Перфузионная компьютерная томография что это такое
Острый ишемический инсульт – одна из ведущих причин заболеваемости, смертности и инвалидизации в России и в мире. Научным сообществом постоянно разрабатываются и совершенствуются алгоритмы ведения больных с острым инсультом [1,26], ключевую роль в которых играют методики диагностики заболевания, и в первую очередь – нейровизуализация. В настоящее время особое внимание уделяется технологиям нейровизуализации, которые позволяют получить не только «анатомическое» изображение структур головного мозга, но и данные об их функциональном состоянии. Это дает возможность определить индивидуальные механизмы развития инсульта и использовать наиболее эффективные для конкретного пациента подходы к лечению и вторичной профилактике заболевания.
Среди используемых в настоящее время в клинической практике методик особый интерес представляют инструменты, которые позволяют оценить мозговой кровоток. Известно, что именно локальное снижение церебральной перфузии приводит к гипоксии ткани мозга, которая становится причиной структурных и функциональных изменений, наблюдаемых при инсульте. Одной из наиболее перспективных методик изучения мозгового кровотока является перфузионная компьютерная томография (ПКТ).
ПКТ является «расширением» обычной, бесконтрастной рентгеновской компьютерной томографии, которое дает возможность изучения церебральной гемодинамики на капиллярном уровне. В этом плане она является естественным дополнением к КТ–ангиографии (КТА), позволяющей оценить состояние артерий шеи и крупных ветвей интракраниальных сосудов. Сущность метода заключается в количественном измерении мозгового кровотока путем оценки изменения рентгеновской плотности ткани во время прохождения внутривенно введенного контрастного вещества (КВ). Теоретические основы метода были описаны L. Axel в 1979 г., уже через 7 лет после появления первого аппарата КТ [6], однако использование ПКТ в клинической практике стало возможным лишь в 1990–е гг. с внедрением мультиспиральных КТ–сканеров с высокой скоростью получения изображений и усовершенствованием программного обеспечения. В настоящее время протокол ПКТ является стандартным для большинства современных аппаратов ведущих производителей визуализационной техники, а возможности новой методики продолжают интенсивно изучаться.
При ПКТ прохождение КВ по церебральной сети капилляров отслеживается при помощи серии КТ–срезов [16,25]. На основании данных об изменении рентгеновской плотности элементов изображения по мере прохождения КВ строится график зависимости плотности (т.е. изменения концентрации КВ в каком–либо элементе среза) от времени (time–density curve, TDC). Такой график вначале строится для проекций крупной внутричерепной артерии и вены, что позволяет определить артериальную (поступление КВ с кровью) и венозную (выведение КВ из церебрального русла) математические функции. Последние являются основой для дальнейшего расчета перфузионных параметров (см. ниже) в каждом пикселе среза. Используется около 40 мл йодсодержащего КВ, которое вводится со скоростью 4–8 мл/с. Для полного выполнения протокола и последующей реконструкции изображений требуется от 7 до 15 мин. В связи с тем, что скорость сканирования большинства применяемых в клинической практике аппаратов КТ недостаточна для того, чтобы выполнить исследование всего головного мозга, при ПКТ, как правило, изучаются 4 среза толщиной от 0,5 до 0,8 мм. Сканирование обычно проводится на уровне глубинных структур мозга и базальных ганглиев с захватом супратенториальных участков, кровоснабжаемых передней, средней и задней мозговыми артериями. Если к моменту проведения ПКТ уже имеются сведения о локализации инфаркта (например, по данным других методов визуализации), то уровень срезов соответствующим образом корректируется. Эквивалентная доза облучения при ПКТ составляет 2,0–3,4 мв, что ненамного превышает дозу облучения при обычной КТ головы (1,5–2,5 мЗв) [13].
Любая методика изучения тканевого кровотока основывается на оценке изменения концентрации какого–либо маркера (красителя, радиофармпрепарата или контрастного вещества), введенного в сосудистое русло, с использованием различных математических моделей. Благодаря этому единому принципу, все методы исследования мозгового кровотока предоставляют информацию при помощи совокупности одних и тех же параметров:
• Церебральный объем крови (cerebral blood volume, CBV) – общий объем крови в выбранном участке мозговой ткани. Это понятие включает кровь как в капиллярах, так и в более крупных сосудах – артериях, артериолах, венулах и венах. Данный показатель измеряется в миллилитрах крови на 100 г мозгового вещества (мл/100 г);
• Церебральный кровоток (cerebral blood flow, CBF) – скорость прохождения определенного объема крови через заданный объем ткани мозга за единицу времени. CBF измеряется в миллилитрах крови на 100 г мозгового вещества в минуту (мл/100 г x мин.);
• Среднее время прохождения (mean transit time, MTT) – среднее время, за которое кровь проходит по сосудистому руслу выбранного участка мозговой ткани, измеряется в секундах (с).
Согласно принципу центрального объема, который является общим для всех методов оценки тканевой перфузии, эти параметры связаны соотношением
CBV = CBF x MTT
При проведении ПКТ церебральная перфузия оценивается по картам, построенным для каждого из параметров, а также по их абсолютным и относительным значениям в соответствующих областях головного мозга. Помимо CBF, CBV и МТТ, может также вычисляться время до достижения максимальной (пиковой) концентрации контрастного вещества (time to peak, TTP). Исследователь может выделить на срезе несколько областей интереса (ROI, region of interest), для которых рассчитываются средние значения показателей церебральной перфузии и строится график «время–плотность» (рис. 1).
Данные ПКТ были валидированы в исследованиях у животных [8,17,18] и хорошо коррелировали с другими методами оценки мозгового кровотока у людей (КТ с ксеноновым усилением, МР–перфузия, ПЭТ) [31,9,24,28].
В норме значения CBF находятся в пределах 50–80 мл/100 г x мин. Области мозга с большой энергетической потребностью (кора и подкорковые ганглии) имеют значения CBF в 2–3 раза большие, чем белое вещество (табл. 1).
Литература
1. Диагностическая нейрорадиология. – Под ред. В.Н. Корниенко, И.Н. Пронина. – М., 2006.
2. Инсульт: диагностика, лечение, профилактика. Под ред. З. А. Суслиной, М. А. Пирадова. М.: МЕДпресс–информ, 2008.
3. Корниенко В. Н., Пронин И. Н., Пьяных И. С., Фадеева Л. М. Исследование тканевой перфузии головного мозга методом компьютерной томографии // Медицинская визуализация. 2007, №2. С. 70–81.
4. Adams HP, del Zoppo G, Alberts MJ et al. Guidelines for the Early Management of Adults With Ischemic Stroke. Stroke, 2007;38:1655–1711
5. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 1981; 12; 723–725.
6. Axel L. Cerebral blood flow determination by rapidsequence computed tomography. Radiology 1980, 137:679–686.
7. Baron JC. Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis. 2001 ;11 Suppl 1:2–8.
8. Cenic A,Nabavi DG, Craen RA,Gelb AW,Lee TY. Dynamic CT measurement of cerebral blood flow: a validation study. Am J Neuroradiol 1999; 20:63–73.
9. Eastwood JD, Lev MH,Wintermark M et al. Correlation of early dynamic CT perfusion imaging with whole–brain MR diffusion and perfusion imaging in acute hemispheric stroke. Am J Neuroradiol 2003; 24:1869–1875.
10. Hacke W, Albers G, Al–Rawi Y et al. The Desmoteplase in Acute Stroke Trial (DIAS): A Phase II MRIBased 9–hour Window Acute Stroke Thrombolysis Trial with Intravenous Desmoteplase. Stroke, 2005; 36:66–73.
11. Heiss WD: Flow thresholds for functional and morphological damage of brain tissue. Stroke 1983; 14:329–31.
12. Heiss WD: Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 2000; 20:1276–93.
13. Hoeffner EG, Case I, Jain R et al. Cerebral Perfusion CT: Technique and Clinical Applications. Radiology 2004; 231:632–644.
14. Latchaw RE, Yonas H, Hunter GJ et al. Guidelines and Recommendations for Perfusion Imaging in Cerebral Ischemia: A Scientific Statement for Healthcare Professionals by the Writing Group on Perfusion Imaging, From the Council on Cardiovascular Radiology of the American Heart Association. Stroke. 2003;34:1084–1104.
15. Michel P, Reichhart M, Schindler C,Bogousslavsky J, Meuli R, Wintermark M. CT–perfusion guided intravenous thrombolysis for unknown onset of stroke symptoms : clinical results of a pilot study. International Journal of Stroke, 2008; Volume 3, Issue s1 (Abstracts of the 6th World Stroke Congress and Xth International Symposium on Thrombolysis and Acute Stroke Therapy, 24–27 September 2008 Vienna, Austria and 21–23 September 2008, Budapest, Hungary): p. 271.
16. Miles KA, Eastwood JD, Konig M (eds). Multidetector Computed Tomography in Cerebrovascular Disease. CT Perfusion Imaging. Informa UK, 2007.
17. Nabavi DG, Cenic A, Craen RA et al. CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology 1999; 213:141–149.
18. Nabavi DG, Cenic A, Dool J et al. Quantitative assessment of cerebral hemodynamics using CT: stability, accuracy, and precision studies in dogs. J Comput Assist Tomogr 1999;23:506–515.
19. Parsons MW, Barber PA, Chalk J et al. Diffusionand perfusion–weighted MRI response to thrombolysis in stroke.Ann Neurol, 2002; 51:28–37.
20. Parsons MW. Perfusion CT: is it clinically useful? International Journal of Stroke Vol 3, February 2008, 41–50.
21. Roccatagliata L, Lev MH,Mehta N,Koroshetz WJ,Gonzalez RG, Schaefer PW (2003) Estimating the size of ischemic regions on CT perfusion maps in acute stroke: is freehand visual segmentation sufficient? Proceedings of the 89th Scientific Assembly and Annual Meeting of the Radiological Society of North America. Chicago, Ill., p 1292.
22. Schaefer PW,Ozsunar Y,He J et al (2003) Assessing tissue viability with MR diffusion and perfusion imaging. Am J Neuroradiol 24:436–443.
23. Schlaug G, Benfield A, Baird AE et al. The ischemic penumbra: operationally defined by diffusion and perfusion MRI.Neurology, 1999; 53:1528–1537.
24. Schramm P, Schellinger PD,Klotz E et al. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion–weighted imaging and diffusion–weighted imaging in patients with acute stroke of less than 6 hours’ duration. Stroke 2004; 35(7):1652–1658.
25. Shetty SH, Lev MH. CT perfusion. In: Gonzalez RG, Hirsch JA, Koroshetz WJ et al (eds) Acute Ischemic Stroke. Imaging and Intervention. Springer–Verlag Berlin Heidelberg, 2006.
26. The European Stroke Organization (ESO) Executive Committee and the ESO Writing Committee. Guidelines for Management of Ischaemic Stroke and Transient Ischaemic Attack 2008.
27. Warach S (2001) New imaging strategies for patient selection for thrombolytic and neuroprotective therapies. Neurology 57:S48–S52.
28. Wintermark M, Reichhart M, Cuisenaire О et al. Comparison of admission perfusion computed tomography and qualitative diffusion– and perfusion–weighted magnetic resonance imaging in acute stroke patients. Stroke 2002; 33:2025–2031.
29. Wintermark M, Reichhart M, Thiran JP et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 2002; 51:417–432.
30. Wintermark M, Sesay M, Barbier E t al. Comparative Overview of Brain Perfusion Imaging Techniques. Stroke 2005; 36;83–99
31. Wintermark M, Thiran JP, Maeder P, Schnyder P, Meuli R. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. Am J Neuroradiol 2001; 22:905–914.
Уважаемый пользователь, приносим искренние извинения, но версия для слабовидящих временно недоступна по техническим причинам.
1.1. Настоящее Положение (далее – «Положение») принято в Обществе с ограниченной ответственностью «Медоблако» (далее – Оператор) и предназначено для определения основ деятельности Оператора по обеспечению сохранности и конфиденциальности персональных данных граждан в соответствии с требованиями действующего законодательства Российской Федерации, а также в целях регламентации порядка работы с персональными данными в Организации.
1.2. Положение разработано в соответствии с Уставом Оператора, Федеральным законом от 27.07.2006 № 152-ФЗ «О персональных данных», Федеральным законом от 21.11.2011 № 323-ФЗ «Об охране здоровья граждан в Российской Федерации», законодательными актами Российской Федерации.
1.3. Положение обязательно для соблюдения всеми работниками Оператора.
1.4. Положение вступает в действие с момента утверждения его приказом Генерального директора Оператора и действует до утверждения нового Положения.
1.5. Все изменения и дополнения к Положению должны быть утверждены приказом Генерального директора Оператора.
2.1. Персональные данные − любая информация, относящаяся к прямо или косвенно определенному или определяемому физическому лицу (субъекту персональных данных).
2.2. Обработка персональных данных − любое действие (операция) или совокупность действий (операций), совершаемых с использованием средств автоматизации или без использования таких средств с персональными данными, включая сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу (распространение, представление, доступ), обезличивание, блокирование, удаление, уничтожение персональных данных.
2.3. Автоматизированная обработка персональных данных − обработка персональных данных с помощью средств вычислительной техники.
2.4. Оператор персональных данных - лицо, самостоятельно или совместно с другими лицами организующее и (или) осуществляющее обработку персональных данных, а также определяющее цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными.
2.5. Представление персональных данных − действия, направленные на раскрытие персональных данных определенному лицу или определенному кругу лиц.
2.6. Распространение персональных данных – действия, направленные на раскрытие персональных данных неопределенному кругу лиц.
2.7. Уничтожение персональных данных − действия, в результате которых становится невозможным восстановить содержание персональных данных в информационной системе персональных данных, и (или) в результате которых уничтожаются материальные носители персональных данных.
2.8. Обезличивание персональных данных − действия, в результате которых становится невозможным без использования дополнительной информации определить принадлежность персональных данных конкретному субъекту персональных данных.
2.9. Субъекты персональных данных − работники Оператора, сотрудники и представители действующих и потенциальных контрагентов Оператора, действующие и потенциальные клиенты Оператора, представители (в силу закона и по доверенности) действующих и потенциальных клиентов Оператора.
3. ПРИНЦИПЫ, ЦЕЛИ И СПОСОБЫ ОБРАБОТКИ ПЕРСОНАЛЬНЫХ ДАННЫХ3.1. Оператор в своей деятельности обеспечивает соблюдение принципов обработки персональных данных, указанных в ст. 5 Федерального закона от 27.07.2006г. № 152-ФЗ «О персональных данных».
3.2. Оператор осуществляет сбор и дальнейшую обработку персональных данных в следующих целях:
- ведение кадрового, бухгалтерского и налогового учета;
- фактическое осуществление предусмотренных учредительным документом Оператора видов деятельности, внешний и внутренний контроль бизнес-процессов;
- взаимодействие с контрагентами, ведение договорной работы в рамках возникновения, изменения и прекращения правоотношений между Оператором и третьими лицами, а также оформление доверенностей на представление интересов Оператора;
- рассмотрение и учет поступающих обращений любого характера, осуществление информационного обслуживания клиентов;
- осуществление дистанционного взаимодействия Оператора с клиентами и иными лицами в рамках сервисно-информационного и иного обслуживания путем использования телефонной связи, электронной почты;
- организация и осуществление комплекса мероприятий, направленных на поддержание и (или) восстановление здоровья клиентов и включающих в себя предоставление медицинских услуг;
- организация и осуществление Оператором внутреннего контроля качества медицинской помощи;
- осуществление дистанционного взаимодействия Оператора с клиентами и иными лицами посредством сайта Оператора в сети «Интернет».
3.3. Обработка персональных данных Оператором включает в себя сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу (распространение, предоставление, доступ), обезличивание, блокирование, удаление, уничтожение персональных данных.
3.4. Оператором осуществляется обработка персональных данных с использованием средств автоматизации и без использования средств автоматизации.
3.5. Оператором установлены следующие условия прекращения обработки персональных данных:
- достижение целей обработки персональных данных и максимальных сроков хранения персональных данных, установленных законодательством Российской Федерации;
- утрата необходимости в достижении целей обработки персональных данных;
- представление субъектом персональных данных или его законным представителем (представителем по доверенности) документально подтвержденных сведений о том, что персональные данные являются незаконно полученными или не являются необходимыми для заявленной цели обработки;
- невозможность обеспечения правомерности обработки персональных данных;
- отзыв субъектом персональных данных согласия на обработку персональных данных, если сохранение персональных данных более не требуется для целей обработки персональных данных;
- истечение сроков исковой давности для правоотношений, в рамках которых осуществляется либо осуществлялась обработка персональных данных.
3.6. Оператором осуществляется обработка биометрических персональных данных с согласия субъектов персональных данных.
3.7. Оператором осуществляется обработка специальных категорий персональных данных о состоянии здоровья в соответствии с требованиями законодательства об охране здоровья граждан в Российской Федерации.
3.8. С письменного согласия сотрудников Оператора, сотрудников партнеров Оператора и клиентов их персональные данные могут быть размещены на сайте Оператора.
3.9. Меры по надлежащей организации обработки и обеспечению безопасности персональных данных:
3.9.1. Обеспечение безопасности персональных данных у Оператора достигается, в частности, следующими способами:
- назначением ответственного лица за организацию обработки персональных данных, права и обязанности которого определяются локальными актами Оператора;
- осуществлением внутреннего контроля и/или аудита соответствия обработки персональных данных Федеральному закону от 27.07.2006 № 152-ФЗ «О персональных данных» и принятыми в соответствии с ним нормативными правовыми актами, требованиями к защите персональных данных, локальными актами Оператора;
- ознакомлением сотрудников Оператора, непосредственно осуществляющих обработку персональных данных, с положениями законодательства Российской Федерации о персональных данных, в том числе с требованиями к защите персональных данных, локальными актами в отношении обработки персональных данных и/или обучением указанных сотрудников;
- определением угроз безопасности персональных данных при их обработке в информационных системах персональных данных;
- применением организационных и технических мер по обеспечению безопасности персональных данных при их обработке в информационных системах персональных данных, необходимых для выполнения требований к защите персональных данных;
- оценкой эффективности принимаемых мер по обеспечению безопасности персональных данных до ввода в эксплуатацию информационной системы персональных данных;
- учетом машинных (материальных) носителей персональных данных;
- выявлением фактов несанкционированного доступа к персональным данным и принятием соответствующих мер;
- восстановлением персональных данных, модифицированных или уничтоженных вследствие несанкционированного доступа к ним;
- контролем над соблюдением требований в сфере обеспечения безопасности персональных данных и к уровням защищенности информационных систем персональных данных.
3.10. В случаях, когда для достижения целей обработки персональных данных Оператор передает персональные данные третьим лицам, такая передача осуществляется на основании заключенного договора, содержащего положения о соблюдении конфиденциальности и обеспечении безопасности персональных данных либо договора поручения обработки персональных данных.
3.11. Субъект персональных данных имеет право на получение сведений об обработке его персональных данных Оператором, в том числе содержащих:
- сведения об ООО «Медоблако» как операторе, обрабатывающем персональные данные (наименование и место нахождения);
- подтверждение факта обработки персональных данных Оператором, указание правовых оснований и установленных целей обработки персональных данных;
- способы обработки персональных данных, применяемые у Оператора;
- перечень обрабатываемых персональных данных, относящихся к конкретному субъекту персональных данных и источник их получения;
- сроки обработки персональных данных, в том числе сроки их хранения;
- порядок реализации прав субъектов персональных данных, предусмотренных Федеральным законом от 27.07.2006 № 152-ФЗ «О персональных данных»;
- иные сведения, предусмотренные Федеральным законом от 27.07.2006 № 152-ФЗ «О персональных данных», к которым могут относиться соблюдение условий и принципов обработки персональных данных, сведения о выполнении требований по обеспечению безопасности персональных данных, возможные ограничения на доступ субъектов к своим персональным данным.
3.12. Субъект персональных данных вправе требовать уточнения этих персональных данных, их блокирования или уничтожения в случае, если они являются неполными, устаревшими, неточными, незаконно полученными или не могут быть признаны необходимыми для заявленной цели обработки, а также принимать предусмотренные законом меры по защите своих прав.
3.13. Право субъекта персональных данных на доступ к его персональным данным может быть ограничено в соответствии с федеральными законами, в том числе, если доступ субъекта персональных данных к его персональным данным нарушает права и законные интересы третьих лиц.
4. СБОР ПЕРСОНАЛЬНЫХ ДАННЫХ С ИСПОЛЬЗОВАНИЕМ САЙТА ОПЕРАТОРА4.1. Сайт Оператора использует фрагменты данных, отправленных веб-сервером и хранимых на компьютере пользователя - «cookie» и собирает следующие сведения о посетителях в целях улучшения работы сайта: IP-адрес посетителя, дата и время посещения сайта, типы браузера и операционной системы, тип и модель мобильного устройства.
4.2. При использовании электронных сервисов и предоставлении персональных данных через сайт Оператора информация пользователя не будет использована Оператором для каких-либо иных целей, кроме как в целях улучшения работы сайта и оказания услуг субъектам персональных данных.
4.3. Используя сайт Оператора и/или предоставляя Оператору свои персональные данные, пользователь сайта выражает согласие на обработку своих персональных данных на условиях, предусмотренных Положением.
В случае несогласия с Положением пользователь сайта Оператора не должен использовать данный сайт в полном объеме, для чего пользователю необходимо установить соответствующие настройки приватности в своём браузере, препятствующие сбору персональных данных.
5. ЛИЦО, ОТВЕТСТВЕННОЕ ЗА ОРГАНИЗАЦИЮ ОБРАБОТКИ ПЕРСОНАЛЬНЫХ ДАННЫХ5.1. Права, обязанности и ответственность лица, ответственного за обработку персональных данных, установлены Федеральным законом от 27.07.2006 № 152-ФЗ «О персональных данных», Положением «О персональных данных в ООО «Медоблако» и иными локальными актами Оператора в сфере обработки и защиты персональных данных.
5.2. Назначение лица, ответственного за организацию обработки персональных данных и освобождение от указанных обязанностей осуществляется Генеральным директором Оператора. При назначении лица, ответственного за организацию обработки персональных данных, учитываются полномочия, компетенции и личные качества должностного лица, призванные позволить ему надлежащим образом и в полном объеме реализовать свои права и выполнять обязанности.
5.3. Лицо, ответственное за организацию обработки персональных данных:
- организует осуществление внутреннего контроля над соблюдением Оператором и его работниками законодательства Российской Федерации о персональных данных, в том числе требований к защите персональных данных;
- доводит до сведения работников Оператора положения законодательства Российской Федерации о персональных данных, требований к защите персональных данных;
- осуществляет контроль над приемом и обработкой обращений и запросов субъектов персональных данных или их представителей.
6.1. Лица, виновные в нарушении норм, регулирующих обработку и защиту персональных данных, несут дисциплинарную, гражданско-правовую, административную и уголовную ответственность в порядке, установленном федеральными, региональными и муниципальными законами, локальными актами Оператора и договорами, регламентирующими правоотношения с третьими лицами.
1.1. Настоящим Клиент свободно, своей волей и в своем интересе дает Обществу с ограниченной ответственностью «Медоблако» (адрес: 109518, Москва, ул. Грайвороновская, д.23. ОГРН 1137746438917), а также организациям, привлеченным Обществом с ограниченной ответственностью «Медоблако» в целях оказания услуг в соответствии с положениями Договора, согласие на обработку своих персональных данных, в соответствии со ст. 9 Федерального закона от 27.07.2006 N 152-ФЗ «О персональных данных».
1.2. Настоящее согласие является конкретным, информированным и сознательным.
1.3. Целью обработки персональных данных является исполнение Договора. Персональные данные могут быть использованы с иными целями, если это является обязательным в соответствии с положениями законодательства Российской Федерации.
1.4. Перечень персональных данных, на обработку которых дается согласие: фамилия, имя, отчество, пол, данные документа удостоверяющего личность, день, месяц и год и место рождения, гражданство, адрес электронной почты, адрес регистрации, адрес фактического проживания, номер телефона, изображение гражданина, запись его голоса, информация о факте обращения за медицинской помощью, состоянии его здоровья, диагнозе его заболевания и иные сведения, полученные при его обследовании и лечении, а также любые иные данные, которые могут быть получены в ходе исполнения Договора.
1.5. Перечень действий с персональными данными, на совершение которых дается согласие: все действия с персональными данными необходимые для выполнения условий Договора, включая сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу (распространение, предоставление, доступ), обезличивание, блокирование, удаление, уничтожение персональных данных.
1.6. Для целей исполнения Договора Клиент дает согласие на передачу Организации, оказывающей услуги в соответствии с Офертой и Обществу с ограниченной ответственностью «Медоблако», (адрес: 109518, Москва, ул. Грайвороновская, д.23. ОГРН 1137746438917) информации о нем, составляющей врачебную тайну (информация о факте обращения Клиента за медицинской помощью, состоянии его здоровья, диагнозе его заболевания и иные сведения, полученные при его обследовании и лечении).
1.7. Настоящее согласие действует до дня его отзыва в письменной форме.
1.1. Настоящим законный представитель Клиента свободно, своей волей и в своем интересе, действуя в интересах несовершеннолетнего лица, дает Обществу с ограниченной ответственностью «Медоблако» (адрес: 109518, Москва, ул. Грайвороновская, д.23. ОГРН 1137746438917), а также организациям, привлеченным Обществом с ограниченной ответственностью «Медоблако» в целях оказания услуг в соответствии с положениями Договора, согласие на обработку персональных данных Клиента, в соответствии со ст. 9 Федерального закона от 27.07.2006 N 152-ФЗ «О персональных данных».
1.2. Настоящее согласие является конкретным, информированным и сознательным.
1.3. Целью обработки персональных данных является исполнение Договора. Персональные данные могут быть использованы с иными целями, если это является обязательным в соответствии с положениями законодательства Российской Федерации.
1.4. Перечень персональных данных, на обработку которых дается согласие: фамилия, имя, отчество, пол, данные документа удостоверяющего личность, день, месяц и год и место рождения, гражданство, адрес электронной почты, адрес регистрации, адрес фактического проживания, номер телефона, изображение гражданина, запись его голоса, информация о факте обращения за медицинской помощью, состоянии его здоровья, диагнозе его заболевания и иные сведения, полученные при его обследовании и лечении, а также любые иные данные, которые могут быть получены в ходе исполнения Договора.
1.5. Перечень действий с персональными данными, на совершение которых дается согласие: все действия с персональными данными необходимые для выполнения условий Договора, включая сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу (распространение, предоставление, доступ), обезличивание, блокирование, удаление, уничтожение персональных данных.
1.6. Для целей исполнения Договора законный представитель Клиента дает согласие на передачу Организации, оказывающей услуги в соответствии с Офертой и Обществу с ограниченной ответственностью «Медоблако», (адрес: 109518, Москва, ул. Грайвороновская, д.23. ОГРН 1137746438917) информации о нем, составляющей врачебную тайну (информация о факте обращения Клиента за медицинской помощью, состоянии его здоровья, диагнозе его заболевания и иные сведения, полученные при его обследовании и лечении).
Цереброваскулярные заболевания относятся к одной из самых распространенных болезней человека. Данная проблема актуальна не только для пожилых людей, но и для лиц молодого возраста: по данным профилактических осмотров населения, они выявляются в 20–30% случаев даже у лиц трудоспособного возраста.
Ишемический инсульт – одна из ведущих причин заболеваемости, летальности и инвалидизации в России и в мире. В России данная проблема особенно актуальна в связи с тем, что смертность от инсульта является самой высокой в мире [20]. Не менее трети инсультов приводят к летальному исходу в остром периоде. В течение последующего года летальность увеличивается еще на 10-15%.
Цереброваскулярные заболевания разделяются на острые (инсульты и преходящие нарушения мозгового кровообращения – транзиторные ишемические атаки), а также хронические формы нарушения мозгового кровообращения (дисциркуляторная энцефалопатия). Это наиболее часто встречающаяся цереброваскулярная патология, приводящая к инвалидизации с нарастанием когнитивных нарушений вплоть до деменции.
Одной из главных причин возникновения ишемических нарушений мозгового кровообращения являются стенозы брахиоцефальных артерий. Атеросклероз является причиной 2/3 поражений брахиоцефальных артерий, причем у мужчин данная патология встречается до 4 раз чаще, чем у женщин, наибольшая частота атеросклеротического поражения приходится на возрастной промежуток от 50 до 60 лет. Атеросклеротическое поражение, как правило, носит сегментарный характер и локализуется наиболее часто в области луковицы (синуса) внутренней сонной артерии [6].
В развитии острых нарушений мозгового кровообращения наряду со степенью сужения просвета сосуда, важное значение имеют структурные особенности бляшки, определяющие степень ее нестабильности. Атеросклеротическая бляшка не является стабильной структурой - под воздействием внешних и внутренних факторов в ней происходит ряд последовательных изменений, вследствие процесса атероматоза, некроза, неоангиогенеза и мелких внутритканевых кровоизлияний, которые впоследствии могут привести к отрыву фрагментов бляшки и стать причиной эмболии.
В настоящее время гемодинамически и патогенетически значимым в отношении развития мозговой сосудистой недостаточности считается стеноз от 70% и более внутренней сонной артерии. При этом могут появляться количественные и качественные изменения кровотока, возникает состояние неустойчивого потока, турбулентное движение крови, уменьшается объемный кровоток по сосуду, что приводит к увеличению риска развития инсульта [19].
Патофизиология развития ишемии головного мозга
Составляя всего 2% веса тела, головной мозг потребляет 15% минутного объема кровотока, при этом потребление мозгом кислорода составляет 3-3,5л на 100 г ткани, что соответствует 20% от всего кислорода, потребляемого организмом.
Общее количество потребляемой головным мозгом человека крови составляет от 600 до 1200 мл/мин. Особенности распределения крови в ткани головного мозга тесно связаны с функциональной активностью и метаболизмом его отделов. Так в кортикальных отделах полушарий головного мозга плотность капилляров в 3 -5 раза выше, чем в белом веществе [13]. Это связано с тем, что на эти отделы головного мозга ложится максимальная физиологическая нагрузка, связанная с более высоким уровнем метаболизма, а соответственно и более интенсивным кровообращением. Согласно современным исследованиям, кровоток в сером веществе головного мозга в номе составляет 50-70 мл/100 г ткани в мин., а в белом веществе 20-25 мл/100 г ткани в мин., поддерживаясь ауторегуляторными механизмами.
Основной механизм повреждения мозговой ткани при инфаркте мозга – это всегда снижение или полное прекращение поступления крови по сосуду, питающему участок вещества мозга, наиболее часто в результате тромбоза или эмболии [1, 2, 4, 5, 12].
Экспериментально установлен [Wade S, 2004, Woodruff M, 2011] алгоритм метаболических реакций ткани мозга на снижение мозгового кровотока (Рис. 1). При снижении уровня кровотока до 70-80% (менее 50-55 мл на 100 г ткани мозга в 1 мин) возникает первая реакция в виде снижения или отключения специфических функций нейрона, вся жизнедеятельность клетки направлена на поддержание собственного гомеостаза, таким образом может формироваться неврологический дефицит [21, 23].
Дальнейшее снижение кровотока до 50% от нормальной величины (до 35 мл/100 г в 1 мин) сопровождается нарушением функции мембраны, резким торможением диффузии, активацией анаэробного гликолиза, увеличением концентрации лактата, развитием лактат-ацидоза [8, 11]. Данный этап повреждения клеток может быть диагностирован с помощью диффузионной МРТ головного мозга.
Нарастающая ишемия (снижение кровотока до 20 мл/100 г в 1 мин) приводит к снижению синтеза аденозинтрифосфата (AТФ), формированию энергетической недостаточности и как следствие - к гидрофильному отеку и некрозу клеток [9]. Признаки отека головного мозга могут быть выявлены с помощью МСКТ головного мозга.
Длительность перечисленных этапов алгоритма реакций ткани мозга на ишемию взаимозависима. Чем длительнее период умеренного снижения мозгового кровотока и сопровождающей его "мягкой" ишемии, тем короче период тяжелой ишемии.
Механизмы компенсации
Компенсация снижения кровотока осуществляется благодаря коллатеральному кровотоку и путем ауторегуляции мозгового кровотока. В норме уровень мозгового кровотока постоянен и не зависит от артериального давления, пока оно находится и в интервале между 60 и 160 мм рт. ст. Способность поддерживать постоянство мозгового кровотока обеспечивается феноменом ауторегуляции [14].
Регуляция мозгового кровотока осуществляется с изменением цереброваскулярной резистивности, которая зависит от диаметра внутримозговых капилляров. При падении перфузионного давления мозговые капилляры расширяются, а при его увеличении сужаются, поддерживая мозговой кровоток на постоянном уровне [3].
Церебральное коллатеральное кровообращение относится к вспомогательной сосудистой сети, которая стабилизирует мозговую гемодинамику в случае нарушения кровообращения в основных артериальных сосудах.
Процесс вовлечения коллатералей зависит от калибра и степени расширения магистральных артерий, которые могут быстро компенсировать уменьшающийся мозговой кровоток и адекватности вторичных путей поступления крови – коллатеральных сосудов. Вначале коллатерали обеспечивают немедленное поступление крови в ишемизированные участки за счет уже существующих анастомозов. Затем вовлекаются такие коллатерали, которые хоть уже анатомически существуют, но требуют времени для раскрытия и увеличения своих возможностей. Скорее всего, открытие коллатералей зависит от гемодинамических, метаболических и нейрорегуляторных факторов [22].
Несмотря на наличие множества специфических патофизиологические факторов, приводящих к развитию коллатералей, уменьшающееся артериальное давление в нижележащих сосудах считается критической переменной [14]. Локальная ишемия мозговой ткани приводит к секреции пептидов, стимулирующих процессы ангиогенеза с возможностью образования коллатералей, хотя эти сосуды скорее служат для выведения продуктов некроза, нежели для поддержания уровня мозгового кровотока. Дальнейшие клинические исследования подчеркивают скорость развития ишемии в качестве показателя, от которого зависит развитие коллатерального кровообращения: чем длительнее время, тем лучше и эффективнее развитие коллатералей [15].
Перфузионная компьютерная томография
Изучение физиологии и метаболических потребностей ткани головного мозга в норме и нормальных показателей мозгового кровотока ведется с середины XX века. Появление компьютерной томографии (КТ) и её развитие во второй половине XX века произвело революцию в диагностике острых нарушений мозгового кровообращения. Теоретическое обоснование возможности проведения и методика перфузионной компьютерной томографии (ПКТ) впервые были описаны в работах L.Axel в 1980 [7]. Однако использование ПКТ в клинической практике стало возможным только в 1990-е годы, и было связано с бурным развитием диагностической техники - появлением мультиспиральных компьютерных томографов с высокой скоростью получения изображения и усовершенствованным программным обеспечением.
Совершенствование технологий сканирования и обработки информации способствовало широкому распространению методики ПКТ - она стала неотьемлемой в неотложной медицинской практике, позволяя визуализировать ядро инсульта и зону окружающей его ишемической "полутени" (англ. penumbra), и оценивать динамику течения ишемического инсульта на фоне лечения.
Методы оценки тканевой перфузии головного мозга на основе КТ используют форму и временные характеристики профиля контрастирования в питающих артериях, дренирующих венах и в тканях мозга до, во время и после внутривенного введения болюса контрастного вещества. Для получения подобных временных зависимостей одновременно с введением контрастного препарата проводят серию последовательных КТ-сканирований на заданных уровнях. Существует целый ряд методов анализа временных зависимостей концентрации контрастного вещества для получения количественной оценок тканевой гемодинамики, которые зависят от принятой модели кинетики контрастного вещества.
Основными показателями для оценки мозгового кровотока являются:
- Сerebral blood volume (CBV, объем мозгового кровотока) – общий объем крови в выбранном участке мозговой ткани. Это понятие включает кровь как в капиллярах, так и в более крупных сосудах – артериях, артериолах, венулах и венах. Данный показатель измеряется в миллилитрах крови на 100 г мозгового вещества (мл/100 г);
- Сerebral blood flow (CBF, объемная скорость кровотока) – скорость прохождения определенного объема крови через заданный объем ткани мозга за единицу времени. CBF измеряется в миллилитрах крови на 100 г мозгового вещества в минуту (мл/100 г x мин.);
- Mean transit time (MTT, среднее время циркуляции) – среднее время, за которое кровь проходит по сосудистому руслу выбранного участка мозговой ткани, измеряется в секундах (с).
- Impulse residual function time (IRF T0) - время поступления контрастного препарата в указанную точку ткани мозга, обозначает начало контрастирования ткани мозга относительно плотности артерии (с.)
Согласно принципу центрального объема, который является общим для всех методов оценки тканевой перфузии, эти параметры связаны соотношением CBV = CBF x MTT.
При проведении ПКТ церебральная перфузия оценивается по картам, построенным для каждого из параметров (Рис. 2), а также по их абсолютным и относительным значениям в соответствующих областях головного мозга. Помимо CBF, CBV, МТТ и IRF T0, может также вычисляться время до достижения максимальной (пиковой) концентрации контрастного вещества (time to peak, TTP). Исследователь может выделить на срезе несколько областей интереса (ROI, region of interest), для которых рассчитываются средние значения показателей церебральной перфузии и строится график «время–плотность».
В настоящее время исследователи по-разному подходят к вопросу выделения областей интереса. Однако, учитывая патогенез острых и хронических нарушений мозгового кровообращения, представляется возможным применять различные методики для решения вопроса об адекватности кровообращения. Так, при ишемических инсультах наибольшее значение имеет оценка кровотока в корковых отделах пораженной области (что может отражать существующую клиническую картину), при развитии хронических нарушений мозгового кровообращения в наибольшей степени поражаются подкорковые структуры.
Таким образом, ПКТ головного мозга должна применяться у пациентов с острыми формами нарушения мозгового кровообращения для ранней диагностики инсульта. Снижение показателей скорости мозгового кровотока у пациентов с односторонним стенозом внутренней сонной артерии должно рассматриваться как дополнительный критерий необходимости хирургического лечения.
Список литературы
- Болезни нервной системы: Руководство для врачей: в 2-х т. – Т.1. Под ред. Яхно Н.Н., Штульмана Д.Р. – 3-е изд., перераб и доп. – М.: Медицина, 2003. – 744 с.
- Верещагин Н.В., Ганнушкина И.В., Суслина З.А, Болдырев А.А., Пирадов М.А., Танащян М.М. с соавт., «Очерки ангионеврологии», М., 2005 г
- Котов C.B., Исакова Е.В., Рябцева A.A. и др. Комплексная терапия хронической ишемии мозга /. Под ред. В.Я. Неретина. - М., 2001. - 532с.
- Скворцова В.И., Крылова В.В. Геморрагический инсульт: практическое руководство.– М. – ГЕОТАР-Медиа, 2005. – 160с.
- Скоромец А.А., Скоромец А.П., Скоромец Т.А. Нервные болезни. М.: Медпресс-информ, 2005. – 544 с.
- Augoustides G.T. John Advances in the Management of Carotid Artery Disease: Focus on Recent Evidence and Guidelines - Journal of Cardiothoracic and Vascular Anesthesia, 2012, Volume 26, Issue 1 , p. 166-171
- Axel L. Cerebral blood flow determination by rapid sequence Computed Tomography: a theoretical analysis. Radiology, 1980, 137, p. 679-686
- Brouns, R & De Deyn, PP. The complexity of neurobiological processes in acute ischemic stroke. Clinical Neurology & Neurosurgery, 2009, 111 (6), p. 483-495
- Colbourne F, Sutherland GR & Auer RN. Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ishemia - Journal of Neuroscience, 1999, 19(11), p. 4200-4210
- Fisher M, Paganini-Hill A, Martin A, et al. Carotid plaque pathology: thrombosis, ulceration, and stroke pathogenesis. Stroke, 2005; 36, p. 253.
- Forder, JP & Tymianski, M. Postsynaptic mechanisms of excitotoxicity: involvement of postsynaptic density proteins, radicals, and oxidant molecules. Neuroscience, 2009, 158 (1), p. 293-300
- Hankey J. Your Questions Answered. Churchill livingstone. Elsever limited, 2002
- Heiss W.D. Ischemic penumbra: evidence from functional imaging in man /J Cereb Blood Flow Metab.- 2000.-V.20:-P. 1276-1293
- Hobson W Robert, Mackey C William, Ascher Enrico, Murad M Hassan, Calligaro D Keith, Comerota J Anthony Management of atherosclerotic carotid artery disease: Clinical practice guidelines of the Society for Vascular Surgery – Journal of Vascular Surgery, 2008, 48 (2), p. 480-486.
- Manoonkitiwongsa PS, Jackson-Friedman C, McMillan PJ, Schultz RL, Lyden PD. Angiogenesis after stroke is correlated with increased numbers of macrophages: the clean-up hypothesis. J Cereb Blood Flow Metab 2001;21, p. 1223-1231
- Mayberg M.R., Wilson S.E., Yatsu F. et al. Carotid endarterectomy and prevention of cerebral ischemia in symptomatic carotid stenosis: Veterans Affairs Cooperative Studies Program 309 Trialist group / JAMA, 1991, V.266, P.3289-3294.
- Mathias K. Stent placement in supra-aortic artery disease. In: Stents: State of the Art and Future Developments. Liermann D.D. ed. Morin Heights: Polyscience Publication, Inc., 1995; P.87-92
- Papp Z., Patel M., Ashtari M. et al. Carotid artery stenosis, optimization of CT angiography with a combination of shaded surface display and source images / Am J Neuroradiol.- 1997.- V.18.- P.759 -763
- Takaya N, Yuan C, Chu B, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI-initial results. Stroke, 2006; 37:818.
- The European Stroke Organization (ESO) Executive Committee and the ESO Writing Committee. Guidelines for Management of Ischaemic Stroke and Transient Ischaemic Attack, 2008
- Wade S. Smith Pathophysiology of Focal Cerebral Ischemia: a Therapeutic Perspective – J Vasc Interv Radiol, 2004, 15; p.3-12
- Wei L, Erinjeri JP, Rovainen CM, Woolsey TA. Collateral growth and angiogenesis around cortical stroke. Stroke. 2001; 32: 2179-2184
- Woodruff M Trent, Thundyl John, Sung-Chun Tang, Sobey G Christopher Pathophysiology, treatment and animal and cellular models of human ischemic stroke – Molecular Neurodegeneration, 2011, 6; 11
Можаровская М.А., Бадюл М.И., Морозов С.П., Крыжановский С.М., Шмырев В.И.
Читайте также: