Паяльный фен своими руками простая схема печатная плата проще некуда
Пайка электронных плат требует соблюдения определенного уровня температуры для различных деталей, ведь недостаток нагрева приведет к плохому соединению припоя, равно, как и чрезмерный нагрев вызовет преждевременное окисление олова и такое же низкое качество пайки.
Помимо этого на перегретой плате могут отслаиваться дорожки, обугливаться целые участки. Если раньше для работы с мелкими и крупными деталями, лужением относительно большой площади радиолюбители использовали набор из нескольких паяльников, сегодня эта функция решается одной паяльной установкой. Но из-за высокой стоимости такого устройства не все могут позволить себе ее приобретение, поэтому мы расскажем, как собирается паяльная станция своими руками.
Принцип действия и варианты реализации
Принцип работы паяльной станции заключается в способности устройства регулировать температуру нагрева и поддерживать ее в установленных пределах на протяжении всего процесса.
Разумеется, реализация всех вышеперечисленных функций задача не из простых, поэтому изготовление полноценного аналога под силу опытным электрикам, имеющим должное оборудование и опыт сборки электронных схем, изготовления печатных плат.
Поэтому сначала мы разберем относительно простые варианты изготовления, регулировка температуры в которых осуществляется вручную. Но и таких паяльных станций вполне достаточно, чтобы выполнить качественную пайку деталей, ориентируясь только по внешним признакам работы жала.
Способ №1. Контактная паяльная станция
Для такой паяльной станции вам понадобиться относительно классический паяльник мощностью хотя бы 80 – 100Вт, регулятор мощности (в данном примере мы будем использовать диммер), диодный мост, соединительные провода. Такая паяльная станция будет работать без обратной связи по температуре жала паяльника, поэтому результативность воздействия на припой придется определять опытным путем.
Рис. 1: схема изготовления простейшей станции
Так как в домашней сети напряжение может быть значительно ниже 220В, в схеме паяльной станции будет использоваться диодный мост.
Процесс изготовления состоит из следующих этапов:
- Соберите из четырех диодов мост или возьмите готовую сборку с параметрами работы с 220 В на 300 В;
- Отрежьте питающий шнур на расстоянии 10 – 15 см от ручки, запас нужен для подключения к паяльной станции;
- Зачистите выводы проводов как возле паяльника, так и на шнуре, его также будем использовать для подключения;
- Подключите одну из жил шнура питания к диодному мосту через диммер, а вторую напрямую;
- Подсоедините выводы диодного моста к жилам паяльника, лучше использовать клеммное соединение, болтовое или пайку;
- Места электрических соединений заизолируйте для предотвращения поражения электрическим током при работе паяльной станцией;
- Установите мост и светорегулятор на диэлектрическое основание.
Простейшая паяльная станция готова к использованию, достаточно включить ее в розетку и повернуть ручку в нужное положение. Принцип работы с ней схож с прибором для выжигания по дереву. Работая с крупными элементами, регулятор мощности устанавливается в максимальное положение. С мелкими, выводится в половинное значение, следует отметить, что конструкция регулятора температуры на основе диммера изменяет напряжение питания от 220 до 0В, а вам ограничивать его меньше половины смысла не имеет.
Способ №2. Бесконтактная паяльная станция
Как показывает практика, далеко не всегда нагревом жала можно воздействовать на любые элементы платы, к примеру, к тем же smd деталям крайне трудно подобраться. В таких ситуациях используется паяльный фен, направляющий поток горячего воздуха на ножки.
Несмотря на схожесть, переделать обычное устройство для сушки волос в инфракрасную станцию не получится, так как рабочая температура должна достигать 500 — 800ºС. Для сборки такой паяльной станции вам понадобится компрессор для подачи воздуха, нагревательный элемент, корпус для элементов управления, сопло, понижающий трансформатор, выпрямитель, блок управления скоростью подачи воздуха.
Принципиальная схема такой паяльной станции приведена на рисунке ниже:
Рис. 2: электрическая схема термофена
Принцип действия паяльной станции основан на воздействии инфракрасного излучения от нагревательного элемента непосредственно в область пайки. Компрессор подает воздух от нагревателя через сужающееся сопло, создавая эффект турбины, производительность насоса желательно обеспечить в пределах от 20 до 30 л в минуту.
При изготовлении инфракрасной станции существует два способа для ее выполнения — ручная модель или стационарная. Первый вариант подходит в тех ситуациях, когда корпус ИК паяльной предвидится относительно небольших размеров и будет удобно помещаться в руке. Второй способ подойдет для крупногабаритных приспособлений, в которых станция установлена неподвижно, а заготовка перемещается под соплом.
Рассмотрим такой пример изготовления паяльной станции бесконтактного типа:
- Намотайте нагревательную спираль из нихромовой проволоки, в данном случае используется диаметром 0,8мм. Можете взять и другой вариант, к примеру, от электрической плиты. Рис. 3: намотайте нагревательный элемент
- Для намотки используйте жесткий каркас, укладывайте витки вплотную, но не делайте нахлестов и следите за тем, чтобы не закоротить намотку. Чем меньше диаметр проволоки у вас получится, тем эффективнее будет идти нагрев, достаточно будет спирали с наружным диаметром 8 – 10 мм.
- В данном примере изготавливаются несколько спиралей, соединяемых параллельно для повышения температуры нагрева.
- Установите полученную спираль на цилиндрический каркас из негорючего материала.
Предварительно удалите с каркаса все лишнее но если он уже готов, можете сразу осуществлять намотку.
- Изготовьте металлический стакан для нагревательного элемента, в этом примере изготовления паяльной станции мы сделаем его из корпуса пальчиковой батарейки.
- Из куска телескопической антенны от радиоприемника сделайте сопло, один край которого нужно расплескать и надеть на шайбу. Рис. 5. Наденьте шайбу
- Прикрутите шайбу сопла к стакану из батарейки при помощи соразмерных болтов. Рис. 6: прикрутите сопло к стакану
- Поместите внутрь стакана между спиралью и стенками термоизоляционный материал, чтобы предотвратить перегревание наружных деталей.
- Соберите диодный мост из четырех полупроводниковых элементов, если под рукой уже есть готовая сборка, можете использовать и ее.
- Изготовьте блок питания из понижающего трансформатора и выпрямительного агрегата, ваша задача получить на выходе низкое напряжение для снижения вероятности поражения электротоком. В рассматриваемом примере получается около 10 – 15В, мощность трансформатора составляет 150Вт. Аналогичная модель может браться с готового оборудования.
- Корпус для паяльной станции мы изготовим из обычной пластиковой бутылки. В данном примере нам нужен прозрачный пластик, так как в нем легче подключать блок питания, нагнетатель воздуха и плату управления. Рис. 7. соедините все элементы в корпусе
- Подключите куллер и нагревательную спираль к выводам блока питания, подсоедините регулятор напряжения. Рис. 8. установите кулер
Регулировка мощности теплового потока может осуществляться либо по скорости подачи воздуха, либо по уровню напряжения, подаваемого на нагреватель.
Способ №3. Автоматическая паяльная станция на базе Ардуино
Такая паяльная станция собирается на базе микроконтроллера Arduino, который выполняет роль логического элемента, обрабатывающего данные от индикатора температуры и регулирующего мощность нагрева жала. Отличительной особенностью такого устройства является полная автоматизация контроля за температурой – вам достаточно задать ее и дождаться нагревания. Пример схемы для сборки приведен на рисунке ниже:
Рис. 10. схема паяльной станции на базе ардуино
Чтобы собрать такую станцию вам понадобится:
- сама плата Ардуино для управления работой паяльной станции;
- цифровое табло для отображения температуры нагрева;
- микросхему для программирования паяльной станции;
- транзистор, стабилизатор и кнопки, магазин резисторов и емкостных элементов.
Для сборки такой паяльной станции воспользуйтесь приведенной схемой, в качестве нагревательного элемента будет выступать жало обычного паяльника с датчиком температуры, которые подключаются к собранной схеме.
К недостаткам такого устройства следует отнести его сложность, из-за чего начинающие радиолюбители могут попросту не собрать рабочую версию с первого раза. Также для пайки используемых в автоматической станции элементов вам понадобиться специальный паяльник и предварительные навыки работы с ним, чтобы не испортить детали.
Ещё пару месяцев назад я даже и не задумывался о самодельной паяльной станции. Собирался покупать Lukey 702, но глянув на цены, так и не понял, за что отдавать 6…8 тысяч.
Недостатки Lukey:
- Мощность трансформатора слишком мала, трансформатор работает на пределе возможного.
- Низкое качество трансформаторного железа, он греется даже на холостом ходу, на некоторых станциях ещё и гудит.
- Неудобная настройка температуры (невозможно быстро накинуть 20-40-60 градусов).
- Дискретность установки температуры 1 градус, которая в реальности не нужна.
- В силовой цепи установлен сигнальный разъём (PS/2).
- Постоянная запитка от сети, даже когда паяльная станция не используется.
- Нет функции автоотключения.
- Высокая цена.
Список не маленький, поэтому я решил не покупать Lukey. Начал смотреть в сторону самодельных паялок. Готовые конструкции, выложенные на просторах интернета, чем-то не устраивали.
Где-то автор пожалел транзисторов на индикаторы. Где-то через диодный мост прокачивают 2 ампера, и диоды раскаляются как утюги. Где-то автор прокачивает через кренки 35 вольт.
В общем однозначно было решено — изобрести свой велосипед.
Итак, представляю Вашему вниманию паяльную станцию ZSS-01.
Основные функции:
- Удобная настройка температуры.
- Одновременная индикация текущей и заданной температур.
- Настраиваемый таймер автоотключения. После срабатывания таймера, станция самообесточивается.
- Обработка и индикация ошибок. После возникновения ошибки, станция самообесточивается.
- Нулевое потребление после самообесточивания.
- Сохранение настроек с использованием циклической записи/чтения.
Схема паяльной станции:
Теперь подробно расскажу про каждый узел схемы.
Узел индикации.
Содержит два семисегментных индикатора. Первый индикатор отображает текущую температуру паяльника, второй — заданную. Индикаторы можно использовать как с общим анодом, так и с общим катодом, установив соответствующую прошивку.
Индикаторы подключены через буферную микросхему для снижения нагрузки на порты микроконтроллера. Вместо буфера можно поставить 12 транзисторов, но мне кажется, микросхема и паяется проще, и разводка платы упрощается, и стоит она дешевле, чем горсть транзисторов.
Также узел индикации содержит пищалку, которая пищит при возникновении ошибок, а также издаёт щелчки при нажатии кнопок. Пищалка использована обычная, без встроенного генератора. Я поставил пищалку от древней материнской платы.
Микроконтроллер генерирует меандр, затем меандр проходит через буферный транзистор и поступает на пищалку.
На первичную обмотку поступает напряжение, микроконтроллер запускается. После запуска МК включает реле, шунтируя кнопку. Трансформатор остаётся запитанным до тех пор, пока микроконтроллер не отключит реле.
Таким образом, после отключения питания, потребление устройства становится равным нулю, отпадает необходимость использования дежурного источника питания (трансформаторы с дополнительными обмотками, итд).
Самообесточивание происходит при:
Вторичная обмотка трансформатора выдаёт 24 вольта. После выпрямления и фильтрации, напряжение поднимается до 34 вольт. Для питания микроконтроллера использован импульсный преобразователь LM2596S-ADJ, понижающий напряжение до 5 вольт. На случай пробоя встроенного ключа преобразователя, на выходе установлен супрессор, снятый с платы жёсткого диска.
Узел измерения температуры.
Для сборки станции я купил паяльник от Lukey 702. В качестве термодатчика используется родная термопара K-типа, расположенная в кончике нагревателя. Для усиления напряжения с термопары используется ширпотребный операционный усилитель LM358.
Коэффициент усиления ОУ подобран таким образом, чтобы выходное напряжение 5 вольт соответствовало 1023 градусам, при этом 1 квант АЦП будет равен 1 градусу. Использованный ОУ не имеет Rail-to-Rail выхода, поэтому максимальная измеряемая температура будет примерно 800 градусов. Рабочий диапазон температур станции от 100 до 450 градусов, поэтому измерение до 800 градусов меня устраивает.
После сборки станции необходимо произвести калибровку температуры при помощи подстроечного резистора.
Узел кнопочного управления.
Для управления используется 1 силовая и 5 сигнальных кнопок. Для того, чтобы не портить внешний вид паяльной станции, всё кнопки были использованы одинаковые — силовые. Всё управление сводится к включению/отключению питания, настройке температуры, и настройке таймера автоотключения. При удерживании кнопок выполняется ускоренный перебор значений.
Теперь расскажу про дополнительный функционал.
Таймер автоотключения.
Позволяет задать временной интервал от 1 до 255 часов, по истечении которого паяльная станция самообесточится. Также имеется возможность отключения таймера. Для этого необходимо установить временной интервал, равный 0.
Защита от ненагрева паяльника / КЗ термодатчика.
При включении паяльная станция отсчитывает 1 минуту, после чего включается постоянный контроль температуры паяльника.
Также данная ошибка будет возникать при коротком замыкании термодатчика.
Защита от перегрева паяльника / обрыва термодатчика.
Защита от перегрева может пригодиться, например, при пробое управляющего симистора. Паяльник раскаляется до 470 градусов, срабатывает защита.
Также данная ошибка будет возникать при обрыве термодатчика, благодаря подтягивающему резистору на входе измерительного узла.
Сохранение настроек.
Структура с настройками занимает 3 байта. Микроконтроллер ATmega8 содержит 512 байт EEPROM памяти. Так как размер памяти позволяет сохранить 170 структур, был реализован алгоритм циклической записи/чтения настроек.
Алгоритм работает следующим образом. После включения питания, в памяти ищется последняя непустая структура, из неё считываются настройки. Перед отключением питания, ищется первая пустая структура, и в неё записываются настройки.
Таким образом, при каждом сохранении, настройки записываются в следующую структуру, и так 170 раз. Когда все структуры заполнятся и кончится свободное место, произойдёт полное стирание памяти, и настройки запишутся в первую структуру. И так по кругу.
Применение данного алгоритма позволяет продлить ресурс памяти в 170 раз, а также способствует равномерному износу ячеек.
Теперь немного расскажу о внутренностях станции. Трансформатор использован вот такой:
Фото основной платы в процессе сборки.
Конструктивно паяльная станция состоит из двух плат.
На плате индикации расположены только семисегментные индикаторы.
Один провод не подключен, т.к. не используется точка.
Все остальные компоненты находятся на основной плате.
Размеры плат подогнаны под использование заводского пластикового корпуса B12, имеющего размеры 200x165x70 мм.
Вот что получилось в итоге. Вид спереди.
Вид сзади. Для подключения паяльника я поставил какой-то советский разъём.
- Настройка таймера автоотключения.
- Индикация ошибки.
- Подведём итоги.
В целом самоделкой доволен. Можно не напрягаясь прибавить 20…40 градусов, и не опасаться за оставленный без присмотра включенный паяльник. Некоторые компоненты были в наличии, кое-что пришлось купить. Список затрат:
Изделия под таким названием выпускаются в разных модификациях и характеризуются спецификой применения. Одни фены предназначены для сушки волос, другие используются в строительстве или в процессе ремонта. Да и для радиолюбителей они представляют интерес.
Например, при пайке микросхем, учитывая количество их выводов, работать таким устройством намного удобнее, чем самым совершенным паяльником. В принципе, такой фен для пайки микросхем можно и купить. Стоимость в пределах 2 000 – 10 500 рублей.
Тем же, кто привык все делать своими руками, эта статья подскажет, как и из чего собрать фен для пайки в домашних условиях, не тратя деньги и время на походы по магазинам.
Кто-то посчитает, что нецелесообразно заниматься подобным конструированием, если проще приобрести навыки пайки миниатюрным паяльником. И все-таки самостоятельно сделанный фен – устройство довольно универсальное. В быту им можно производить обжиг материалов, удаляя с них старое лакокрасочное покрытие, разогревать что-либо перед дальнейшей обработкой. В умелых руках он станет незаменимым помощником.
Устройство паяльного фена
Оно практически идентично конструктивному исполнению аналогов, предназначенных для других целей. Принципиальная разница – в мощности нагревательного элемента и в особенности некоторых составных частей.
Корпус и рукоятка
Ручка
Ее необходимо максимально изолировать. Встречаются рекомендации о том, что можно в процессе пайки микросхем пользоваться брезентовой рукавицей, толстой варежкой. Хотя такая перспектива вряд ли кого устроит. Как поступить?
- Можно заказать (выточить самостоятельно) рукоятку их цельного эбонита. Работа не слишком уж и сложная, особенно при использовании станочного оборудования.
- Для термоизоляции целесообразно использовать жаропрочную ткань. Если ей обмотать рукоятку, то вполне можно работать.
Корпус
Как не допустить его перегрева, станет понятнее ниже.
Насадка (сопло)
Нагревательный элемент
Какую проволоку использовать – фехралевую или нихромовую? Первый вариант отпадает по причине жесткости материала. Накрутить из него спираль, причем с малым радиусом, своими руками нереально.
Нагнетатель воздуха
Для самодельного фена можно приспособить миниатюрный вентилятор, который крепится на тыльной стороне корпуса. Кто-то использует небольшой компрессор для аквариума.
Определение характеристик фена
Нет смысла своими руками собирать устройство, не зная, на какую мощность оно должно быть рассчитано. Недогрев платы чреват тем, что установить (заменить) микросхему не получится. Результат перегрева – расплавление корпусов всех радиодеталей, находящихся в рабочей зоне. Поэтому целесообразно ориентироваться на модели промышленного изготовления.
Исходные данные
- Напряжение (В) – 220.
- Мощность (Вт) – порядка 0,5.
Особенности сборки
- Нагревательный элемент располагается в заднем секторе корпуса (ближе к ручке). Это позволит до минимума сократить длину той части шнура питания, которая будет находиться внутри фена. Продольная ось трубки должна совпадать с центром выходного отверстия.
- Соединение проводников со спиралью придется делать способом скрутки. Нихром своими руками пайке не поддается. Если кто знает секрет, поделитесь. Автор будет крайне признателен.
- Спираль представляет собой провод, который наматывается на полую трубку. Что можно использовать? Лучшее решение – изделие из фарфора. Кое-кто из умельцев применяет для этих целей трубчатые резисторы большой мощности, у которых следует лишь откусить выводы. Получившийся нагреватель, в свою очередь, покрывается все той же тканью (жаропрочной). Если за основу берется бытовой фен б/у, то в нем есть слюдяные прокладки. Их следует оставить, а возможно, уложить и дополнительные. Изготовить по имеющимся образцам несложно.
Вполне закономерный вопрос – почему бы не использовать для пайки бытовой фен, тем более что он имеется практически в каждой семье? И многие малоопытные радиолюбители, не совсем понимающие конструктивные особенности различных моделей, им и задаются. Ответ можно дать сразу, причем однозначный – нет, нельзя.
И вот почему. Бытовой фен даже большой мощности не способен нагреть припой до такой степени, чтобы он расплавился (порядка +250 ºС). Устройство придется модернизировать.
Первый
Чтобы повысить температуру воздушного потока, можно снизить обороты двигателя вентилятора. Но спираль-то рассчитана на определенный рабочий режим. Результат такой переделки (доработки) фена легко прогнозируется – перекал проволоки и обрыв цепи.
Второй
Уменьшить сечение сопла. Корпуса всех бытовых фенов делаются из пластмасс. Повышение температуры внутри устройства чревато размягчением (расплавлением) полимеров. Следовательно, пайка микросхем получится весьма кратковременной, а потом фен – в мусоропровод и в магазин, за новым.
Если понятно, что и как нужно сделать, то изготовление фена для пайки микросхем своими руками – задача вполне выполнимая. А если провести полную ревизию в гараже (сарайчике, кладовке, на антресолях), то все необходимое обязательно найдется.
Заранее извиняюсь за шакалистые фотки, но чем богаты, и что под руку попалось в час ночи перед работой.
Влившись с среду восстановления боксмодов фучай 213,понял,что паяльником демонтировать феты и шимки хоть и можно,но сложновато.
вот и возникла идея собрать паяльный(а на край обычный для термоусадки трубок и бутылок,пайки пластмасс) фен.
БП от ноута,щедро подгоненный знакомым,показался мне весьма подходящим питаловом, 20в 4,5а = 90 ватт.
Поэкспериментировав с разного сечения канталом,остановил выбор на 0,4,ибо он грелся до красного-желтого при намотке,потребляющей те самые 4,5 ампера. Хар-ки бп обычно пишут с запасом,так что выжимать максимум заявленной мощности не побоялся.
Провод с концом спирали зафиксирован винтом с шайбами для жесткости и контакта.
Китайский регулятор якобы на 8ампер при 24 вольтах очень быстро умер,потому всё соединено напрямик к бп.
Турбинка для 3д принтера на 24 вольта
Холодной сваркой образовал резьбу под корпус от фонарика,в ней же просверлено отверстие под вывод провода с нагревателя.
Заглушка от фонаря,где была кнопка,рассверлена под впрессовку корпуса от аккумулятора егошки. сопло исполнено из светового огня на ниппель колеса машины/велосипеда. Он цельнометаллический и держит температуру.
Лист слюды,щедро присланный китайцами по 40рэ за кусок 10*15см,отрезан по размеру трубки и сделано много насечек ножом для его сворачивания в трубку.
Из той же слюды сделана основа для спирали,насечки делал алмазным кругом на дремеле, ибо насекать ножом надоело. оч эффективно и ровно!
Желтый провод просто намотан на гайку для контакта с массой.
Второй конец спирали забит за трубку из слюды ради контакта об металл трубки от егошки.
Данные соединения сделаны максимально по-дилетански, ибо это больше эксперимент, и я пошел по простому пути,не придумав ничего проще в реализации.
И всё это добро просто подключено через выключатель напрямик к проводу БП.
Сделан запас проводов на нагреватель для обслуживания нагревателя.
Корпус фонаря не греется вообще! Его охлаждает воздушный поток,а часть трубки с нагревателем вынесена за его пределы.
Фокус окончательно сошел с ума,да и красный или желтый камера превращает в свечение суперновой.
Эффективность: на фото более чем видно. Даже микруха с припаянным пузом снята за 10 секунд.
Флюс не наносил,припой не разбавлял!
Перегрев деталей: не замечен. Тот же микроюсб,который можно поплавить, не пострадал вообще!
Себестоимость: конкретно куплены лишь слюда за 40рэ,вентилятор за бакс,бп почти халява, остальное с запасов хлама.
Итог: честно говоря,я не ожидал чего-то реально годного из этого проекта, тем более со столь малой спиралью, потому,при первой снятой микрухе я просто орал от радости.
Думаю,что он мне еще не раз пригодится не только для починки боксмодов, но и прочего мелкого ремонта электроники.
Возможные альтернативы/модернизация: взять блок питания от пк, у него на 12в линии много больше ампер,приделав ШИМ,поставить термопару.
Но делать я этого,конечно,не буду. Дружко.жпг
Диагностические KKL адаптеры очень распространены в диагностике и ремонте авто. Конкретно для чего они нужны вы сами прекрасно знаете :-) Но за частую в процессе работы их убивают или китайцы присылают не рабочие. Люди расстраиваются, хотя они очень легко ремонтируются. Так же можно легко самому спаять такой адаптер. В этом посте покажу "глубокий внутренний мир" этих адаптеров, их схемотехнику, логику работы и методику проверки и ремонта. Надеюсь пригодится кому ни будь :-)
Все диагностические программы пожилых авто работают через ком порт, это изначально так пошло, ибо тогда УСБ еще не было. По сему диагностический шнурок содержит в себе два преобразователя уровней сигнала. Из уровня СОМ порта -15 - +15 вольт в обычный TTL сигнал с уровнями 0-5 вольт. Дале из TTL преобразует в уровни ISO 9141, 0-12 вольт… Вот так все просто.
Первый преобразователь обычно собран на микрухе МАХ232, так сказать это в классическом адаптере, который работает с физическим СОМ портом или на микросхеме СН340, это для свежих адаптеров, которые работают по УСБ. Микруха СН340 эмулирует для системы СОМ порт, так как все проги заточены для работы именно по СОМ порту, и выдает она на выходе нужный нам сигнал Rx и Tx с уровнями TTL.
Второй преобразователь, TTL в ISO 9141, в классической схеме собран на четырех транзисторах, далее, для экономии и технологичности, стали использовать всевозможные микрухи с компараторами, логикой и т.д. и в финале перешли на микрухи представляющие готовый ISO 9141 интерфейс, сее самое удобное. Чуть не забыл, самые самый первые адаптеры были вообще с одним преобразователем :-)
А вот схемы современных адаптеров. Понятно это не полный сборник схем, на мой взгляд самые типовые…
Ну вот, примерное представление есть об том что будем ремонтировать, пора к ремонту приступить.
Вот схема нашего пациента :-) Как видите совершенство и надежность в простоте. Если б поставили диодик по входу +12 то вообще не убиваем был бы. Но мы еще проще и надежней его сделаем :-)
Так как нет у меня компаратора LM339 в запасах под рукой, я его заменю на специализированную микруху интерфейс ISO 9141, называется она L9637d. Очень удобный зверек. Правда стоит дороже, 80 рублей против 11 :-)))
Вот такую схему буду делать.
Вверху схема оригинальная, крестиками перечеркнул что удалить надо. Внизу схема того что будет. Видите как упрощается :-)
Приступим непосредственно к ремонту.
Мне сказали что его переплюсовкой убили. А сее значит что вылетели компораторы, но сее надо проверить.
1. Подключаем адаптер. Порт видится остальное нет…
2. Проверяем осциллографом выход микрухи СН340, все ОК, микруха живая.
3. Перемыкаем вход-выход, Вася видит адаптер :-)
Сее все значит что мои предположение о том что вылетела LM339 верны.
Выпаиваем микруху LM339, пять резисторов. Они нам больше не понадобятся.
Вот так выглядит плата ДО начала доработки.
Дорабатываем вот так.
Красным нарисовал где надо разрезать.
Синим нарисовал где замкнуть, перемычки поставить.
Вот и все. Осталось запаять новую микросхему L9637d. Запаивается со сдвигом на одну лапку.
Читайте также: