются на основе титаната бария, кальция, свинца, цирконата-титаната свинца, ниобата бария-свинца.
Полимерные пьезоэлектрики
Пленки полимеров (например поливинилиденфторид) вытягивают на 100-400%, затем поляризуют в электрическом поле, а после - наносят электроды путем металлизации. Так получают пленочные пьезоэлементы с коэффициентом электромеханической связи порядка 0,16.
Применение пьезоэлектриков
Отдельные и соединенные друг с другом пьезоэлементы можно встретить в виде готовых радиотехнических устройств — пьезоэлектрических преобразователей с нанесенными на них электродами.
Такие устройства, изготовленные из кварца, пьезокерамики или ионных пьезоэлектриков, служат для генерации, трансформации и фильтрации электрических сигналов. Плоско-параллельную пластинку вырезают из кристалла кварца, прикрепляют электроды — получают резонатор.
Частота и добротность резонатора зависит от угла к кристаллографическим осям, под которым вырезали пластинку. Обычно в диапазоне радиочастот до 50 МГц добротность таких резонаторов достигает 100000. Кроме того пьезоэлектрические преобразователи находят широкое применение в качестве пьезотрансформаторов с высоким входным сопротивлением, для характерно большого диапазона частот.
По добротности и частоте кварц превосходят ионные пьезоэлектрики, способные действовать на частотах до 1 ГГц. Тончайшие пластинки танталата лития применяются как излучатели и приемники ультразвуковых колебаний частотой от 0,02 до 1 ГГц, в резонаторах, фильтрах, линиях задержки на поверхностных акустических волнах.
Тонкие пленки пьезополупроводников, напыленные на диэлектрические подложки, применяются в встречно-штыревых преобразователях (чередующиеся электроды служат здесь для возбуждения поверхностных акустических волн).
Низкочастотные пьезоэлектрические преобразователи изготавливают на базе дипольных сегнетоэлектриков: миниатюрные микрофоны, динамики, звукосниматели, датчики давления, деформации, вибрации, ускорения, ультразвуковые излучатели.
Пьезогенераторы - новые источники электроэнергии. Фантазии или реальность?
Тонкая пьезоэлектрическая пленка на оконном стекле, поглощающая шум улицы и преобразующая его в энергию для зарядки телефона. Пешеходы на тротуарах, эскалаторах метро, которые заряжают через пьезо преобразователи аккумуляторы автономного освещения. Плотные потоки автомобилей на оживленных трассах, вырабатывающие мегаватты электроэнергии, которой хватает для целых городов и поселков.
Явление пьезоэлектричества было открыто братьями Джексоном и Пьером Кюри в 1880 году и с тех пор получило широкое распространение в радиотехнике и измерительной технике. Заключается оно в том, что усилие, приложенное к образцу пьезоэлектрического материала, приводит к появлению на электродах разности потенциалов. Эффект обратим, т.е. наблюдается и обратное явление: прикладывая к электродам напряжение, образец деформируется.
В зависимости от направления преобразования энергии пьезоэлектрики делятся на генераторы (прямое преобразование) и двигатели (обратное). Термин “пьезогенераторы” характеризует не эффективность превращения, а только направление преобразования энергии.
Рассмотрим подробней физику процессов, происходящих в пьезоэлектрике. Для знакомства с принципами генерации энергии пьезоэлектрическими материалами достаточно понимания нескольких базовых механизмов. При механическом воздействии на пьезоэлемент происходит смещение атомов в несимметричной кристаллической решетке материала. Это смещение приводит к возникновению электрического поля, которое индуцирует (наводит) заряды на электродах пьезоэлемента.
В отличие от обычного конденсатора, обкладки которого могут сохранять заряды достаточно долго, индуцированные заряды пьезоэлемента сохраняются только до тех пор, пока действует механическая нагрузка. Именно в это время можно получить от элемента энергию. После снятия нагрузки индуцированные заряды исчезают. По сути, пьезоэлемент является источником тока ничтожной величины, с очень высоким внутренним сопротивлением.
Поскольку специалисты компании Innowattech так и не сочли нужным поделиться с широкой общественностью результатами своего эксперимента, попробуем сами сделать грубые численные прикидки эффективности работы пьезоэлектриков в качестве источника энергии. В качестве объекта для расчетов возьмем обычную бытовую пьезозажигалку – единственное изделие, получившее сейчас широкое распространение.
Из обилия технических характеристик пьезоматериалов нам понадобятся всего несколько. Это значение пьезоэлектрического модуля, которое для распространенных (а иных пока промышленность не выпускает) пьезоэлектриков составляет от 200 до 500 пикокулон (10 в минус 12 степени) на ньютон, и характеризует эффективность генерации заряда под воздействием силы.
Эта характеристика не зависит от размеров пьезоэлемента, а полностью определяется свойствами материала. Поэтому пытаться делать более мощные преобразователи за счет увеличения геометрических размеров бессмысленно. Емкость обкладок пьезоэлемента зажигалок известна и составляет около 40 пикофарад.
Рычажная система передачи усилия на пьезоэлемент создает нагрузку приблизительно 1000 ньютонов. Зазор, в котором проскакивает искра - 5 мм. Диэлектрическую прочность воздуха принимаем 1 кВ/мм. При таких исходных данных зажигалка генерирует искры мощностью от 0,9 до 2,2 мегаватта!
Но не стоит пугаться. Длительность разряда составляет всего 0,08 наносекунды, отсюда такие огромные значения мощности. Подсчет же суммарной энергии, генерируемой зажигалкой, дает значение всего 600 микроджоулей. При этом КПД зажигалки, с учетом того, что механическое усилие через рычажную систему полностью передается пьезоэлектрику, составляет всего . 0,12%.
Предлагаемые в разных проектах схемы извлечения энергии близки к режимам работы зажигалок. Отдельные пьезоэлементы генерируют высокое напряжение, которое пробивает разрядный промежуток, и ток поступает на выпрямитель, а затем в накопительное устройство, например, ионистор. Дальнейшее преобразование энергии стандартно и интереса не представляет.
От зажигалок перейдем к задаче получения энергии в промышленных масштабах. Пусть будут использованы наиболее эффективные элементы, генерирующие 10 милливатт на элемент. Собранные в кластеры (группы) по 100-200 элементов, они помещаются под полотно дороги. Тогда для получения заявленной величины мощности порядка 1 МВт на километр дороги потребуется всего. 100 миллионов отдельных элементов с индивидуальными схемами съема энергии. Остается еще задача ее суммирования, преобразования и передачи потребителю. При этом токи элементов, учитывая изменяющуюся нагрузку на дорожное полотно, будут лежать в диапазоне нано или даже пикоампер.
Знакомясь с подобными проектами получения энергии от пьезоэффекта, невольно напрашивается аналогия с гидроэлектростанцией, в которой турбины работают от влаги утренней росы, бережно собранной с окрестных полей.
Подводя итоги, можно сделать только один вывод: пьезоэлементы никогда не станут альтернативными источниками электроэнергии в промышленных масштабах. Круг их применений ограничится маломощными (микромощными) источниками питания и датчиками. А жаль, такая красивая была идея!
Обсуждается многовековое использование пьезоэлектрических кристаллических материалов для получения искры в кремневых оружиях и орудиях, для разжигания трута и др. устройств. Приводится список таких материалов. Анализируются работы учёных для получения синтетических пьезоэлектрических материалов и устройств на их основе. Приводятся расчётные данные электрических напряжений, возникающих на пьезо – и пироэлектрических материалах при воздействии механических сил. Анализируются работы по использованию прямого пьезоэффекта путём преобразования давления, создаваемого автомобилями, вагонами железной дороги, самолетами при взлете и посадке, движения человека, а также различных вибраций как для значительных потребителей энергии- освещения, табло, светофоров и т.п. устройств, так и минипотребителей типа смартфонов, устройств коммуникационного характера, беспроводной связи, за счет получения энергии от пьезоэлемента за счет вибраций различного рода. Предлагается альтернативное решение получения электрической энергии за счёт использования связки пьезоэлемент-магнит путём извлечения энергии из квантованного пространства. Обосновывается, что изучение такого рода научно-технической деятельности вызывает необходимость появления новой отрасли науки, - пьезомагнетоники.
3. М.И. Ярославский, А.Г. Смагин. Конструирование, изготовление и применение кварцевых резонаторов.-М.:Энергия, 1971.
5. И. Зеленка. Пьезоэлектрические резонаторы на объемных и поверхностных акустических волнах. –М. -Мир, 1990.
11. У. Кэди. Пьезоэлектричество и его практические применения. М. 1949.- Изд. Иностранной литературы.
16. Ю.С. Кузьминов. Электрооптический и нелинейно-оптический кристалл ниобата лития. М. Наукаю- 1987.
21. А. Гриценко, В. Никифоров, Т. Щеголева. Состояние и перспективы развития пьезоэлектрических генераторов. Компоненты и технологии. №9.- 2012, стр. 36-38.
22. Функциональная электроника на основе пьезоэффекта. Под ред. С.С. Нерсесова. Техносфера. -М. 2014.
24. Roundy S., Wright P. K., Rabaev. A Study of low level vibrations as a power source for wireless sensor nodes//Computer Cjmmunications. -2003. № 26.
25. Акопьян В., Ларинов И., Истомин И. Пьезогенераторы – новое перспективное направление малой энергетики // Наука и техника. -2011, № 12.
26. Сафронов А.Я., Климашин В.М., Никифоров В.Г., Парфенов Б.Г., Ярошевич В.А. Пьезо-керамические пакеты и многоблочные актюаторы //Компоненты и технологиию .-2002, № 6.
27. Никифоров В.Г., Климашин В.М., Сафронов А. Я. Биморфные пьезоэлектрические элементы: актюаторы и датчики // Компоненты и технологии. -2003, № 4.
28. Kymissis J., Kendall C., Paradiseo J.J., Gershenfeld N. Parasitic power harvesting in shoes//Proc. 2 IEEE Int. Conf. Werable Computing. August. -1998.
29. Shenck N. S., Paradiso J. J. Energy scavending with shoe-mounted piezoelectric// IEEE Mikro. May-June. 2001.-
Вот пистолеты уж блеснули,
Гремит о шомпол молоток.
В граненый ствол уходят пули
И щелкнул в первый раз курок.
Вот порох струйкой сероватой
На полку сыплется. Зубчатый,
Надёжно ввинченный кремень
А. С. Пушкин. Евгений Онегин
Пьезоэлектричество было известно давно, но научное изучение пьезоэффекта и фактически его открытие принадлежит братьям П. и Ж. Кюри, начатое в 1880 году.
При воздействии на пьезоэлектрический материал механической силы на поверхностях пластинок пьезоэлектрического материала появляется электрическое напряжение. Имеется и обратный пьезоэффект, когда под воздействием электрического поля возникает механическое напряжение.
Пьезоэлектрический кварц – это стратегический материал, работы с которым до 60-х годов были закрытыми, так как он использовался в кварцевых резонаторах, фильтрах, линиях задержках в радиолокационных станциях и т.п. изделиях оборонного и закрытого характера. В настоящее время изделия пьезоэлектроники используются очень широко, так как отображение частоты и времени делается самым экономичным, простым и дешёвым способом. Наиболее широко для этого используются кварцевые миниатюрные резонаторы частотой 32768 Гц (2х1015). Российские учёные и инженеры, внесли огромный вклад в развитие пьезоэлектроники, в том числе в разработку и производство синтетических пьезоэлектрических материалов, таких как кварц, сегнетова соль, ниобат и танталат лития, пьезокерамика, лангасит, пьезоэлектрические плёнки и др. и изделий из них 4.
Многие пьезоэлектрики, в том числе перечисленные, являются пироэлектриками. Все пироэлектрики являются пьезоэлектриками, но не наоборот. Пироэлектричество – возникновение разноимённых электрических зарядов на противоположных поверхностях некоторых диэлектриков, как кристаллических минералов, так пьезокерамики и некоторых полимеров при нагревании или охлаждении [7]. О пироэлектрических материалах, физических свойствах и применении можно найти, например в [8].
В дальнейшем было установлено, что у сегнетоэлектриков величина пироэффекта вблизи фазового перехода может быть на один-два порядка больше, чем у кристаллических пироэлектриков 10.
Уравнение пироэлектрического эффекта описывает приращение спонтанной поляризации
ΔPs кристалла при изменении его температуры ΔТ. В первом приближении величины ΔРs и ΔТ связаны линейно
где p-пироэлектрический коэффициент.
Уравнение пироэффекта, учитывающее его разделение на первичный и вторичный имеет вид:
Все величины, кроме температуры Т являются векторами, т.е. изменяются в зависимости от кристаллографической ориентации кристалла.
Кристаллический кварц не является пироэлектриком, но индуцирование электрического поля при свободной деформации кристалла за счёт термического расширения реализуется через пьезоэлектрический эффект [14; 15, 24-25,46-50].
В области комнатных температур в линейных диэлектриках пирокоэффициент р, как правило мало зависит от температуры. Абсолютное значение р близко к одной электростатической единице. Для турмалина, например, коэффициент полного пироэффекта составляет – 1,3 ед. СГСЕ.
Электрическое напряжение V возникающее на пластинке кристалла триглицинсульфата площадью Ф=10Х10 мм и толщиной d=1мм, вырезанной перпендикулярно полярной оси при резком изменении его температуры на ΔТ= 10К (пироэлектрическая постоянная ТГС p σ =45,0 нКл/см 2 •К), его диэлектрическая постоянная равна 30[14].
V=0,1(см)•45•10 -9 (Кл•см 2 •К -1 )•10К/30•8,85•10 -14 (Кл•В -1 •см -1 )=17,0 кВ.
Аналогично для турмалина (ε=8,2, =1,3•10 -5 Кл/м 2 •К)
V=0,1 (см)•1,3•10 -9 ( Кл•см 2 •К)•10К/8,2•8,85•10 -14 (Кл•В -1 •см -1 )=1,7 кВ.
Для кварца у пластины, вырезанной перпендикулярно оптической оси (ε=4,0 =0,69•10 -5 нКл/м 2 •К).
V=0,1(cм)•0,69•10 -9 (Кл•см 2 •К -1 )•10К/4,0•8,85•10 -14 (Кл•В -1 •см -1 )=0,19кВ
Данные сведены в таблицу 1. 14.
Минерал
Диэлектрическая проница
-емость, ε2
Пирокоэ-ффициент
, Кл/см 2 К
То, что пьезоэлемент не является источником энергии, - очевидно. Ясно также и то, что как преобразователь механической энергии в электрическую, революцию в энергетике он не произведёт. Ведь к чему сводятся идеи использовать пьезогенераторы в кроссовках, в асфальте, в эспандере, на ногах балерины, чтобы ток давала? Всё это сводится к тому, чтобы получить нетрадиционный электрический ток за счёт механической работы (кстати, с крайне низким кпд), которая, в свою очередь, совершается за счёт сжигания традиционного топлива и съёдания традиционной картошки. Пьезогенератор это преобразователь, но никак не источник электроэнергии. Как преобразователь он занимает достойное место в технике в качестве источника электрических зарядов, источника высокого напряжения для целей воспламенения, контроля изоляции и многих других. В некоторых случаях целесообразно применение в качестве микромощных источников питания. В этой статье речь пойдёт о пьезогенераторах, предназначенных для искрообразования и создания электрических зарядов.
Немного теории
(1)
Из формулы следует, что напряжение уже зависит от размеров пьезоэлемента, так как входящая в формулу ёмкость C является функцией межэлектродного расстояния и площади электродов. Легко проверить, что в этом примере, положив ёмкость равной 40 пикофарадам (это ёмкость пьезоэлементов пьезозажигалки), получим, что напряжение при силе 1Н будет равно 6В. Если действовать силой 1000Н (100кГ), получим 6 кВ.
Этих сведений вполне достаточно, чтобы проанализировать работу пьезогенератора. Сделаем это на примере пьезоэлектрической зажигалки.
Как работает пьезоэлектрическая зажигалка?
Речь пойдёт о пьезозажигалке нажимного действия, которая по ходу своей клавиши выдаёт серию искр. Есть зажигалки ударного действия, которые выдают одиночную искру при приведении в действие ударного механизма. Пьезоэлектрическая зажигалка – это пример, пожалуй, самого удачного применения пьезогенератора. Это один из самых популярных бытовых приборов в жилищах, оборудованных газовыми плитами для приготовления пищи. Они надёжны, долговечны, не требуют никакого обслуживания и всегда готовы к использованию. На рис.1 представлено фотоизображение раскрытой пьезозажигалки с пьезогенератором. Не будем останавливаться на описании конструкции
Рис.1. Пьезозажигалка в раскрытом виде с пьезогенератором
пьезогенератора, так как в нём нет ничего, выходящего за рамки интеллектуального наследия Архимеда, а рассмотрим упрощённую модель пьезогенератора, изображённую на рис.2. Она представляет собой опору с рычагом, позволяющим прикладывать
1. Почему пьезозажигалка издаёт характерный треск при искрении? Это звук маленьких грозовых разрядов? Нет, хотя эти разряды тоже издают звук, но очень слабый. Сделаем умозрительный эксперимент на модели пьезоэлемента, обратившись к рис.3. Модель включает в себя сильную пружину1, которую можно сжимать, надавливая на платформу3. Имеются дугообразные, более слабые, пружинки2. Почему дугообразные и почему их две – не имеет значения. Просто для красоты рисунка. В экспериментальном наборе имеется множество дугообразных пружинок разной длины, потому что они быстро
ломаются. В исходном состоянии, когда сила равна нулю, подберём две дугообразные пружинки с расстоянием между концами равном расстоянию между платформой и нижним основанием и вставим их, как показано на рисунке. Теперь начнём наращивать усилие сверху. Пружины начнут сжиматься противодействуя силе. Основную нагрузку берёт на себя главный атлант – пружина1. Ей помогают дугообразные пружинки. Но вот, в некоторый момент, дугообразные пружинки ломаются. Атлант остаётся без помощников и резко проседает, дабы мобилизовать дополнительную силу своей упругости и, тем самым, уравновесить внешнюю. В этот же момент мы вставляем новую пару дугообразных пружинок, но уже с меньшим расстоянием между концами, соответствующим новой высоте платформы над основанием. Теперь у сильной пластины вновь два более слабых помощника. Но и они, получив определённую деформацию, также ломаются. Сильная пружина вновь резко проседает и так далее. Затем приостановим этот процесс и, перед тем, как снять внешнее усилие, вставим самые короткие дугообразные пружинки. И не просто вставим, а приклеим их в точках касания. Теперь, будучи свободной от внешней силы, большая пружина начинает ход вверх, растягивая маленькие пружинки. Маленькие пружинки при растяжении также ломаются, а мы ухитряемся их мгновенно заменять и приклеивать. Наконец, большая пружина остановила свой ход, но исходной высоты не достигла, так как последняя пара пружинок не поломалась. Мы их доломаем, и тогда пружина и платформа вернутся в исходное положение. Так что на обратном ходе самостоятельных поломок меньше.
Что же в пьезоэлементе является аналогом сильной и слабой пружин? Что понимается под поломкой слабой пружины? Вообще любое твёрдое тело это пружина. Правда, её ход очень мал и, согласно нашей аналогии, это сильная пружина. Пьезоэлемент это тоже сильная пружина, но в нём, в отличие от обычных твёрдых тел, имеется и слабая пружина. Сжимая обычное твёрдое тело, мы затрачиваем работу на увеличение потенциальной энергии упругости. Сжимая пьезоэлемент, мы также трудимся на увеличение потенциальной энергии, но, кроме этого, создаём в образце электрическое поле, которое также обладает потенциальной энергией. В приведенной выше аналогии можно вообще не вставлять дугообразные пружинки. Тогда сильную пружину будет легче сжать. В пьезоэлементе, то же самое, можно исключить появление электрического поля, закоротив электроды, и также его будет легче сжать.
Ответ на первый вопрос вышел довольно пространный, но зато попутно получилось толкование одного из основных положений пьезоэлектричества. Далее решения будут более короткими.
2. Какова мощность разряда пьезоэлемента? Сделать точный расчёт крайне затруднительно, да и не имеет смысла, а оценить порядок величины любопытно. Мощность тока искры это квадрат напряжения, делённый на сопротивление разрядного промежутка. Напряжение, конечно, меняется за время существования разряда от 3000 вольт до, почти, нуля.. Поэтому возьмём среднее значение 1500 вольт Но какое же сопротивление у разрядного промежутка? Мы его грубо оценим в 1 Ом, так как было замечено, что увеличение сопротивления токовода до 1 Ома уменьшает яркость искры. Теперь делаем расчёт.
мегаватт. |
Может быть реальная величина отличается от этого результата, тем не менее порядок величины – миллион!
Подойдём к этому вопросу с другой стороны. По своему определению мощность – это работа за единицу времени. Так и поступим, предварительно вычислив энергию, которая расходуется на работу тока в разрядном промежутке.
3. Какова энергия, потраченная на искровой разряд? Это энергия электрического поля пьезоэлемента. Вычислим её по формуле:
Мы знаем, что ёмкость С равна 40 пФ, а напряжение U к началу пробоя 3000 вольт. Рассчитываем энергию W:
| микроджоулей. |
Этот результат ещё обсудим, а сейчас продолжим расчёт мощности. Нам не хватает продолжительности существования разряда. Определим это время как удвоенную постоянную времени RC-цепочки, когда напряжение на пьезоэлементе уменьшится на порядок.
наносекунды.
Разделив работу тока на время его протекания, получим следующее значение мощности:
киловатт.
Несмотря на определённый произвол в оценке данных результат получился такого же порядка величины.
4. Каков кпд пьезогенератора зажигалки? Полезная работа вычислена в предыдущем пункте, однако её надо взять на порядок больше, то есть 600 микроджоулей, так как при движении рычага зажигалка выдаёт до 10 искр. Затраченную работу вычислим как произведение хода клавиши (2см) на силу её сжатия. Сила линейно меняется от 0 до 5кГ. Её легко измерить с помощью бытового безмена. В расчёте следует взять среднее значение, 2,5кГ (25Н). Умножив 25Н на 0,02м получим 0,5 дж. Тогда кпд будет равен 1,2*10 -3
5. Сколько тепла выделяет искра? В нашем случае задача искры – поджечь газ. Не всякая искра может поджечь газ, хотя температура в канале разряда, судя по спектральному содержанию, видимо, мало отличается, будь то зажигалка или грозовая молния. Это, примерно, 10000 о К. Для поджига требуется некое критическое количество массы вещества, нагретого до температуры воспламенения, 2 – 3 тысячи градусов. Так, массы пламени спички явно недостаточно, чтобы разжечь костёр из крупных поленьев. В пункте 3 мы выяснили, что энергия искры порядка 60 микроджоулей. Посмотрим, на сколько повысится температура 1см 3 воды, если она получит 60 микроджоулей тепла. Теплоёмкость воды С=4.18 дж/грамм градус. Тогда повышение температуры составит:
,
четырнадцать миллионных долей градуса! На сколько же повысится температура такого же объёма воздуха? Его теплоёмкость 1дж/грамм градус. Масса 1см 3 почти равна 10 -3 г, один миллиграмм. Повышение температуры 1см 3 воздуха составит:
.
Источник высокого напряжения
Рассмотрим иную задачу, когда не требуется расходовать пьезоэлектрическую энергию на искрообразование, а ставится цель получить возможно более высокое напряжение. Какое же напряжение можно получить на электродах пьезоэлементов рассмотренных пьезогенераторов без образования разряда? Очевидно не более 15 киловольт, так как расстояние между электродами составляет 15 миллиметров, а электрическая прочность воздуха порядка 1 кВ/мм. Используя формулы (1) получим, что эта сила равна
.
Подставив значение ёмкости С, ( 40*10 -12 ), напряжения U и пьезомодуля , получим величину силы 2400 ньютонов или 240 кГ. Рычажный механизм обеспечивает действие такой силы при достаточно лёгком нажатии на приводное плечо. При этом величина продуцируемого заряда составит:
| микрокулон. |
Читайте также: