Передача данных по оптоволокну своими руками
Оптические технологии передачи данных стали прорывом в области телекоммуникаций и сетей передачи данных, требующих высокой скорости передачи. За последние несколько лет исследования привели к появлению систем, которые способны передавать данные на скорости 10 Гб/с и выше. Одним из основных преимуществ оптического кабеля является его способность передавать высокоскоростные оптические сигналы на большие расстояния. Эта статья посвящена оптическому кабелю, принципам, на которых он работает, а также основным блокам систем передачи данных по оптоволокну.
Волоконно-оптические технологии просто используют свет для передачи данных. Использование оптического кабеля началось примерно с 1970 года, когда удалось снизить издержки на производство оптического кабеля и связанных с этим затрат.
Использование оптического кабеля
Волоконно-оптические кабели используются в широком спектре приложений: начиная от медицинского зондирования, заканчивая высокоскоростными сетями передачи оборонных данных. Передача данных осуществляется с помощью оптических передатчиков, передающих высокоскоростные сигналы специальным оптическим приемникам. При этом происходит преобразование цифровых сигналов в оптические и наоборот. Скорость передачи данных по оптическому кабелю достигает 10 Гб/с.
На сегодняшний день существует два типа оптического кабеля: одномодовый (SM) и многомодовый (MM). В последнее время все чаще слышны заявления о том, что многомодовый оптический кабель является более перспективным, обеспечивая более чем стократное превосходство по производительности относительно одномодового оптического кабеля.
Самое активное использование оптического кабеля происходит в телекоммуникационной отрасли. Изначально телефонные компании использовали оптический кабель для передачи больших объемов голосового трафика между центральными телефонными станциями. С 1980-х годов телефонные компании приступили к развертыванию оптических сетей повсеместно.
Пропускная способность оптического кабеля является его наиболее важной и значимой характеристикой. Чем больше полоса пропускания, тем выше скорость передачи и тем больше трафик. Медь имеет весьма ограниченную полосу пропускания и серьезные ограничения на длину кабеля, что делает медную пару менее приемлемой для передачи высокоскоростных сигналов на большие расстояния.
Использование оптического кабеля дает следующие преимущества:
- Высокая полоса пропускания для передачи голоса или видеоизображения.
- Оптические волокна могут нести в тысячи раз больше информации, чем медная проволока. Например, всего одна прядь волокна может передавать все телефонные разговоры Америки в час пик.
- Оптический кабель легче чем медь примерно в 10 раз.
- Низкие потери. Чем выше частота сигнала, тем больше потерь в медной паре. Потери сигнала в оптическом кабеле одинаковы на всех частотах, за исключением сверхвысоких частот.
- Надежность – оптический кабель более надежен и имеет большее время жизни, чем медный кабель.
- Защищенность – оптические волокна не излучают электромагнитных полей, нечувствительны к помехам.
Физический механизм передачи оптических сигналов
В современном приложении оптические кабели подразделяются на многомодовые (MM) и одномодовые (SM), однако и те и другие базируются на одних и тех же принципах. Передача сигнала по оптическому кабелю возможна благодаря явлению, которое называется полным внутренним отражением. Благодаря этому возможна передача оптического сигнала на высокой скорости на большие расстояния.
Одномодовый оптический кабель или многомодовый?
SM и MM кабели различаются по своим размерам, что в свою очередь, влияет на проходящий по оптоволокну сигнал. SM кабели используют толщину основного волокна от 8 до 10 микрон, что позволяет передавать только одну длину волны. MM кабели, напротив, используют более толстое основное волокно примерно 50-60 микрон, что позволяет передавать несколько длин волн одновременно. В SM кабелях меньше величина затухания, что дает возможность использовать их на больших расстояниях. MM кабель позволяет передавать больше данных. Т.о. MM кабель обычно используется на небольших расстояниях, там где необходимо передавать данные с большой скоростью, например в системах хранилищ данных.
Строительные блоки волоконно-оптических систем
Типичная схема оптоволоконной системы состоит из передатчика, оптического кабеля и приемника. Передатчик преобразовывает цифровые электрические сигналы в оптические, которые дальше передаются по оптическому кабелю, обеспечивая высокую скорость передачи и независимость от электромагнитных помех.
Оптический кабель состоит из оптического волокна и двух разъемах на концах, обычно ST, SC, или FC, в зависимости от конфигурации приемника и передатчика.
Оптическое волокно состоит из центрального волокна толщиной несколько микрон, оболочки, которая обеспечивает полное оптическое отражение сигнала и внешней оплетки, которая обеспечивает защиту и идентификацию оптического кабеля.
Таким образом, строительство и эксплуатация волоконно-оптических систем является аппаратно-ориентированной на передачу сигнала на большие расстояния. Зачастую задача именно так и ставится: с помощью оптического кабеля передать с низким затуханием высокоскоростной сигнал на большое расстояние с приемлемым уровнем финансовых затрат.
Конструкция оптического кабеля
Оптическое волокно состоит из нескольких элементов. Оптический кабель состоит из нескольких элементов: из сердцевины, облицовки и внешнего покрытия. В основе оптического кабеля лежит сердцевина, по которой происходит передача световых сигналов. В основе сердцевины лежит кремний и германий. Оболочка, окружающая сердцевину оптического кабеля состоит из кремния и имеет коэффициент преломления несколько ниже центральной сердцевины. Показатель преломления – это отношение скорости света в вакууме к скорости света в материале. Скорость света в вакууме равна 300 000 000 метров в секунду. Чем выше показатель преломления, тем ниже скорость света в материале. Например, коэффициент преломления света в чистом воздухе равен 1, что означает скорость света в воздухе 300 000 км/c. Коэффициент преломления в стекле 1,5, что означает скорость света в стекле 200 000 км/c.
Несколько слоев буферных обшивок защищают центральную жилу. Защита служит для уменьшения физических нагрузок на кабель, таких как растяжение, изгиб и т.п. Наружная оплетка защищает от внешних воздействий, таких как экологические (температура, влажность, агрессивная среда).
Для соединения оптического кабеля наиболее часто используется SC коннекторы. SC коннектор обеспечивает наибольшую плотность упаковки. Системные администраторы должны учитывать особенности оптического кабеля и активного оборудования для выбора соответствующего типа коннектора.
Оптический кабель. Коннекторы.
Типы оптического кабеля
Многомодовый оптический кабель может передавать несколько световых волн, он имеет более толстую сердцевину размером около 50 или 62,5 микрон. Из-за дисперсии многомодовый оптический кабель имеет большее затухание.
Оптика
Любая оптическая система состоит из трех компонентов: передатчика, среднего (волокно кабеля) и приемника. Передатчик преобразует электрические сигналы в свет и направляет его по волокну. Приемник получает световой сигнал и преобразует его в электрический
сигнал. Существуют два вида передатчиков: лазерного диод либо светодиод.
Выходная мощность передатчика указывает на количество энергии, излучаемой в определенный квант времени. Чем выше мощность, тем больше расстояние передачи сигнала. Передатчик имеет возможность изменять скорость передачи для удовлетворения потребности в пропускной способности системы. Диапазон длин волн, излучаемых источником сигнала находится в спектральной ширине.
Приемопередатчики отличаются чувствительностью к состоянию окружающей среды. Лазерный диод требует стабильного напряжения и температуры. Светодиоды являются менее чувствительны к колебаниям окружающей среды. Лазерные диоды являются более дорогостоящими. Светодиодные оптические источники имеют меньшее время жизни, но их легче устанавливать и они более экономичные.
Заключение
Несмотря на то, что развитие использования оптического кабеля началось в телекоммуникационной среде, сегодня это уже обычное дело. Многие компании и промышленные предприятия воспользовались оптоволоконными системами для увеличения производительности своих ЛВС. Один из вопросов, с которым сталкиваются некоторые предприятия заключается в том, чтобы подключить к оптоволоконной системе имеющееся оборудование и инфраструктуру без дорогих обновлений. Используя медиаконвертеры, позволяющие соединять обычные сетевые каналы на базе медной витой пары и оптоволокна, возможно подключить практически любое сетевое оборудование. Медиаконвертеры предназначены для облегчения перехода на использование оптического кабеля, сводя к минимуму затраты на устранение возникающих проблем.
Внимание! Копирование и перепечатка информации с этого сайта запрещены без письменного согласия администрации.
За последнюю четверть века оптоволоконная связь стала широко распространенным методом передачи видео- и аудиосигнала, других аналоговых сигналов и цифровых данных. У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания. По этим и многим другим причинам волоконно-оптические системы передачи информации все глубже проникают в самые разные области информационных технологий.
Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят
Однако, несмотря на эти преимущества, в оптоволоконных системах до недавнего времени использовались те же самые аналоговые технологии передачи сигнала, что и в их медных предшественниках. Сейчас, когда появилось новое поколение аппаратуры, основанное исключительно на цифровых методах обработки сигналов, оптоволоконная связь вновь выводит телекоммуникации на совершенно новый уровень. Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят.
В этом пособии рассматривается техника цифровой передачи сигнала по оптоволоконным кабелям и ее экономические и технологические преимущества.
АНАЛОГОВАЯ ПЕРЕДАЧА ПО ОПТОВОЛОКНУ
Чтобы в должной мере оценить преимущества цифровых технологий, давайте вначале рассмотрим традиционные методы передачи аналоговых сигналов по оптоволокну. Для передачи аналоговых сигналов используют амплитудную (АМ) и частотную (ЧМ) модуляцию. В обоих случаях на вход оптического передатчика поступает низкочастотный аналоговый аудио- и видеосигнал или данные, которые преобразуются в оптический сигнал. Делается это по-разному.
В системах с амплитудной модуляцией оптический сигнал – это световой поток с интенсивностью, меняющейся в соответствии с изменениями входного электрического сигнала. В качестве источника света используются либо светодиоды, либо лазеры. К сожалению, и те и другие нелинейны, то есть в полном диапазоне яркостей от отсутствия излучения до максимального значения не соблюдается пропорциональность между входным сигналом и интенсивностью света. Тем не менее, именно такой способ управления используется в системах с амплитудной модуляцией. В результате возникают различные искажения передаваемого сигнала:
- снижение отношения сигнал/шум по мере роста длины кабеля;
- нелинейное дифференциальное усиление и фазовые ошибки при передаче видеосигнала;
- ограничение динамического диапазона аудиосигнала.
При амплитудной модуляции уровень входного сигнала представляется интенсивностью светового луча
При частотной модуляции уровень входного сигнала представляется частотой следования световых импульсов
Рис. 1. Сравнение амплитудной и частотной модуляции
Хотя частотная модуляция устраняет многие проблемы управления яркостью излучателя, свойственные системам с АМ, у нее есть и свои трудности. Одна из них – известные в ЧМ-системах перекрестные помехи. Они наблюдаются, в частности, при передаче нескольких сигналов с частотной модуляцией по одному оптоволокну, например, при использовании мультиплексора. Перекрестные помехи возникают в передатчике или приемнике как результат нестабильности настройки важных схем фильтрации сигнала, предназначенных для разделения несущих частот. Если фильтры настроены некачественно, то частотно-модулированные несущие взаимодействуют друг с другом и искажаются. Инженеры, специализирующиеся на оптоволоконных системах, могут создать ЧМ-системы, в которых вероятность возникновения перекрестных помех сведена к минимуму, но любое усовершенствование конструкции влечет за собой возрастание стоимости приборов.
Еще один тип искажений называется интермодуляцией. Как и перекрестные помехи, интермодуляция возникает в системах, предназначенных для передачи сразу нескольких сигналов по одному оптоволокну. Интермодуляционные искажения возникают в передатчике чаще всего как результат нелинейности в цепях, общих для различных ЧМ-несущих. Как следствие, до объединения нескольких несущих в один оптический сигнал они действуют друг на друга, снижая точность передачи исходного сигнала.
ЦИФРОВЫЕ СИСТЕМЫ
Как и в аналоговых системах, на передатчики цифровых систем поступает низкочастотный аналоговый аудио- и видеосигнал или цифровые данные, которые преобразуются в оптический сигнал. Приемник получает оптический сигнал и выдает электрический сигнал исходного формата. Различие состоит в том, как сигналы обрабатываются и передаются от передатчика к приемнику.
Рис. 2. Цифровая система передачи аналогового сигнала
В чисто цифровых системах входной низкочастотный сигнал сразу поступает на аналого-цифровой преобразователь, который входит в состав передатчика. Там сигнал преобразуется в последовательность логических уровней – нулей и единиц, называемую цифровым потоком. Если передатчик многоканальный, то есть рассчитан на работу с несколькими сигналами, то несколько цифровых потоков объединяются в один, и он управляет включением и выключением одного излучателя, которое происходит с очень высокой частотой.
На приемном конце происходит обратное преобразование сигнала. Из комбинированного цифрового потока выделяются индивидуальные потоки, соответствующие отдельным передаваемым сигналам. Они поступают на цифро-аналоговые преобразователи, после чего выдаются на выходы в исходном формате (рис. 2).
Чисто цифровая передача сигнала имеет массу преимуществ над традиционными АМ- и ЧМ-системами – от универсальности и более качественного сигнала до меньшей стоимости монтажа. Давайте рассмотрим некоторые из преимуществ более подробно и попутно обсудим выгодные как для установщика систем, так и для их пользователя экономические показатели.
ТОЧНОСТЬ ПЕРЕДАЧИ СИГНАЛА
В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи. ЧМ-системы работают несколько лучше: в них качество сигнала хотя и снижается, но в не очень длинных линиях остается примерно постоянным, резко снижаясь лишь при достижении некоторой предельной длины. Только в полностью цифровых системах гарантируется сохранение качества сигнала при передаче по оптоволоконной линии связи независимо от расстояния между передатчиком и приемником и количества передаваемых каналов (конечно, в пределах возможностей системы).
В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи
Точность воспроизведения передаваемого сигнала представляет значительную проблему при разработке систем для организации нескольких каналов передачи по одному оптоволокну (мультиплексоров). Например, в аналоговой системе, рассчитанной на передачу четырех каналов видео- или аудиосигнала, для того, чтобы уложиться в полосу пропускания системы, приходится ограничивать полосу, отводимую отдельным каналам. В цифровых системах не приходится идти на такой компромисс: по одному световоду можно передавать один, четыре и даже десять сигналов без снижения качества.
БОЛЕЕ ВЫСОКОЕ КАЧЕСТВО ПЕРЕДАЧИ СИГНАЛОВ
Рис. 3
Передача аналоговых сигналов в цифровой форме обеспечивает более высокое качество, чем чисто аналоговая. Искажение сигнала при таком способе передачи может происходить только при аналого-цифровом и обратном цифро-аналоговом преобразовании. Хотя никакое преобразование не идеально, современные технологии настолько совершенны, что даже недорогие АЦП и ЦАП обеспечивают гораздо более высокое качество видео- и аудиосигнала, чем можно достичь в аналоговых АМ- и ЧМ-системах. Это легко видно из сравнения отношений сигнал-шум и нелинейных искажений (дифференциальной фазы и дифференциального усиления) цифровых и аналоговых систем, предназначенных для передачи сигналов одного формата по оптоволокну одинакового типа на одной и той же длине волны.
Цифровые технологии предоставляют инженерам невиданную ранее гибкость при создании оптоволоконных систем. Теперь для различных рынков, задач и бюджетов легко подобрать нужный уровень производительности. Например, меняя разрядность аналого-цифрового преобразователя, можно влиять на необходимую для передачи сигнала полосу пропускания системы, и, как следствие, общую производительность и стоимость. При этом другие свойства цифровой системы – отсутствие искажений и независимость качества работы от длины линии – сохраняются вплоть до максимального расстояния передачи. При разработке аналоговых систем инженеры всегда находятся в клещах между стоимостью системы и ее техническими характеристиками, пытаясь сбалансировать их без ущерба для критически важных параметров передаваемых сигналов. В цифровых системах масштабирование систем и управление их производительностью и стоимостью – гораздо менее сложная задача.
НЕОГРАНИЧЕННОЕ РАССТОЯНИЕ ПЕРЕДАЧИ
Другое преимущество цифровых систем над аналоговыми предшественниками – их способность восстанавливать сигнал, не внося в него дополнительных искажений. Такое восстановление выполняется в специальном приборе, называемом репитером или линейным усилителем.
Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ- систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.
По мере прохождения света по оптоволокну его интенсивность постепенно снижается и, в конце концов, становится недостаточной для детектирования. Если же немного не доходя до того места, где свет становится слишком слабым, установить линейный усилитель, то он усилит сигнал до его исходной мощности, и его можно будет передавать дальше на такое же расстояние. Важно отметить, что в линейном усилителе восстанавливается цифровой поток, что не оказывает никакого влияния на качество закодированного в нем аналогового видео- или аудиосигнала независимо от того, сколько раз выполнялось восстановление в линейных усилителях на пути следования сигнала по длинной оптоволоконной линии.
Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ-систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.
МЕНЬШАЯ СТОИМОСТЬ
Оценивая те многочисленные преимущества, которыми обладают цифровые оптоволоконные системы, можно предположить, что они должны стоить гораздо дороже традиционных аналоговых систем. Однако это не так, и пользователи цифровых систем, напротив, экономят свои деньги.
На конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы
Стоимость цифровых компонентов существенно снизилась за последние годы, и изготовители оборудования смогли разработать и предложить к продаже изделия, которые стоят так же или даже дешевле, как и аналоговые приборы предыдущего поколения. Конечно, некоторые фирмы хотят убедить общественность в том, что превосходное качество цифровых систем можно получить только за дополнительную плату, но на деле они просто решили не делить сэкономленное со своими клиентами. Но на конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы.
Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем
На стоимость установки и эксплуатации оптоволоконной системы влияют и другие факторы. Наиболее очевидный из них — затраты на кабель. Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем. Преимущество особенно хорошо заметно там, где надо одновременно передавать сигналы различных типов, например, видео и звук или звук и данные. Без особых проблем инженеры смогут сконструировать цифровую систему с приемлемой стоимостью, в которой по одному оптоволокну будут передаваться сигналы различных типов, например, два канала видео и четыре канала звука. При использовании аналоговых технологий, скорее всего, пришлось бы делать две отдельные системы, или, как минимум, использовать два раздельных кабеля для передачи аудио- и видеосигналов.
Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны
Даже в случаях, когда по одному оптоволокну надо передавать несколько однотипных сигналов, цифровые системы предпочтительнее, поскольку работают более надежно и обеспечивают более высокое качество сигнала. Например, в цифровом видеомультиплексоре можно передать десять каналов с одинаково высоким качеством, а в аналоговой системе такое вообще невозможно.
Следует учитывать и неизбежные за годы эксплуатации оптоволоконных систем расходы на техническое обслуживание и ремонт. И здесь преимущество за цифровыми системами. Во-первых, для них не требуется первоначальная настройка после монтажа – передатчик и приемник просто соединяются оптоволоконным кабелем, и система готова к работе. Аналоговым системам, как правило, требуется подстройка под параметры конкретной линии передачи, учитывающая ее длину и интенсивность сигнала. Дополнительное время на регулировку влечет за собой дополнительные затраты.
Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже
Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны. Для них не потребуется повторная на- стройка, а поиск неисправности займет гораздо меньше времени, поскольку в них нет перекрестных искажений, дрейфа параметров и других недостатков, свойственных традиционным аналоговым системам.
Подведем итог. Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже. Цифровые оптоволоконные системы обеспечивают очевидное экономическое преимущество на всех уровнях.
ВЫВОДЫ
Как оптоволоконная технология имеет много преимуществ по сравнению с традиционными медными проводами и коаксиальными кабелями, так и цифровая передача информации продвигает оптоволоконную технологию на несколько ступеней вверх, давая пользователям целый набор новых полезных качеств. Цифровые системы обладают уникальными характеристиками: точностью передачи сигнала на всей длине линии связи, минимальными вносимыми искажениями (в том числе отсутствием перекрестных искажений и интермодуляции), возможностью многократного восстановления цифрового потока при его передаче по длинной линии без ущерба для качества закодированного в нем аналогового сигнала. Это гарантирует уровень верности воспроизведения аналогового сигнала, недостижимый для аналоговых систем.
Цены на компоненты цифровых и аналоговых оптоволоконных систем сопоставимы, а с учетом затрат на монтаж, эксплуатацию и техническое обслуживание цифровые системы дают очевидную экономическую выгоду.
Разрабатывая новую оптоволоконную систему, не тратьте время на анализ преимуществ и недостатков цифровых и аналоговых систем, поскольку выбор совершенно очевиден: цифровые системы лучше с любой точки зрения. Гораздо полезнее будет ограничиться только ими и подобрать те изделия, которые наилучшим образом соответствуют вашим потребностям. Даже среди цифровых систем существует огромное разнообразие решений. Вот некоторые вопросы, которые помогут вам при их оценке:
- насколько проста установка системы?
- если передатчик и приемник настраиваются пользователем, то насколько просто это сделать и какие существуют проблемы?
- пригодны ли приборы для использования как с одномодовыми, так и многомодовыми световодами?
- обладает ли изготовитель достаточным опытом и репутацией на рынке предлагаемых им изделий?
- как соотносится цена изделия с ценой традиционных аналоговых систем? (Цифровые приборы в производстве не дороже аналоговых и их стоимость не должна быть выше).
Анализ рынка и сравнение характеристик аналогичных изделий позволит вам в итоге подобрать элементы цифровых оптоволоконных систем, которые верой и правдой будут служить вам в течение многих лет.
Пока вы читаете эти строки, терабайты данных курсируют по всему миру, запертые в стеклянных нитях, протянутых по дну океана. Напоминает магию, но это всего лишь продвинутая технология. Оптическое волокно — технология, которой, человечество обязано естествоиспытателям XIX века. Наблюдая за лучами света на поверхности пруда, они предположили, что светом можно управлять, но претворить в жизнь ту гениальную идею удалось только совсем недавно с появлением сложнейших заводов и тщательным изучением оптических свойств материалов.
Содержание
Запертый свет
По медной витой паре (как в вашем интернет-кабеле) во множестве движутся электроны. Ток предается по проводнику и несет с собой закодированную в последовательности импульсов — информацию. Нули и единицы — двоичный код, о котором слышали, пожалуй, все. Оптический проводник сигнала работает по тому же принципу, но с точки зрения физики, с ним все гораздо сложнее. Тут могла бы быть получасовая лекция о квантовой механике, и о том, как множество именитых физиков пришли в тупик, пытаясь понять природу света, но постараемся обойтись без пространных рассуждений.
Достаточно держать в уме то, что подобно электронам, фотоны или световые волны (на самом деле в нашем контексте это одно и то же), могут переносить закодированную информацию. Так, например, на аэродромах, в случаях отказа радиосвязи, передают сигналы самолетам при помощи направленных прожекторов. Но то примитивный метод, да и работает он лишь на расстоянии прямой видимости. В то же время, по оптоволокну свет передается на километры и далеко не по прямой траектории.
Чтобы добиться такого эффекта, можно было бы использовать зеркала. Собственно, с этого инженеры-испытатели и начали свои эксперименты. Они покрывали металлические трубы изнутри зеркальным слоем и направляли внутрь луч света. Но мало того, что подобные световоды стоили непомерно дорого. Свет многократно отражался от их стенок и постепенно затухал, терял силу и совершенно сходил на нет.
Зеркала не годились. Иначе и быть не могло. Даже самое дорогое зеркало не идеально. Его коэффициент отражения меньше 100% и после каждого падения на зеркальную поверхность световой луч теряет часть энергии, а в замкнутом объеме световода таких преломлений происходит неисчислимое множество.
Тут-то и пришло время вспомнить о пруде и тех давних исследованиях, что основывались на наблюдении за поведением света в воде. Представьте, как луч закатного солнца падает на поверхность воды, преодолевает границу и направляется вниз, к дну пруда.
Гибкие световоды
Материалы не столь уж важны. В физических опытах для детей, демонстрирующих этот эффект, часто используют воду и прозрачную пластмассовую трубку. Больше чем на пару метров в таком световоде световой луч не передать, но смотрится это красиво. По той же причине светильники и прочие декоративные изделия часто имеют в своей конструкции световоды из пластмасс. Но когда речь заходит о передаче информации на многие километры, требуются особые, сверхчистые материалы, с минимумом примесей и оптическими свойствами, близкими к идеальным.
В 1934 году американец Норман Р. Френч запатентовал стеклянный световод, который должен был обеспечить телефонную связь, но он толком не работал. Потребовалась масса времени, чтобы найти материал, который бы отвечал высочайшим требованиям к чистоте и прозрачности, изобрести оптическое волокно из диоксида кремния — чистейшего кварцевого стекла. Чтобы создать в прозрачном кремнии разность коэффициентов преломления, прибегают к хитрости. Центр прозрачной болванки, которая превратится в провод, оставляют чистым, в то время, как внешние слои насыщают германием — он изменяет оптические характеристики стекла.
В таком случае, болванку обычно спекают из двух заранее приготовленных стеклянных трубок, вставленных одна в другую. Но можно поступить и наоборот, насытив сердцевину стекловолокна германием. Более технологичным и высококачественным стекловолокно получается, когда стеклянные трубки наполняют изнутри газом и ждут, пока германий сам осядет на стекло тончайшим слоем. Затем трубку разогревают и растягивают до метровой длины. При этом полость внутри закрывается сама.
Получившийся стержень имеет сердцевину с одним коэффициентом преломления и оболочку с другими оптическими параметрами. Он то и послужит для изготовления оптического волокна. Пока тяжелая заготовка толщиной в руку ничем не напоминает провод, но кварцевое стекло хорошо растягивается.
Подготовленную болванку поднимают на высоту десятиметровой башни, закрепляют на вершине и равномерно нагревают до пор, пока по консистенции она не будет напоминать нугу. Тогда из стеклянной болванки под собственным весом начинает тянуться тончайшая нить. По пути вниз она остывает и приобретает гибкость. Это может показаться странным, но сверхтонкое стекло прекрасно гнется.
Готовое оптическое волокно, непрерывно поступающее вниз, окунают в ванну с жидким пластиком, образующим защитный слой на поверхности кварца, а затем сматывают. Так продолжается до тех пор, пока заготовка на вершине башни не будет полностью переработана в единую нить из сотни-другой километров оптического волокна.
Из него, в свою очередь, будут сплетены кабели, содержащие от пары, до пары сотен отдельных стеклянных волокон, упрочняющие вставки, экранирующие слои и защитные оболочки.
- Осевой стержень.
- Оптическое волокно.
- Пластиковая защита оптических волокон.
- Пленка с гидрофобным гелем.
- Полиэтиленовая оболочка.
- Армирование.
- Внешняя полиэтиленовая оболочка.
Связь со скоростью света
Описанный процесс сложен, трудозатратен, требует постройки заводов и специального обучения от их персонала, и, тем не менее, игра стоит свеч. Ведь скорость света — это непреодолимый предел, максимальная скорость, с которой информация может распространяться в принципе. Соперничать с оптическим волокном в скорости передачи информации могут, разве что, линии прямой оптической связи, но никак не медные проводники, на какие бы ухищрения не шли их создатели. Сравнения демонстрируют превосходство оптического волокна над остальными средствами передачи информации лучше всего.
Домашний интернет на постсоветском пространстве, зачастую, проводят по двужильной витой паре с проводниками толщиной в один — два миллиметра. Максимумом для нее, оказывается показатель в 100 мегабит в секунду. Этого достаточно для пары компьютеров, но, когда в квартире оказываются умный телевизор, NAS, раздающий торренты, домашний сервер, несколько смартфонов и умных девайсов из мира интернета вещей, не хватит и восьмижильного провода. Ограничения канала связи становятся очевидны. Как правило, в виде артефактов и заикающихся киногероев на экране телевизора, или лагов в онлайн-играх. Оптоволокно толщиной 9 микрон обладает в 30 раз большей пропускной способностью, не говоря уже о том, что таких жил в проводе может быть несколько.
При этом оно компактнее и весит значительно меньше обычных проводов, что оказывается решающим преимуществом, при прокладке магистральных линий связи и планировании городских коммуникаций.
Оптические кабели соединяют континенты, города и датацентры. В России первая такая линия, появилась в Москве. Первый подводный оптический кабель пролег между Санкт-Петербургом и датским Аберслундом. Затем оптоволокно протянулось между предприятиями, государственными учреждениями и банками. В крупных городах получила распространение схема, при которой оптические линии связи доводят до отдельных многоквартирных домов, и, тем не менее, для рядового потребителя оптическое волокно все еще остается экзотикой. Нам бы было интересно узнать, как много наших читателей использует его дома, потому что, по большинству квартир по-прежнему тянется старая-добрая витая пара.
Оптическое волокно не только дорогое и сложное в производстве. Еще дороже оказывается его квалифицированное обслуживание. Тут не обойтись без синей изоленты. При монтаже волокна кварца необходимо специальным образом сращивать, а линии оптоволоконной связи комплектовать дополнительным оборудованием.
Несмотря на то, что разность коэффициентов преломления в сердцевине и оболочке волокна в теории создает идеальный световод, запущенный по кварцевому проводу свет все равно затухает из-за примесей, содержащихся в стекле. Увы, избавиться от них полностью практически невозможно. Десятка молекул воды на километр оптического волокна уже достаточно, чтобы внести в сигнал ошибки и снизить расстояние, на которое его можно передать.
Для стандартного телефонного кабеля она равняется километру, у экранированного кабеля — пяти. Оптоволоконная жила удерживает свет на расстоянии до нескольких сотен километров, но, в конце концов, сигнал все равно приходится усиливать, регенерировать. На классических линиях связи устанавливаются сравнительно дешевые и простые усилители. Для оптоволоконных – требуются сложные и высокотехничные агрегаты в которых используются редкоземельные металлы и инфракрасные лазеры.
В линию связи врезают небольшой участок специально подготовленного стекловолокна. Оно дополнительно насыщенно атомами эрбия, редкоземельного элемента используемого, помимо прочего, в атомной промышленности. Атомы эрбия в этом участке волокна находятся в возбужденном состоянии из-за дополнительной накачки светом. Проще говоря, их подсвечивают специально настроенным лазером. Сигнал, проходящий такую область кабеля, усиливается примерно в два раза, поскольку атомы эрбия в ответ на воздействие излучают свет той же волны, что и входящий сигнал, а значит, сохраняют закодированную в нем информацию. После усилителя оптический сигнал может пройти еще около ста километров, прежде чем процедуру потребуется повторить.
Несмотря на то, что ученые ищут новые пути построения коммуникационных сетей, мы не получим ничего более практичного еще очень долго. Экспериментальные технологии позволяют поднять информационную емкость стекловолокна в два-три раза, все более толстые многожильные стеклянные кабели ложатся на морское дно между континентами, однако принципиальные ограничения, накладываемые скоростью света, запертого в кварцевой жиле, преодолеть вряд ли удастся. Выходом видится отказ от кварца и связанных с ним ограничений, передача информации с помощью лазеров, но она возможна только по прямой. Следовательно, передатчики придется разместить в космосе или хотя бы в верхних слоях атмосферы. Подобные эксперименты в последние годы привлекли внимание крупнейших корпораций, но это уже совсем другая история.
Времена, когда для подключения к Интернет было достаточно обычной телефонной линии и модема, уже давно прошли, и сегодня высокоскоростное подключение к Сети является уже насущной потребностью. Давайте рассмотрим с вами принцип работы и основное устройство оптоволоконного подключения к Интернет, которое на сегодняшний день является самым быстрым способом для передачи данных.
Немного теории
При оптоволоконном подключении высокая скорость соединения обеспечивается благодаря структуре кабеля, состоящего из светопередающих проводков, покрытых специальным защитным покрытием. Данные передаются при помощи светового луча. Кстати – помимо связи с Интернет оптоволокно может выступать еще и передатчиком данных телефонии и телевидения, поэтому роутер, телевизор и телефон могут быть подключены к одному кабелю.
Диаметр волокон, из которых состоит оптический кабель, очень мал – он составляет сотые доли миллиметра. Через них проходят оптические лучи, передающиеся на многие километры.
Преимущества оптоволоконного интернета
Сегодня оптоволоконный кабель обеспечивает требуемую скорость подключения к Сети. Именно с помощью этой технологии обеспечиваются максимальные скорости передачи данных. Оптоволокно имеет следующие преимущества:
- Долгий срок службы коммуникаций;
- Отличная пропускная способность, благодаря которой информация передается максимально быстро;
- Безопасность передачи – попытки неавторизованного доступа сразу будут обнаружены;
- Высокий уровень помехозащищенности;
- Оптический кабель отлично подходит для передачи мультимедиа;
- Оптоволокно имеет возможности для передачи других типов данных.
Как организовано подключение к Интернет с помощью оптоволокна
- FTTH (fiber to the home) – в квартиру;
- FTTB (fiber to the building) – в здание;
- FTTN (fiber to the node) – до узла;
- FTTC (fiber to the curb) – до микрорайона.
Как вы догадались, самый быстрым будет соединение FTTH, обеспечивающее максимально широкий канал связи. Из его названия понятен принцип – оптический кабель заходит непосредственно в квартиру. При этом коммуникации выглядят следующим образом:
Как видите, в этом случае необходимо наличие в квартире дополнительного оборудования. При подключении по технологии FTTB это оборудование будет размещено где-то в здании, а в квартиру заходит обычный кабель LAN.
Вместо послесловия
Мы познакомились с оптоволоконными сетями, а также разобрались с тем, какое оборудование необходимо для установки в квартире. Думаем, что теперь при выборе способа подключения к Сети у вас будет гораздо меньше вопросов и сомнений.
Читайте также: