Периферийное устройство компьютера предназначенное для вывода текста или графики на бумагу
Компьютеру, как и человеку, необходимы свои «глаза и уши», с помощью которых он мог бы воспринимать информацию извне. В настоящее время имеются разнообразные устройства, выполняющие эти функции в составе компьютера. Они называются устройствами ввода , так как обеспечивают ввод в компьютер данных в различных формах: чисел, текстов, изображений, звуков.
Устройства ввода преобразуют эту информацию из формы, понятной человеку, в цифровую форму, воспринимаемую компьютером.
Современные компьютеры могут обрабатывать числовую, текстовую, графическую, звуковую и видеоинформацию .
Клавиатура — компьютерное устройство, которое располагается перед экраном дисплея и служит для набора текстов и управления компьютером с помощью клавиш, находящихся на клавиатуре.
Клавиатура позволяет вводить в компьютер числовую и текстовую информацию , а также различные команды и данные.
Микрофон используется для ввода звуковой информации, подключается к входу звуковой карты.
Сканер — устройство для перевода графической информации в цифровую.
Сканер используется для оптического ввода в компьютер и преобразования в компьютерную форму изображений (фотографий, рисунков, чертежей).
Сканеры используются и для бесклавиатурного ввода текста. Всякую информацию сканер воспринимает как графическую. Если это был текст, который в другом случае пришлось бы набирать вновь, то после работы сканера специальная программа распознавания текста, позволяющая выделить в считанном изображении отдельные символы и сопоставить с ними соответствующие коды символов, преобразовывает его в пригодный для обработки текст.
Веб-камера — малоразмерная цифровая видео- или фотокамера, способная в реальном времени фиксировать видеоизображения, предназначенные для дальнейшей передачи по компьютерной сети.
Цифровые камеры позволяют получать видеоизображение и фотоснимки в цифровом (компьютерном) формате. Позволяют вводить в компьютер графическую информацию.
Получили распространение многофункциональные устройства (МФУ), в которых в одном приборе объединены функции принтера, сканера, копировального аппарата и телефакса. Такое объединение рационально технически и удобно в работе.
Широкоформатные принтеры иногда ошибочно называют плоттерами. Содержание [убрать]
По принципу переноса изображения на носитель принтеры делятся на:
лазерные (также светодиодные принтеры);
По количеству цветов печати — на чёрно-белые (монохромные) и цветные.
СТРУЙНАЯ ПЕЧАТЬ — способ печати, при котором передача изображения на запечатываемый материал происходит посредством напыления специальных красок из сопел очень малого диаметра с высокой скоростью (до 1 млн капель/с). С. п. используется для производственной маркировки на мягких упаковках, получения читаемых надписей на поверхностях с грубой структурой, нанесения адресов на периодические издания в процессе производства продукции и пр. Способ С. п. используется в струйных принтерах, предназначенных для изготовления цифровой полутоновой цветопробы.
Вопрос 34 Файл (англ. file — скоросшиватель) — концепция в вычислительной технике: сущность, позволяющая получить доступ к какому-либо ресурсу вычислительной системы и обладающая рядом признаков:
фиксированное имя (последовательность символов, число или что-то иное, однозначно характеризующее файл);
определённое логическое представление и соответствующие ему операции чтения/записи.
Может быть любой — от последовательности бит(хотя читаем именно байтами, а точнее словами-группами из байт, по четыре, по восемь, по шестнадцать) до базы данных с произвольной организацией или любым промежуточным вариантом; многомерной базой данных, строго упорядоченной.
Первому случаю соответствуют операции чтения/записи потока и/или массива (то есть последовательные или с доступом по индексу), второму — команды СУБД. Промежуточные варианты — чтение и разбор всевозможных форматов файлов.
Работа с текстовыми файлами
Текстовый файл - это совокупность строк, разделенных метками конца строки. Сам файл заканчивается меткой конца файла. Доступ к каждой строке возможен лишь последовательно, начиная с первой. Одновременная запись и чтение запрещены.
Чтение из текстового файла:
Read(f, список переменных);
ReadLn(f, список переменных);
Процедуры читают информацию из файла f в переменные. Способ чтения зависит от типа переменных, стоящих в списке. В переменную char помещаются символы из файла. В числовую переменную: пропускаются символы-разделители, начальные пробелы и считывается значение числа до появления следующего разделителя. В переменную типа string помещается количество символов, равное длине строки, но только в том случае, если раньше не встретились символы конца строки или конца файла. Отличие ReadLn от Read в том, что в нем после прочтения данных пропускаются все оставшиеся символы в данной строке, включая метку конца строки. Если список переменных отсутствует, то процедура ReadLn(f) пропускает строку при чтении текстового файла.
Запись в текстовый файл:
Write(f, список переменных);
WriteLn(f, список переменных);
Процедуры записывают информацию в текстовый файл. Способ записи зависит от типа переменных в списке (как и при выводе на экран). Учитывается формат вывода. WriteLn от Write отличается тем, что после записи всех значений из переменных записывает еще и метку конца строки (формируется законченная строка файла).
Добавление информации к концу файла:
Процедура открывает текстовый файл для добавления информации к его концу. Используйте эту процедуру вместо Rewrite.
Вопрос 36 Объективность информации. Понятие объективности информации относительно. Более объективной является та информация, в которую методы обработки вносят меньше субъективности. Например, в результате наблюдения фотоснимка природного объекта образуется более объективная информация, чем при наблюдении рисунка того же объекта. В ходе информационного процесса объективность информации всегда понижается.
Полнота информации. Полнота информации характеризует достаточность данных для принятия решения. Чем полнее данные, тем шире диапазон используемых методов их обработки и тем проще подобрать метод, вносящий минимум погрешности в информационный процесс.
Адекватность информации. Это степень её соответствия реальному состоянию дел. Неадекватная информация может образовываться при создании новой информации на основе неполных или недостоверных данных. Однако полные и достоверные данные могут приводить к созданию неадекватной информации в случае применения к ним неадекватных методов.
Доступность информации. Это мера возможности получить информацию. Отсутствие доступа к данным или отсутствие адекватных методов их обработки приводят к тому, что информация оказывается недоступной.
Актуальность информации. Это степень соответствия информации текущему моменту времени. Поскольку информационные процессы растянуты во времени, то достоверная и адекватная, но устаревшая информация может приводить к ошибочным решениям. Необходимость поиска или разработки адекватного метода обработки данных может приводить к такой задержке в получении информации, что она становится ненужной.
Вопрос 41 Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями[1]. Чаще всего предполагается (т. н. бинарная или двоичная логика, в отличие от, например, троичной логики), что высказывания могут быть только истинными или ложными.Содержание [убрать]
Базовыми элементами, которыми оперирует алгебра логики, являются высказывания. Высказывания строятся над множеством , где B — непустое множество, над элементами которого определены три операции:
отрицание (унарная операция),
а также константы — логический ноль 0 и логическая единица 1.
Вопрос 42 Технология HSCSD
Название технологии "High Speed Circuit Switched Data" (HSCSD), что переводится как "высокоскоростная передача данных по коммутируемым линиям" говорит само за себя. Она применяется на базе сетей GSM для обмена данных с мобильного терминала. HSCSD рассчитан на скорость передачи до 57,6 кбит/с. При переходе к сетям 3G, подразумевающим обмен на скорости до 2 Мбит/с, этот стандарт занимает промежуточное положение, являясь предшественником стандарта GPRS.
Так как сети GSM относятся к классу сетей с временным разделением каналов, то скорость обмена в HSCSD прямо пропорциональна количеству слотов, отведенных под данные. Таким образом, при использовании одного временного слота с данными, сжатых посредством HSCSD, обеспечивается 14.4 кбит/с (при удовлетворительном качестве эфира). А при использовании 4-х слотов достигается максимальная скорость в 57,6 кбит/с. В настоящее время уже на скорости в 28,8 кбит/с можно обмениваться видео и аудио информацией. Можно представить, какие возможности в себе несет применение HSCSD при наличии у абонента соответствующей аппаратуры!
Применение HSCSD на существующих сетях GSM не несет никакой аппаратной модернизации, за исключением абонентского оборудования. На базовых станциях и узлах коммутации меняется только программное обеспечение.
Для поддержки протокола HSCSD у пользователя выпущены аппараты Nokia 6210, Siemens S40 и Siemens S42. Последние 2 аппарата работают в 3-х диапазонах: 900МГц, 1800МГц и 1900МГц.
Это решение, являющееся альтернативой GPRS в области увеличения скорости передачи данных по существующим сетям GSM второго поколения, поддерживается компанией Nokia. Реализация HSCSD (High Speed Circuit Switched Data) требует меньше краткосрочных вложений, чем GPRS, однако цены при обслуживании конечных пользователей оказываются выше, чем при эксплуатации GPRS или сетей третьего поколения. В настоящее время в сетях GSM используется технология коммутации каналов, и HSCSD (High Speed Circuit Switched Data) представляет собой последнее слово технологии коммутации каналов в среде GSM. HSCSD обеспечивает передачу данных по сети GSM со скоростями до 57,6 кбит/с. Такие скорости достигаются путем конкатенации, то есть сложения последовательных временных каналов GSM, каждый из которых поддерживает передачу на скорости 14400 кбит/с. Для передачи по стандарту HSCSD необходимо до четырёх временных каналов GSM.
HSCSD является частью планируемого усовершенствования стандарта GSM и включена в Фазу 2 разработки этого стандарта. При использовании HSCSD между вызывающей и вызываемой сторонами устанавливается непрерывное соединение для обмена данными. Поскольку в основе HSCSD лежит коммутация каналов, этот протокол больше подходит для таких приложений, как видеоконференции и мультимедиа-приложения, чем для приложений "импульсного" типа, например электронной почты, которые эффективнее передаются при помощи протокола пакетной коммутации (см. GPRS).
Вопрос 44 Центральный процессор (микропроцессор, центральное процессорное устройство, CPU, разг. – проц, камень, кристалл и др.) – основная составная часть любого компьютера, его мозг и сердце. Именно это устройство осуществляет обработку всей информации, выполняет команды пользователя и руководит другими устройствами.
Вопрос 46 Информация в персональном компьютере (ПК) представляется в двоичном формате (системе счисления) в виде единиц и нулей. Минимальной единицей информации является бит. Группа из восьми бит представляет собой байт. Каждый байт в памяти компьютера имеет уникальный адрес, начиная с нуля. Таким образом, байт является минимальной адресуемой единицей памяти.
При определении информационной емкости современных ПК байт как единица информации используется редко. Чаше используются его производные - Кбайт (1 Кбайт = 1024 байт). Мбайт (1Мбайт = 1024 Кбайт) и т.д.
Сочетанием двоичных цифр (битов) можно представить любое значение. Но соглашению биты в байте пронумерованы от 0 до 7 справа налево. Двоичная система счислении, как и привычная, для нас десятичная, является позиционной, и значение двоичною числа определяется относительной позицией каждого бита и наличием единичных битов. Для того, чтобы «прочитать» число, записанное в какой-либо позиционной системе счисления (перевести его в десятичное), можно воспользоваться следующей формулой:
где Р - основание системы счисления (количество цифр алфавита), аппозиция цифры в числе справа налево, начиная с 0.
Например, набор битов 01000001 представляет число 65
Двоичная арифметика
Так как ПК выполняет арифметические операции только в двоичном формате, полезно иметь представление о двоичной арифметике. Если быть более точным, то из всех простейших арифметических операций компьютер может выполнять только одну - сложение. Остальные операции выполняются через сложение: вычитание производится через сложение с отрицательным числом, умножение - через многократное суммирование, деление - через многократное вычитание.
Рассмотрим, как в ПК производится суммирование и вычитание двоичных чисел.
Двоичный алфавит состоит из цифр 0 и 1, а правила суммирования следующие:
Здесь необходимо обратить внимание на перенос единичного бита в последних двух случаях.
Например, при сложении чисел 01000001 и 00101010 (65 и 42) получим следующий результат.
Двоичная Десятичная
Представленные выше числа являются положительными, что показывает наличие нуля в самом левом (старшем) разряде. Отрицательные двоичные числа содержат единичный бит в старшем разряде и выражаются двоичным дополнением. Для получения двоичного дополнения необходимо инвертировать все биты исходного числа и к результату прибавить 1.
Например, для получения двоичного дополнения числа 65 (01000001) необходимо сделать инверсию всех битов (10111110) и прибавить единицу. Полученный набор битов (10111111) представляет число-65.
Для того, чтобы «прочитать» отрицательное двоичное число, необходимо определить его абсолютное значение и приписать знак «минус». При получении модуля отрицательного числа необходимо повторить операции - инвертировать все биты и прибавить 1.
Доказать правильность приведенного выше можно простым сложением: при суммировании противоположных чисел мы должны получить ноль. В нашем примере
Все восемь бит имеют нулевое значение. Перенос единичного бита потерян. Такой перенос является корректным, так как был перенос единицы в знаковый (старшин) бит и из него. Если же при двоичном суммировании был перенос только в знаковый разряд, либо только га знакового, то фиксируется ошибка сложения.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Периферийное устройство (ПУ) - устройство, входящее в состав внешнего оборудования микро-ЭВМ, обеспечивающее ввод/вывод данных, организацию промежуточного и длительного хранения данных.
Можно выделить следующие основные функциональные классы периферийных устройств.
- ПУ, предназначенные для связи с пользователем. К ним относят различные устройства ввода ( клавиатуры , сканеры , а также манипуляторы - мыши , трекболы и джойстики), устройства вывода ( мониторы , индикаторы, принтеры , графопостроители и т.п.) и интерактивные устройства (терминалы, ЖК-планшеты с сенсорным вводом и др.)
- Устройства массовой памяти ( винчестеры 1 НЖМД - накопитель на жестком магнитном диске. , дисководы 2 НГМД - накопитель на гибком магнитном диске. , стримеры 3 НМЛ - накопитель на магнитной ленте., накопители на оптических дисках, флэш-память 4 EEPROM - перепрограммируемое постоянное запоминающее устройство с электрическим стиранием. и др.)
- Устройства связи с объектом управления (АЦП, ЦАП, датчики, цифровые регуляторы, реле и т.д.)
- Средства передачи данных на большие расстояния (средства телекоммуникации) (модемы, сетевые адаптеры).
Устройства ввода
Клавиатура
Основным устройством ввода информации в компьютер является клавиатура , которая представляет собой совокупность механических датчиков, воспринимающих давление на клавиши и замыкающих тем или иным образом определенную электрическую цепь. В настоящее время распространены два типа клавиатур : с механическими или с мембранными переключателями. В первом случае датчик представляет собой традиционный механизм с контактами из специального сплава. Во втором случае переключатель состоит из двух мембран: верхней - активной, нижней - пассивной, разделенных третьей мембраной-прокладкой.
Как правило, внутри корпуса любой клавиатуры , кроме датчиков клавиш, расположены электронные схемы дешифрации и микроконтроллер. Обмен информации между клавиатурой и системной платой осуществляется по специальному последовательному интерфейсу 11-битовыми блоками. Основной принцип работы клавиатуры заключается в сканировании переключателей клавиш. Замыканию и размыканию любого из этих переключателей соответствует уникальный цифровой код - скан-код. В случае, когда клавиша отпускается, клавиатура IBM PC AT предваряет скан-код кодом F016. Когда контроллер клавиатуры фиксирует нажатие или отпускание клавиши, он инициирует аппаратное прерывание IRQ1. Если в клавиатурах компьютеров типа IBM PC XT передача данных может осуществляться только в одном направлении, то в клавиатурах типа IBM PC AT подобная связь возможна уже в двух направлениях, т. е. клавиатура может принимать специальные команды (установки параметров задержки автоповтора и частоты автоповтора). Подключение клавиатуры к системной плате выполняется посредством электрически идентичных разъемов 5 DIN 5 DIN (Deutsche Idustrie Norm) - Немецкий промышленный стандарт. или 6 mini- DIN , последний впервые был представлен в IBM PS/2, откуда и унаследовал свое "жаргонное" название. Для обеспечения двунаправленного обмена используется единственная линия данных, требующая, однако, выводов с открытым коллектором.
Первую компьютерную мышь создал Дуглас Энджельбарт в 1963 году в Стэндфордском исследовательском центре. Распространение мыши получили благодаря росту популярности программных систем с графическим интерфейсом пользователя. Мышь делает удобным манипулирование такими широко распространенными в графических пакетах объектами, как окна, меню, кнопки, пиктограммы и т.д.
Первая мышь при движении вращала два колеса, которые были связаны с осями переменных резисторов. Перемещение курсора такой мыши вызывалось изменением сопротивления переменных резисторов. Большинство современных мышей имеют оптико-механическую конструкцию (рис. 16.1). С поверхностью, по которой перемещают мышь , соприкасается тяжелый обрезиненный шарик сравнительно большого диаметра. При перемещении мыши этот шарик может вращать прижатые к нему два перпендикулярных ролика. Ось вращения одного из роликов вертикальна, а другого - горизонтальна. На оси роликов установлены датчики, представляющие собой диски с прорезями, по разные стороны которых располагаются оптопары "светодиод- фотодиод ". Порядок, в котором освещаются фоточувствительные элементы одной оси, определяет направление перемещения мыши , а частота приходящих от них импульсов - скорость.
Другой популярной конструкцией мыши является полностью оптическая конструкция. С помощью светодиода и системы линз, фокусирующих его свет, под мышью подсвечивается участок поверхности. Отраженный от этой поверхности свет, в свою очередь, собирается другой линзой и попадает на приемный сенсор микросхемы процессора обработки изображений. Этот чип делает снимки поверхности под мышью с высокой частотой и обрабатывает их. На основании анализа череды последовательных снимков, представляющих собой квадратную матрицу из пикселей разной яркости, интегрированный DSP-процессор высчитывает результирующие показатели, свидетельствующие о направлении перемещения мыши вдоль осей Х и Y, и передает результаты своей работы на периферийный интерфейс. Основные характеристики, обеспечивающие надежность работы оптических мышей , определяются техническими параметрами применяемых сенсоров (табл. 16.1).
В 1987 году компания IBM выпустила серию персональных компьютеров PS/2, в котором был представлен выделенный последовательный интерфейс для подключения мыши с разъемом 6 mini- DIN . Одним из преимуществ новых портов по сравнению с последовательным было низкое напряжение питания - 5 В вместо 12 В, а также независимость от других устройств, в то время как последовательные мыши нередко мешали внутренним модемам, поскольку четыре COM-порта ПК делили всего два IRQ . Необходимо отметить также недостатки этого интерфейса. Наиболее существенным является более высокий риск вывода из строя порта при подключении или отключении мыши при работающем компьютере. Хотя последовательные порты мыши и клавиатуры в PS/2 имеют сходный электрический интерфейс и даже одинаковые разъемы, материнская плата не опознает мышь и клавиатуру , если их подключить не в "свой" порт, т.к. протоколы передачи данных отличаются, а, кроме того, линия данных в порту клавиатуры - двунаправленная. В спецификации Microsoft PC 97 предлагается единая цветовая маркировка этих портов: для клавиатуры - фиолетовая, для мыши - зеленая. Широкое распространение портов PS/2 произошло с внедрением в 1997 г. фирмой Intel стандарта ATX . А уже в 2002 году в спецификации Microsoft PC 2002 было предложено отказаться от этих портов в пользу универсального интерфейса USB.
Прочие устройства ввода - манипуляторы
Трекбол представляет собой "перевернутую" оптико-механическую мышь - в движение приводится не сам корпус устройства, а только его шар. Это позволяет существенно повысить точность управления курсором и, кроме того, экономить место, поэтому трекболы часто используют в ноутбуках.
Сенсорная панель ( touchpad или trackpad ) - это устройство ввода, применяемое в ноутбуках, служит для перемещения курсора в зависимости от движений пальца пользователя. Используется в качестве замены компьютерной мыши . Сенсорные панели различаются по размерам, но обычно их площадь не превосходит 50 см2. Работа сенсорной панели основана на измерении емкости пальца или измерении емкости между сенсорами. Емкостные сенсоры расположены вдоль вертикальной и горизонтальной осей панели, что позволяет определять положение пальца с нужной точностью. Поскольку работа устройства основана на измерении емкости, оно не будет работать, если водить по нему каким-либо непроводящим предметом, например, основанием карандаша. В случае использования проводящих предметов сенсорная панель будет работать только при достаточной площади соприкосновения, поэтому, например, работа с влажными пальцами весьма затруднена. Преимуществами сенсорных панелей являются:
- отсутствует необходимость в ровной поверхности, как для мыши ;
- расположение сенсорной панели, как правило, фиксировано относительно клавиатуры ;
- для перемещения курсора на весь экран достаточно лишь небольшого перемещения пальца;
- работа с ними не требует особого привыкания, как, например, в случае с трекболом.
Недостатком же сенсорных панелей является низкое разрешение, что затрудняет работу в графических редакторах и 3D-играх.
Джойстик является аналоговым координатным устройством ввода информации, выполняемым обычно в виде двух реостатных датчиков с питанием +5 В. Рукоятка джойстика связана с двумя переменными резисторами, изменяющими свое сопротивление при ее перемещении. Один резистор определяет перемещение по координате Х, другой - по Y. Джойстик обычно подключается к адаптеру игрового порта, расположенному на многофункциональной плате ввода-вывода (Multi I/O Card) или звуковой карте (в последнем случае разъем игрового порта совмещается с интерфейсом MIDI ). Очевидно, что основным элементом игрового адаптера является АЦП. Адаптер принимает до четырех цифровых сигналов типа "включено-выключено" (кнопки) и до четырех аналоговых сигналов, что позволяет подключать два 2-кнопочных джойстика.
Световое перо работает с помощью небольшого оптического детектора, находящегося на его кончике. По ходу сканирования экрана электронным лучом инициируется импульс оптического детектора, когда пучок достигает точки экрана, над которой находится перо. Время возникновения этого импульса относительно сигналов горизонтальной и вертикальной синхронизации позволяет определить позицию светового пера. По своей сути световое перо является расширением видеосистемы. Разъем для подключения светового пера был обязательным для видеоадаптеров CGA , встречался время от времени у видеоадаптеров EGA , но практически исчез с распространением VGA.
Сканер
Сканером называется устройство, которое позволяет вводить в компьютер образы изображений, представленных в виде текста, рисунков, слайдов, фотографий или другой графической информации. Сканеры можно классифицировать по следующим критериям:
- По степени прозрачности вводимого оригинала изображения:
- непрозрачные оригиналы (фотографии, рисунки, страницы книг и журналов), при этом изображение снимается в отраженном свете;
- прозрачные оригиналы (слайды, негативы, пленки), при этом обрабатывается свет, прошедший через оригинал.
- ручные сканеры - проблема ровного и равномерного перемещения сканирующей головки по соответствующему изображению (от чего зависит качество сканированного изображения) возлагается на пользователя;
- планшетные сканеры - сканирующая головка перемещается относительно бумаги с помощью шагового двигателя;
- рулонные сканеры - отдельные листы документов протягиваются через устройство так, что сканирующая головка остается на месте (неприменимы для сканирования книг и журналов);
- проекционные сканеры - вводимый документ кладется на поверхность сканирования изображением вверх, при этом блок сканирования также находится сверху, а перемещается только сканирующее устройство (возможно сканирование проекций трехмерных предметов).
- черно-белые (штриховые или полутоновые);
- цветные.
В черно-белом сканере изображение освещается белым светом, получаемым, как правило, от флуоресцентной лампы. Отраженный свет через редуцирующую линзу попадает на фоточувствительный элемент (ПЗС-линейка или ПЗС-матрица). Каждая строка сканирования изображения соответствует определенным значениям напряжения на ПЗС. Эти значения напряжения преобразуются в цифровую форму через АЦП (для полутоновых сканеров ) или через компаратор (для двухуровневых "штриховых" сканеров ).
Для сканирования цветных изображений существует несколько технологий. Например, в сканерах фирмы Microtek сканируемое изображение поочередно освещается красным, зеленым и синим цветом, так что страница сканируется за три прохода. Похожий подход используется в сканерах Epson и Sharp , однако там смена цвета происходит для каждой строки, что позволяет избежать проблем с "выравниванием" пикселей при разных проходах. В сканерах Hewlett Packard и Ricoh сканируемое изображение освещается источником белого света, а отраженный свет через редуцирующую линзу попадает на трехполосную ПЗС-линейку через систему специальных фильтров, разделяющих свет на три компоненты: красный, синий, зеленый.
Для связи с компьютером сканеры , как правило, используют один из универсальных периферийных интерфейсов: SCSI, IEEE 1284 или USB.
Для унифицирования прикладного программного интерфейса драйвера сканера (а также цифровых камер) в 1992 г. компаниями Aldus, Caere, Eastman Kodak, Hewlett Packard и Logitech была разработана спецификация TWAIN 6 Слово TWAIN было взято из "Баллады о Востоке и Западе" Р.Киплинга: ". and never the twain shall meet. " (и двое никогда не встретятся), отражая существовавшую в то время сложность взаимодействия компьютера и сканера . После частого написания названия спецификации большими буквами сложилось предубеждение, что это аббревиатура, и были предложены такие варианты: Technology Without An Interesting Name (технология без интересного имени) или Toolkit Without Any Important Name (средство без какого-либо важного имени). .
Компьютеру, как и человеку, необходимы свои «глаза и уши», с помощью которых он мог бы воспринимать информацию извне. В настоящее время имеются разнообразные устройства, выполняющие эти функции в составе компьютера. Они называются устройствами ввода , так как обеспечивают ввод в компьютер данных в различных формах: чисел, текстов, изображений, звуков.
Устройства ввода преобразуют эту информацию из формы, понятной человеку, в цифровую форму, воспринимаемую компьютером.
Современные компьютеры могут обрабатывать числовую, текстовую, графическую, звуковую и видеоинформацию .
Клавиатура — компьютерное устройство, которое располагается перед экраном дисплея и служит для набора текстов и управления компьютером с помощью клавиш, находящихся на клавиатуре.
Клавиатура позволяет вводить в компьютер числовую и текстовую информацию , а также различные команды и данные.
Микрофон используется для ввода звуковой информации, подключается к входу звуковой карты.
Сканер — устройство для перевода графической информации в цифровую.
Сканер используется для оптического ввода в компьютер и преобразования в компьютерную форму изображений (фотографий, рисунков, чертежей).
Сканеры используются и для бесклавиатурного ввода текста. Всякую информацию сканер воспринимает как графическую. Если это был текст, который в другом случае пришлось бы набирать вновь, то после работы сканера специальная программа распознавания текста, позволяющая выделить в считанном изображении отдельные символы и сопоставить с ними соответствующие коды символов, преобразовывает его в пригодный для обработки текст.
Веб-камера — малоразмерная цифровая видео- или фотокамера, способная в реальном времени фиксировать видеоизображения, предназначенные для дальнейшей передачи по компьютерной сети.
Цифровые камеры позволяют получать видеоизображение и фотоснимки в цифровом (компьютерном) формате. Позволяют вводить в компьютер графическую информацию.
Читайте также: