Пассивация металла как сделать
Обогнал время. В 1836-ом году нашелся физик, определивший причину пассивации металлов . Зрил в корень Майкл Фарадей. Это английский экспериментатор. Он предположил, что пассивация связана с окислым налетом на поверхности металлов .
На заявление Фарадея не обратили внимание. Больше повезло Владимиру Кистяковскому. Это уже отечественный физик. Он высказался в поддержку английского коллеги из прошлого спустя 100 лет.
На фото физик Владимир Кистяковский
Кистяковский развил взгляды Фарадея, оформив в общеизвестную теорию. Однако, есть и вторая теория пассивации… Впрочем, для начала разберемся с самим понятием.
Что такое пассивация?
Процесс пассивации – это снижение химической активности металла . Имеется в виду склонность к коррозии. Не секрет, что изделия на основе железа , никеля , хрома , алюминия и еще ряда металлов вступают в реакцию с кислородом атмосферы и воды.
Во взаимодействии участвуют атомы, соприкасающиеся с ней, то есть, поверхностные. Итогом реакции становится ржавчина. Понятием принято обозначать окиси железа , но налет образуется и на прочих металлах .
Исключением являются благородные элементы , к примеру, золото и платина . Они химически инертны, поэтому и ценятся. Ржавчина не разъедает их, драгоценности хранятся миллионы лет.
Их состав зависит от того, с каким металлом ведется работа. Химическая пассивация является резким уменьшением скорости его коррозии. С одной стороны, пленка на поверхности – итог разрушения материала. С другой, покрытие защищает нижние слои металла. Чтобы продлить его жизнь достаточно пленки толщиной в несколько десятков нанометров.
На фото процесс пассивации
Альтернативный взгляд на пассивацию поверхности сводится к абсорбции ею кислорода. Он погружается в поверхностные поры металла. При этом, увеличивается валентность его атомов. Это снижает их химическую активность. Кстати, кислород можно взять не только из атмосферы или воды. Далее, ознакомимся со средами для пассивации.
Среды для пассивации
Разные металлы по-разному реагируют на окислительные среды. Так, пассивация железа осуществляется в концентратах серной и азотной кислот . Это сильные окислители.
Металл вступает в кратковременное взаимодействие с ними, но скорость реакции резко падает с образованием поверхностной пленки или же повышения валентности верхних атомов.
Пассивация азотной кислотой малой насыщенности для железа неэффективна, как и для алюминия, никеля, хрома . Слабые же окислители пассивируют, к примеру, магний и титан .
Коррозию последнего блокирует даже речная вода. Воздействовать ею на металл можно двумя способами. Первый – простой контакт, обмазывание или окунание поверхности.
Второй способ называется электрохимическим. В этом случае через раствор для пассивации пропускают ток. Под его действием защитная пленка получается равномерной.
Именно такую формирует, к примеру, пассивация меди. Ток пропускают через хромосодержащие растворы. Именно в них медь приобретает наибольшую стойкость к коррозии.
Медь после пассивации
Пассивация алюминия связана с бихроматом калия , точнее, его раствором. Требуется малая добавка фтороводорода. Для удовлетворительных результатов достаточно простой химической блокировки поверхности.
Пропорции взяты из расчета на 1 литр воды. Но, важно и время выдержки металла в растворе. Так, 5-секундное погружение даст радужную пленку с зелеными всполохами. Полуминутная пассивация цинка приводит уже коричневому , бурому налету.
Подготовка к пассивации
Но, как взаимодействовать, если металл грязный? Реакция пройдет между окислителем и сторонними элементами, а не атомами сплава . Поэтому, пассивация хрома, железа и прочих металлов проводится после их очистки.
Она сводится к мытью или ошкуриванию. Последнее, как правило, делают наждачной бумагой . Уже после готовится электролит, или простой окислительный раствор.
В случае электролитического процесса в подготовительные работы входит отлаживание нужной силы тока. Успешно пассивация латуни, хрома, железа и прочих металлов проходит при 12-градусной величине напряжения.
На фото оборудование для пассивации металлов
То есть, поток электронов в растворе должен быть неспешным. Под действием тока, кстати, на поверхность металлов можно завести любые атомы. Можно сделать золотое , платиновое , палладиевое напыления. Потребуются катод и анод.
Пассивация электрохимическая осуществляется на специальных аппаратах. Они имеются в свободной продаже. Установки компактны, но дорогостоящи. Модели дешевле 100 000 рублей продают редко.
Как правило, стоимость аппаратов начинается от 200 000. Ценник обусловлен многофункциональностью техники. Кроме пассивации машины , как правило, выполняют обезжиривание поверхностей, удаляют с них окислы, полируют и даже ставят маркировки.
Применение пассивации
Понятно, что пассивация продлевает век металлических изделий , но каких и в каких случаях. Начнем с машин. В них часто присутствуют элементы, подверженные коррозии. Если эти элементы в зоне видимости, они подлежат покраске.
Нельзя допустить, чтобы из-под декоративно-защитного слоя проступила ржавчина. Поэтому, перед покраской осуществляется пассивация. Ряд растворов для нее не только дает пленку на поверхности деталей, но и обезжиривает их.
Некоторые пассиваторы, не смотря на свою эффективность, под запретом. В Евросоюзе, к примеру, запретили оксид хрома. Он токсичен. Однако, прочие пассиваторы уступают опасному соединению в эффективности.
Европейские производители автомобилей и предметов домашнего обихода вынуждены искать действенные альтернативы. Одна из них – сложные фториды циркония . Это дорогостоящие вещества, что влияет на цену конечной продукции.
На фото наглядно виден результат пассивации
Пассивация стали осуществляется на паровых турбинах. Оксид хрома здесь не нужен. Интерес в другом. Возникает вопрос, зачем нужна пассивация нержавеющей стали, она ведь нержавеющая.
Однако, и такой сплав может разрушаться, если постоянно контактирует с агрессивными средами. В качестве последних могут выступить детали из иных видов стали , подверженных коррозии, или элементы сварки.
На швах, порой, остаются частички железа. Этого достаточно, чтобы ржаветь начала даже нержавеющая сталь. Вот и проводятся зачистка и последующая пассивация швов, а иногда, и всех изделий .
Работает метод пассивации и в зуботехническом деле. В частности, обработке подвергаются импланты. Их нижняя часть – винты, вмонтированные в челюстную кость . На винты наносится пломбировочный материал, а сверху – коронка.
Прибегают к имплантированию, когда зуб удален, не осталось даже корней. Так вот, нижний винт выполняется из надежных, но не драгоценных сплавов. Чтобы избежать их разрушения в челюсти, что может привести к заражению, проводят пассивацию.
Пассивация серебра, стали , латуни и прочих металлов часто проводится с декоративной целью. Уже говорилось, что кратковременная выдержка в окислительном растворе дает тонкую, радужную пленку.
На фото гаечный ключ без применения пассивации металла
Она блестит и переливается. В итоге, краны, ручки дверей, сливы ванн и раковин выглядят привлекательно. К тому же, защитная пленка исключает возможность аллергии на изделие. Во многие сплавы , к примеру, добавляют никель.
Примерно четверть людей не переносят его, наблюдают покраснения кожи и испытывают ее зуд. Подобная реакция бывает на сплавы для бижутерии . Поэтому, добросовестные производители пассивируют украшения .
В современном мире используется большое количество методов для предотвращения образования коррозии на поверхности разных видов металлов. Вещества, которые для этого применяются, покрывают поверхность тонкой пленкой, которая не дает металлам окисляться. По толщине защитная пленка быть разной. Она зависит от наносимого на металлы состава. Также для проведения процедуры защиты металлов от коррозии применяются методы, которые основаны на изменении их свойств. Пассивация относится именно к такой категории процессов.
Пассивация поверхностей
Практически все металлы являются достаточно прочными материалами. Однако на их структуру и общее состояние может повлиять обычный кислород или жидкость. Под влиянием агрессивной среды на поверхности металлических изделий скапливается налет, который представляет собой коррозию. Он опасен тем, что под его влиянием структура металла разрушается, и изделие из него становится непригодным для дальнейшего использования.
Ионы делятся на положительно заряженные и отрицательно заряженные. Во время прохождения через металл электрического тока положительно заряженные частицы стремятся к катоду, а отрицательно заряженные к аноду. Именно на аноде образуются оксиды металлов, которые и являются результатом расщепления верхнего металлического слоя. В итоге на поверхности обрабатываемого металла появляется очень тонкая защитная пленка, которая обладает уникальными защитными качествами.
Пассивация направлена на то, чтобы сделать активность металла меньше. Он становится пассивным и практически не подвергается влиянию окружающей среды.
В современных отраслях промышленности данная процедура является достаточно востребованной. Она помогает защищать металлические поверхности от появления коррозии. Процесс пассивации применяется в тех ситуациях, когда есть необходимость в тщательной подготовке поверхности для нанесения лакокрасочного покрытия. Также данная процедура является незаменимой на тех предприятиях, где металлическим предметам приходится очень часто осуществлять взаимодействие с агрессивной окружающей средой.
Пассивация металлов является полезной процедурой, которая делает эти вещества пассивными. Она позволяет им сохранять свои свойства на длительное время. Тонкая пленка обладает отличным уровнем защиты, который придает металлам дополнительную прочность и твердость.
Процесс пассивации
Процедуру пассивации можно осуществлять на производственных предприятиях или в домашних условиях.
Она состоит их нескольких этапов:
Перед любыми процедурами по защите металлических поверхностей от коррозии используется их подготовка. Она заключается в том, чтобы сделать поверхность максимально более чистой, чтобы наносимым на поверхность металлов веществам было легче проникать в их структуру. Для начала следует удалить с металла все загрязнения. Сделать это можно путем мыться и отшкуривания при помощи наждачной бумаги.
На втором этапе необходимо подготовить вещество, которое будет способствовать под воздействием небольшого тока образованию тонкой пленки, защищающей от коррозийного налета.
На данном этапе необходимо провести электрический ток с небольшим уровнем напряжения.
Важно: Для достижения наилучшего результата величина электрического напряжения не должна быть более двенадцати градусов.
- Обработка металла после процедуры пассивации
На заключительном этапе проводится проверка металла на прочность. Поверяется его устойчивость к влиянию окружающей среды.
Виды пассивации
В настоящее время по способу проведения пассивации выделяются следующие виды пассивации:
Электрохимическая пассивация
Данный вид пассивации заключается в том, чтобы нанести на поверхность металла солей и кислых растворов наряду с электролитом. В итоге проведения данной процедуры на поверхности металла оседают заряженные частицы, которые образую тонкую пленку, обеспечивающую надежную защиту от коррозии.
Химическая пассивация
Данная процедура подразумевает обработку металлов химическими реагентами, которые образуют на их поверхности защитную пленку. Для этого применяются растворы, которые состоят из никеля, хрома и других элементов. Они делают структуру металла более плотной и твердой.
Пассивация металла
По видам металлов пассивация может быть представлена такими процессами, как:
Пассивация стали
Данный вид пассивации применяется на многочисленных производственных предприятиях. Он дает возможность после обезжиривания поверхности наносить на поверхность металла активных веществ, которые сделают металла пассивным. Изделия из обработанной таким образом стали получаются прочными долговечными.
Видео пассивации стали.
Пассивация меди
Для данного вида пассивации характерно использование растворов, сделанных на основе хрома. Данное вещество образует на поверхности плотную пленку, которая делает металла более прочным.
Пассивация цинков
В настоящее время не редко используется пассивации цинка. Стоит отметить, что во время данной процедуры необходимо быть предельно внимательным, чтобы пленка покрытия была максимально тонкой. Это нужно по той причине, что у цинковых изделий толщина материала итак не относится к разряду больших. Если пленка будет толстой, то толщина металла еще уменьшится.
Видео пассивации цинков.
Пассивация железа
Железо является одним из самых известных металлов, которые подвержены образованию на их поверхности коррозии. Именно по этой причине для защиты изделий из данного материала рекомендуется использовать специализированные методы. Пассивация данного металла проводится в растворе серной кислоты. В результате на поверхности металла образуется тонкая защитная пленка.
Статьи по теме
Антикоррозионные средства
Антикоррозионные пигменты классифицируются на: цинковые крона, алюминий три-полифосфаты и слюдянистую окись железа.
Пассивирование
Пассив и рование, пассивация металлов , переход поверхности металла в пассивное состояние, при котором резко замедляется коррозия.
Во многих сферах промышленности, строительства и ремонта используются инструменты, крепежи и метизы из нержавеющей стали. Но несмотря на то, что данный материал обладает повышенной устойчивостью к образованию коррозии, все же в некоторых случаях ржавчина может проявиться. Для предотвращения этого необходимо принятие дополнительных мер – химическое пассирование изделий.
Что такое пассивация?
Процесс пассивации позволяет вернуть нержавеющей стали свои первоначальные свойства, дополнительно защищая ее от воздействия многих внешних факторов. Это специальная химическая обработка металлических изделий, после проведения которой на их поверхности образуется специальное защитное покрытие. При взаимодействии с концентрированными кислотами на нержавеющей стали появляется малозаметная пленка. Этот процесс и называется пассивацией.
Прибегают к данному методу как для дополнительной обработки во время производства изделий, так и для восстановления основных свойств деталей из нержавейки.
Зачем это необходимо?
Лист нержавеющей стали имеет на своей поверхности очень тонкую оксидную пленку. Именно она и препятствует образованию ржавчины на деталях, крепежах, метизах, изготовленных из этого материала. Но малейшее нарушение целостности этого покрытия приводит к тому, что основные антикоррозийные свойства нержавейки утрачиваются. Причины повреждения оксидной пленки могут быть самыми разными:
при контакте материала с хлором; при взаимодействии стали с морской водой; в случае повреждений механическим или физическим путем, в том числе при царапинах и незначительных вмятинах.
Поэтому важно соблюдать условия эксплуатации, которые регламентированы заводами-производителями тех или иных изделий (столовых приборов, крепежей, метизов, рабочих инструментов, цельных листов и проч.). Запрещается использовать моющие средства, имеющие в своем содержании хлор и иные агрессивные химические вещества.
Но самый большой ущерб оксидной пленке наносит сварка. Особенно это губительно в случае сварки труб. В такой ситуации защитная поверхность разрушается вдоль всего шва. Для восстановления поверхностей и защиты изделий от образования ржавчины применяется пассивация стали. Но здесь еще не менее важную роль играет и состав нержавейки.
Классификация нержавеющей стали
Антикоррозийные свойства нержавейки напрямую зависят от ее состава. Исходя из этого данную сталь маркируют. Классификация позволяет различать каждый тип нержавеющего металла по гибкости, твердости, степени антикоррозийной защиты. В зависимости от состава и своего назначения различают:
мартенситные стали. Из них обычно изготавливаются ножи (в том числе и для пищевой промышленности), турбины. Эта сталь, имея в своем содержании большое процентное соотношение хрома, очень твердая; ферритные материалы. Количество хрома в такой стали превышает предыдущее значение на 3-4%. Этот материал имеет высокую устойчивость фосфорной кислоты, аммиачной селитры и азотной кислоты; аустенитные стали. Этот вид нержавеющей стали весьма пластичный. Часто его используют в машиностроении; дуплексные или ферро-аустенитные металлы. Это очень прочные, но вместе с тем пластичные нержавеющие материалы.
Исходя из состава нержавейки, можно определить, есть ли необходимость в дополнительной обработке изделий или нет. От этого же зависит и вероятность образования коррозии на поверхности элементов, изготовленных из этого вида стали.
Чем обусловлена высокая коррозионная устойчивость нержавеющих сталей
Суть такого явления, как коррозия, состоит в том, что поверхность металла под воздействием негативных внешних факторов и окружающей среды начинает разрушаться. Что характерно, коррозия из-за постоянного окисления поражает металл слой за слоем, постепенно разрушая внутреннюю структуру стали. Во многих случаях локализовать пораженные участки внутренней структуры металла уже не имеет смысла, поэтому стальные изделия приходится заменять на новые.
Пассивирование (или пассивация) как технология, позволяющая обеспечить надежную защиту стали от коррозии, лежит в основе создания такого уникального металла, каким является нержавеющая сталь. В химическом составе преимущественного большинства сталей, относящихся к нержавеющей категории, могут содержаться различные элементы:
- никель;
- молибден;
- кобальт;
- ниобий;
- марганец.
Однако основным легирующим элементом таких сталей, количество которого в их составе может варьироваться в пределах 12–20%, является хром. Добавление различных легирующих элементов в состав нержавеющих сталей позволяет придать им требуемые физико-химические характеристики, но именно хром отвечает за коррозионную устойчивость стального сплава.
Влияние хрома на свойства нержавеющей стали
Нержавеющие стальные сплавы, в составе которых содержится 12% хрома, проявляют высокую коррозионную устойчивость только при взаимодействии с окружающим воздухом. Если количество хрома в химическом составе нержавеющей стали увеличить до 17%, то изделия из нее смогут спокойно взаимодействовать с азотной кислотой, не утрачивая при этом своих эксплуатационных характеристик.
Чтобы сделать металл устойчивым к еще более агрессивным средам, к числу которых относятся соляная, серная и другие кислоты, в нем не только увеличивают количественное содержание хрома, но и добавляют в его состав такие элементы, как медь, молибден, никель и др. Иными словами, выполняют пассивирование металла, то есть увеличивают его пассивность к коррозионным процессам.
В процессе пассивации зоны сварочного шва образуется прочная пленка
Пассивация, при которой в химический состав нержавеющей стали добавляют соответствующие легирующие элементы, – это не единственное условие высокой коррозионной устойчивости металла. Чтобы защитные свойства нержавеющей стали оставались на высоком уровне, оксидная пленка на ее поверхности, состоящая преимущественно из оксида хрома, должна быть целой, иметь однородный химический состав и толщину.
Технология и методы
Существуют различные методы обработки нержавейки. Но выделяют два основных способа пассивации стали:
Травление химическими кислотами (концентратами) на отдельных участках. Эта технология часто применяется для обработки сварных швов, но допускается и в других случаях. Этот процесс имеет различные варианты последовательности обработки. Различаются они как по составу химических веществ, так и по времени проведения работ. Самым распространенным способом в этом случае является электролитическое травление. Эта технология заключается в том, что изделие из нержавеющей стали помещают в специально подготовленную ванну, состоящую из концентрированных кислот. Через этот состав пропускается электрический ток (переменный или постоянный). Металл играет роль либо катода, либо анода. Подаваемый ток оказывает механическое воздействие на сталь, благодаря чему происходит выделение водорода или газообразного кислорода. Это помогает отделению окисной пленки на поверхности изделия. Травления готовыми смесями кислот. Они могут быть изготовлены в виде паст, гелей, спреев, концентратов. Этот способ наиболее удобен.
Независимо от того, какой метод применяется для пассивирования нержавеющей стали, важно соблюдать последовательность выполнения работ.
Виды пассивации
Основными и наиболее хорошо отработанными видами пассивации являются:
Химическая
Химическая пассивацияпредполагает применение растворов солей различных металлов.Наиболее эффективно пассивация производится азотной кислотой. Кроме неё для формирования раствора пользуются серной кислотой или лимонной. Для повышения качества процесса в раствор добавляют небольшое количество бихромата натрия. Его количество не превышает 6% от общей массы. Состав раствора подбирается индивидуально и во многом зависит от марки обрабатываемого металла. Например, для пассивации железа применяют соли металлов, растворённые в серной кислоте высокой концентрации.
Сущность химической пассивации заключается в активном притяжении отрицательных ионов, которые присутствуют в растворе, к атомам металла.Это происходит благодаря наличию у них положительного заряда. В результате такой диффузии образуется поверхностный слой.
Для пассивации обязательно проводят предварительную подготовку поверхности изделия. Её тщательно зачищают механическими и химическими методами.От качества этой процедуры зависит конечный результат и надёжность образованной плёнки.Большое значение это имеет при пассивации цветных металлов: латуни, меди, бронзы.
Электрохимическая
Этот вид пассивации основан на принципах, заложенных в технике гальванической обработки изделий. Ускорение обработки осуществляется благодаря воздействию постоянного тока, который протекает через раствор, ускоряя химическую реакцию. Такая пассивация называется электрохимическая.
В состав такой установки кроме ванны, в котором размещают электролит, используется источник постоянного тока, соединительные провода и один электрод. Вторым электродом является сама деталь.Другим вариантом контактов являются один электрод и корпус ванной (она должна быть изготовлена из металла, стойкого к воздействию электролита и электрического тока). На практике применяют электрические установки с относительно невысоким уровнем напряжения. Его величина не превышает 12В.
В обоих случаях при включении установки через раствор пропускают электрический ток. Он является стимулятором протекания процесса пассивации на поверхности заготовки. На практике различаю анодную и катодную пассивацию.
При такой пассивации положительный потенциал подается на заготовку, а отрицательный — на корпус ванны. При использовании электрохимического способа защитная пленка образуется быстрее и получается более ровной. Но такая технология дороже химической пассивации, т. к. в ней применяется более сложное оборудование и происходит расход электроэнергии.Под его действием защитная пленка получается равномерной. Именно так формируется плёнка на поверхности медных заготовок. Ток пропускают через растворы с растворёнными в них солями хрома. Именно в них медь приобретает наибольшую стойкость к коррозии.
Важными параметрами в этом процессе является время протекания пассивации, плотность и состав электролита, критическая величина тока пассивации. Эти параметры рассчитаны для различных металлов и приведены в специальных таблицах. На основании этих данных рассчитывают допустимое время обработки.
Этапы химического пассивирования
В процессе формирования однородной инертной пленки на поверхности изделий из нержавейки важно учитывать особенности состава стали и степень повреждения защитного покрытия. Химическое пассивирование сегодня является неотъемлемой частью в работе с нержавеющими материалами. Это позволяет продлить срок их службы, избавиться от ржавчины и повреждений, а также предотвратить образование коррозии. Во время проведения работ по пассивации следует соблюдать поочередность этапов:
Сначала осуществляется очистка материалов от загрязнений. Удаляются жирные пятна, ржавчина и прочие налеты. При технологии травления химическими кислотами изделие погружают в ванну со смесью соляной кислоты и серной. При температуре от 60 до 80 градусов сталь здесь выдерживается в течение 20-40 минут. Если применяется метод травления готовыми смесями кислот, то для очистки используются специальные концентрированные составы (пасты, гели, спреи), которые наносятся на поверхность стали ручным способом. Химикат оставляют ориентировочно на 30 минут. Затем проводится тщательная промывка изделий водой. Начинается процесс пассивации. В первом случае сталь погружают в кислотную ванну. Во втором – наносят гели, пасты, спреи и прочие готовые химические составы на поверхность изделия. В случае с готовыми средствами предусмотрен еще один этап – обработка пассиватором. Это позволяет обеспечить принудительное образование оксидной пленки на нержавеющей стали. Последний этап состоит из тщательной промывки изделия.
Состав нержавеющей стали и марка играют далеко не последнюю роль во внешнем виде изделия после химического пассивирования. Некоторые виды имеют темный цвет, другие же более светлый. Но независимо от этого данный способ обработки стали имеет целый перечень преимуществ:
улучшается сопротивление к образованию коррозии; происходит равномерное сглаживание поверхности изделия; удаляются заусенцы, царапины, вмятины; срок службы изделий значительно увеличивается.
Пассивизация: сталь приобретает свойства золота
В ходе этой процедуры внешний слой обрабатываемых материалов приобретает характеристики, которые делают их сходными с благородными металлами – они становятся устойчивыми к окислению и другим агрессивным воздействиям.
Нужно отметить, что универсальных способов пассирования не существует – каждому металлу нужен свой подход. На практике это отражается в составлении специальных составов электролитов, разработке индивидуальных режимов воздействия и расчете показателей тока для каждой отдельной процедуры пассивизации металла.
Для создания фазовых или адсорбционных плёнок, образующих плотный барьер для коррозии, используется электрохимический или химический метод.
Электрохимический способ: использование электролита и тока
Данный метод основан на изменении свойств металлов при их погружении в электролит и гальванизации. При этом для каждого отдельного случая электролит подбирается индивидуально. Анодом служит металл, который по своим химико-физическим параметрам отвечает задачам пассирования.
Электрохимический метод применяют для пассирования меди с помощью хромосодержащих составов. Для создания оксидной плёнки на цинке используют серную кислоту и дихромат натрия, для алюминия – фторводородный состав.
Химический способ: окислить, чтобы защитить от окисления
Этот метод подразумевает использование растворов окислителей, которые при взаимодействии с металлом образуют на его поверхности оксидную плёнку. Чтобы процесс был контролируемым, и окисление не затронуло более глубокие слои, применяются специальные составы-нейтрализаторы.
Процедура химического пассирования включает в себя следующие этапы:
- зачистка поверхности при помощи абразивных материалов с последующим обезжириванием;
- смывание обезжиривающих составов сначала горячей, затем холодной водой;
- нанесение реагента на заданный период времени;
- использование кальцинированной соды в качестве нейтрализатора химического пассиватора;
- промывка в холодной воде поточным методом, сушка тёплым воздухом;
- использование оптических датчиков для контроля свойств поверхности.
Если инструментальный и визуальный контроль даёт неудовлетворительные результаты, то процедуру повторяют заново, начиная с первого шага.
Пассивирование, (или пассивация) металлов является особой обработкой, в ходе которой внешний слой материала приобретает новые свойства, делающие металлы похожим на благородные – то есть не поддающимися окислению и каким-либо другим негативно влияющим на него действиям.
В ходе обработки получаются оксидные плёнки на поверхности. И если эта плёнка не будет как-то нарушена грубым физическим воздействием, то любой метал, ранее требовавших особых условий эксплуатации, делается перед ними защищённым и стойким.
Суть и описание процесса
Для защиты от коррозии или других видов химических разрушений на поверхности металла формируют фазовый или адсорбционный слой (плёнку). Технически это выглядит как нанесение такого защитного покрытия с помощью специальных растворов (химическое пассивирование) или к созданию защитного барьера прибегают другими способами (электролитическая пассивация).
Электролитическая является более предпочтительной как химически более стойкая.
Целью процесса является снижение химической активности металлов с возможностью их сохранения. Ведь убытки от коррозии как от атмосферных воздействий, так и от реагентов в технологических процессах во всём мире может достигать величин десятков миллиардов долларов. И для защиты этих металлов практически к каждому из них придуман свой механизм нанесения защитных слоёв (потому что универсальных методов не существует, каждый металл требует своего подхода). На практике это вылилось в разработку особых режимов воздействия, уникальных составов электролитов и расчёта напряжения и силы тока для каждого конкретного случая нанесения плёнок на металл.
Химическая пассивация
Это обработка металлов растворами соединений, которые способны быстро образовать оксидную поверхность. Но чтобы процесс не пошёл вглубь, особенно активно разрушая слабые места в кристаллических решётках металлов. На определённой стадии его останавливают, применяя вещества-нейтрализаторы, а затем подвергая металл промывке в разных средах и при разной температуре.
При неудовлетворительном качестве полученных результатов процесс повторяют, начиная с абразивной зачистки.
Электролитическая пассивация
Основана на свойстве металлов переходить через электролит с приложенным напряжением на поверхность обрабатываемого металла. Для каждого конкретного вида металла подбирается присущий только ему электролит. А в качестве анода также используется металл, подходящий по своим физико-химическим показателям.
Пассивирование стали
Указанные пигменты могут работать и как химические пассиваторы, без применения сложного механизма их соединения с покрываемым металлом. Нанесение таких пигментов осуществляется обычными малярными принадлежностями, и связано обычно с большими габаритами обрабатываемых поверхностей, которые не поместишь в электролитическую ванну (корпуса судов всех видов). Но в этом случае защитное действие будет слабее. |
При анодном же покрытии с помощью пигментов в пограничном обрабатываемом внешнем слое возникает высокая плотность тока в порах образуемой защитной плёнки. В железе как части стального сплава защитные оксидные плёнки в естественных условиях образоваться не могут, то пассивирование возможно только в случае включения в механизм покрытия пигментов-ингибиторов.
Но основное различие в образовании защитных слоёв на металле методами химической и электролитической пассивации заключается в скорости процесса и прочности образуемой фазовой плёнки. Ведь и в химической ванне, и в ней же, но с добавленным к процессу электрическим током и напряжением процесс образования оксидной или солевой плёнки идёт по одному сценарию.
Пассивация конструкционных и специальных сталей
Для надёжной пассивации сталей их желательно предварительно покрыть, все или частично (те их элементы, которые будут испытывать наибольшее воздействие неблагоприятных факторов) никелем, цинком или кадмием с использованием хромовых солей. Пассивирование этими солями выгодно тем, что после укрепления поверхностного слоя изделия эксплуатируются без опасности возникновения коррозий очень длительное время. А в случае начала ржавления отдельных участков их можно, не разбирая и не снимая с места конструкцию, пассивировать этим же составом с солями хрома прямо на месте, методом аппликации пропитанных растворами накладок.
Пассивация алюминия
Для стойкой защиты не обойтись без процесса анодирования, результатом которого бывает получение защитных плёнок толщиной от 5 до 20 мМк. А в отдельных режимах можно получить и сверхпрочные плёнки,(выдерживающие нагрузку до 1500 кг на мм, то есть выше, чем у инструментальной стали.
Пассивация серебра
Серебро относится к благородным металлам, несмотря на изменение его свойств на свету (оно темнеет). До наступления эры цифровой фотографии эта способность серебра использовалась в создании светочувствительных материалов (фотоплёнки и фотобумаги).
Но потемнение изделий из серебра в быту – процесс часто нежелательный, и для его предотвращения используют химические способы предохранения верхнего, пограничного с воздухом, слоя металла, от воздействия света и воздуха. Лучше же всего предотвращает такие изменения пассивация методом обработки серебра в хромпике – двухромовокислый калий K2 Cr2 O7.
Для его осуществления хромпик в количестве 60 г разводят в 1 литре кипячёной нежёсткой воды. Рабочая температура раствора от 25 до 40 градусов, это не критично. Пассивацию проводят, просто погрузив серебряное изделие в ванну полностью на 20 минут и периодически перемешивать раствор. В случаях, когда разведённое количество хромпика не покрывает изделие полностью (статуэтка сложной формы или объёмный серебряный канделябр) попеременное обрабатывание поверхности частями лучше не практиковать, а развести реактив в необходимом для нормального объёма количестве воды.
Химическое пассивирование нержавейки
Несмотря на то, что нержавеющая сталь как в своей массе, так и в поверхностном слое уже инактивирована в смысле воздействия на неё неблагоприятных условий среды, иногда коррозия находит у этой стали слабые места.
Сталью железо делают легирующие добавки. А основной такой добавкой, делающей сталь нержавеющей, является хром. Но при его 12% в составе сплава он защитит сталь только от атмосферных воздействий. При 17% выдержит уже обработку азотной кислотой, одной из самых агрессивных кислот.
Дело ещё и в состоянии поверхности нержавеющего материала. И если поверхностный слой нарушен, если на нём есть глубокие царапины, задиры, микроскопические ударные кратеры, то даже легированный металл будет подвержен коррозии.
А иногда достаточно сварного шва на поверхности. И пусть сварка тоже выполняется специальными электродами и в специальном режиме, образующееся в шве чистое железо станет центром коррозии, которая примет цепной характер. Да что сварка? Даже если резать или пилить рядом с нержавеющей конструкцией обычную, нелегированную сталь, то опилки, стружки и любой формы частички от неё, попавшие на нержавейку, тоже быстро станут такими центрами.
Заключение
А в итоге, когда начинаешь разбирать причины появления ржавчины на нержавеющей стали, выясняется, что виной было уничтожение естественной для этого вида стали оксидной плёнки. Поэтому дополнительной защитой, которая нужная нержавейке – это обработка кислотами: серной, соляной, азотной с последующей нейтрализацией её остатков после того, как она уже образовала химически-нейтральный защитный слой на металле. И смыть остатки нейтрализатора водой, а потом вытереть насухо. Теперь только очередное грубое механическое нарушение оксидной плёнки способно запустить механизм коррозии.
Читайте также: