Осциллограф своими руками
О том, как собрать самый простой адаптер для программного виртуального осциллографа, пригодный для использования в ремонте и настройке аудиоаппаратуры.
О виртуальных осциллоскопах.
Скачал из сети несколько программных осциллографов и попытался что-нибудь померить, но ничего путного из этого не вышло, так как, либо не удавалось откалибровать прибор, либо интерфейс не годился для скриншотов.
Из недостатков можно назвать некоторую нестабильность работы. Программа иногда подвисает (когда запущено несколько процессов одновременно) и для того, чтобы её сбросить приходится прибегать к помощи Task Manager-а. Но, всё это компенсируется привычным интерфейсом, удобством использования и некоторыми очень полезными функциями, которые я не встречал ни в одной другой программе подобного типа.
Внимание!
Собственно, все работы сводятся к тому, чтобы изготовить делитель напряжения (аттенюатор), который позволил бы охватить широкий диапазон измеряемых напряжений. Другая функция предлагаемого адаптера – защита входа аудиокарты от повреждения при попадании на вход высокого напряжения.
Технические данные и область применения.
Электрическая схема аппаратной части осциллографа.
Чтобы обезопасить линейный вход аудиокарты от случайного попадания высокого напряжения, параллельно входу установлены стабилитроны VD1 и VD2.
Резистор R1 ограничивает ток стабилитронов до 1мА, при напряжении 1000 Вольт на входе 1:1. Если Вы, действительно, собираетесь использовать осциллограф для измерения напряжения до 1000 Вольт, то в качестве резистора R1 можно установить МЛТ-2 (двухваттный) или два МЛТ-1 (одноваттных) резистора последовательно, так как резисторы различаются не только по мощности, но и по максимально-допустимому напряжению. Конденсатор С1 также должен иметь максимальное допустимое напряжение 1000 Вольт.
Небольшое пояснение вышесказанного. Иногда требуется взглянуть на переменную составляющую сравнительно небольшой амплитуды, которая, тем не менее, имеет большую постоянную составляющую. В таких случаях нужно иметь в виду, что на экране осциллографа с закрытым входом можно увидеть только переменную составляющую напряжения. На картинке видно, что при постоянной составляющей 1000 Вольт и размахе переменной составляющей 500 Вольт, максимальное напряжение, приложенное к входу, будет 1500 Вольт. Хотя, на экране осциллографа мы увидим только синусоиду амплитудой 500 Вольт.
Как измерить выходное сопротивление линейного выхода?
Если у аудиокарты всего одно выходное гнездо, то тогда всё ясно. Оно одновременно является и линейным выходом и выходом на телефоны (наушники). Его импеданс, как правило, мал, и его можно не измерять. Именно такие аудио-выходы используются в ноутбуках.
Когда же гнёзд целых шесть и есть ещё парочка на передней панели системного блока, а каждому гнезду можно назначить определённую функцию, то выходное сопротивление гнёзд может существенно отличаться. Обычно, самый низкий импеданс соответствует гнезду салатового цвета, которое по-умолчанию и является линейным выходом.
Как видно из формулы, абсолютные значения измеренного напряжения роли не играют, потому эти замеры можно делать задолго до калибровки осциллографа. Пример расчёта. R1 = 30 Ом. U1 = 6 делений. U2 = 7 делений. Rx = 30(7 – 6) / 6 = 5 (Ом)
Как измерить входное сопротивление линейного входа?
На картинке изображена схема подключений. Напряжения U1 и U2 нужно измерить виртуальным осциллографом в соответствующих положениях выключателя SA. Абсолютные значения напряжения знать не нужно, поэтому расчёты валидны до калибровки прибора.
Пример расчёта. R1 = 50кОм. U1 = 100 U2 = 540 Rx = 50 * 100 / (540 – 100) ≈ 11,4 (кОм).
Вот результаты замеров импеданса разных линейных входов. Как видите, входные сопротивления отличаются в разы, а в одном случае почти на порядок.
Как рассчитать делитель напряжения (аттенюатор)?
Максимальная неограниченная амплитуда входного напряжения аудиокарты, при максимальном уровне записи, около 250мВ. Делитель же напряжения, или как его ещё называют, аттенюатор позволяет расширить диапазон измеряемых напряжений осциллографа. Аттенюатор можно построить по разным схемам, в зависимости от коэффициента деления и необходимого входного сопротивления.
Вот один из вариантов делителя, позволяющих сделать входное сопротивление кратным десяти. Благодаря добавочному резистору Rдоб. можно подогнать сопротивление нижнего плеча делителя до какой-нибудь круглой величины, например, 100 кОм. Недостаток этой схемы в том, что чувствительность осциллографа будет слишком сильно зависеть от входного сопротивления аудиокарты. Так, если входной импеданс равен 10 кОм, то коэффициент деления делителя увеличится в десять раз. Уменьшать же резистор верхнего плеча делителя не желательно, так как он определяет входное сопротивление прибора, да и является основным звеном защиты прибора от высокого напряжения.
Так что, я предлагаю Вам самостоятельно рассчитать делитель, исходя из входного импеданса Вашей аудиокарты. На картинке нет ошибки, делитель начинает делить входное напряжение уже при выборе масштаба 1:1. Расчеты же, конечно нужно делать, опираясь на реальное соотношение плеч делителя. На мой взгляд, это самая простая и вместе с тем самая универсальная схема делителя.
По представленным формулам можно рассчитать аттенюатор для адаптера, если Вы согласитесь с предложенной схемой.
Пример расчёта делителя. Исходные значения. R1 – 1007 кОм (результат замера резистора на 1 мОм). Rвх. – 50 кОм (я выбрал более высокоомный вход из двух имеющихся на передней панели системного блока).
Если Вы сомневаетесь в точности своего тестера, то можно подогнать любой резистор с максимальной точностью методом сравнения показаний омметра. Для этого, вместо постоянного резистора R2 временно устанавливается подстроечный резистор R*. Сопротивление подстроечного резистора подбирается так, чтобы получить минимальную ошибку в соответствующем диапазоне деления. Затем сопротивление подстроечного резистора измеряется, а постоянный резистор уже подгоняется под измеренное омметром сопротивление. Так как оба резистора измеряются одним и тем же прибором, то погрешность омметра не влияет на точность замера.
А это парочка формул для расчёта классического делителя. Классический делитель может пригодиться, когда требуется высокое входное сопротивление прибора (мОм/В), а применять дополнительную делительную головку не хочется.
Как подобрать или подогнать резисторы делителя напряжения?
Так как радиолюбители часто испытывают трудности при поиске прецизионных резисторов, я расскажу о том, как можно с высокой точностью подогнать обычные резисторы широкого применения.
Использование подстроечных резисторов.
Как видите, каждое плечо делителя состоит из двух резисторов – постоянного и подстроечного. Недостаток – громоздкость. Точность ограничена только доступной точностью измерительного прибора.
Раздел: [Измерительная техника] Сохрани статью в: Оставь свой комментарий или вопрос:
Самодельные варианты современных приставок-осциллографов
В противном случае – добро пожаловать в одно из сообществ радиолюбителей, в котором вам смогут дать дельный совет. Возможно, впоследствии именно по вашей схеме новички будут собирать свой первый в жизни осциллограф.
Простейший осциллограф из компьютера
Не секрет, что у начинающих радиолюбителей не всегда есть под рукой дорогое измерительное оборудование. К примеру осциллограф, который даже на китайском рынке, самая дешевая модель стоит порядка нескольких тысяч. Бывает осциллограф нужен для ремонта различных схем, проверка искажений усилителя, настройки звуковой техники и т.п. Очень часто низкочастотный осциллограф используется при диагностике работы датчиков в автомобиле. В этом ряде случаем вам поможет наипростейший осциллограф, сделанный из вашего персонального компьютера. Нет, ваш компьютер никак не придется разбирать и дорабатывать. Вам понадобиться всего на всего спаять приставку – делитель, и подключить её к ПК через звуковой вход. А для отображения сигнала установить специальный софт. Вот за пару десятков минут у вас появиться собственный осциллограф, который вполне может сгодиться для анализа сигналов. Кстати можно использовать не только стационарный ПК, но и ноутбук или нетбук. Конечно, такой осциллограф с большой натяжкой сравним с настоящим прибором, так как имеет маленький диапазон частот, но вещь в хозяйстве очень полезная, чтобы посмотреть выхода усилителя, различные пульсации источников питания и тп. Схема приставки Согласитесь, что схема невероятна проста и не потребует много времени для её сборки. Это делитель – ограничитель, который защитит звуковую карту вашего компьютера от опасного напряжения, которое вы можете случайно падать на вход. Делитель может быть на 1, на 10 и на 100. Переменным резистором регулируется чувствительность всей схемы. Подключается приставка к линейному входу звуковой карты ПК. Собираем приставку Можно взять бокс от батареек как я или другой пластиковый корпус.
avangard.zip [329,85 Kb] (cкачиваний: 16)
2) И вторая с установкой, скачать её можно – тут.
Какой пользоваться – выбирать вам. Возьмите и установите обе, а там выберете. Если у вас уже установлен микрофон, то после установки и запуска программы можно уже будет наблюдать звуковые волны, которые поступают в микрофон. Значит все хорошо. Для приставки никаких драйверов больше не потребуется. Подключаем приставку ко линейному или микрофонному входу звуковой карты и пользуемся на здоровье.
Если у вас никогда в жизни не было опыта работы с осциллографом, то я искренне рекомендую вам повторить эту самоделку и поработать с таким виртуальным прибором. Опыт очень ценный и интересны. Смотрите видео по работе с осциллографом для компьютера Источник
Вам может понравиться:
- Вязаные коврики крючком: интересные модели, схемы и…
- Вязаные коврики крючком: интересные модели, схемы и…
- Шикарная подборка схем-выкроек для бохо
- Из всего этого, девушка создала невероятной красоты…
- Блок питания на стабилитроне и транзисторе
- Ностальгическая игровая приставка своими руками
- Качественные кухонные ножи своими руками
- Автономная gsm сигнализация из мобильного телефона…
- Красивые и оригинальные новогодние поделки 2018
- Высокоэффективный солнечный коллектор своими руками
- ТАКИХ ДИЗАЙНОВ ХРУЩЕВОК Я ЕЩЁ НЕ ВИДЕЛ… ЭТО…
- Блок питания начинающего радиолюбителя
Осциллограф, при помощи которого проводились измерения, Автор статьи придумал самостоятельно.
SUZUKI ESCUDO 1996 г.в. Двигатель H20A. Собственно, это и есть моя машина.
Неисправность:
Видно, что на катушки вместо импульсов подается нечто странное. Дальнейший анализ привел к следующему выводу: виновата микросхема в ECU.
Сначала долго пытался найти что это такое, чем заменить. Безрезультатно. Опять таки при помощи осциллографа определил, где какой вывод у микросхемы, где входы, где выходы. Оказалось, что-то вроде 6 (или более) логических элементов НЕ. После ее замены на небольшую самодельную платку, все стало нормально. К сожалению, фото платки нет.
Ниже скриншот сигналов: запуск двигателя после ремонта. 2-5 каналы — выходы платки (микросхемы), 6-8 входы. Как видно из графиков — дефект исчез..
Характеристики: — каналов 8 — частота дискретизации 100-250 КгЦ — диапазоны измерений 0..3 вольта, 0..15 вольт, 0..150 (внешний делитель) Кстати, по поводу максимального времени записи я немного соврал, ограничение есть — максимальный размер файла на диске для фат32 = 1 гиг. Отсюда следует что 1000000000/(200000*60) = 83 мин где 200000 кол-во байт на секунду записи для частоты оцифровки 200 кГц 60 — количество секунд в минуте Если система на диске НТФС — то естественно будет больше (не помню навскидку ее параметры), но можне переделать прогу чтобы она писала не в один файл, а била его а куски и тд, тогда ограничение — размер диска .
С уважением ,- Алексей
Если вы имеете желание, то можете скачать программу целиком (весит 1 Мб) и самостоятельно убедиться в ее возможностях —
Написать Автору: Alex Z
Книги по ремонту автомобилей
Что такое осциллограф
Осциллограф — как прибор для измерения и отслеживания частотных колебаний в электрической сети — известен с середины прошлого века. Данными приборами комплектуются все учебные и профессиональные лаборатории, поскольку обнаружить некоторые неисправности или произвести точную настройку оборудования можно только лишь с его помощью. Он может выводить информацию как на экран, так и на бумажную ленту. Показания позволяют увидеть форму сигнала, рассчитать его частоту и интенсивность, а в результате определить источник его появления. Современные осциллографы позволяют рисовать трехмерные цветные частотные графики. Мы же сегодня остановимся на простом варианте стандартного двухканального осциллографа и реализуем его с помощью приставки к смартфону или планшету и соответствующего программного обеспечения.
Реальные характеристики цифровых осциллографов
Считается, что отображение сигнала достаточно верное, если на период синусоиды на максимальной частоте приходится минимум 10 точек дискретизации. По сути качество осцилла определяется быстродействием и разрядностью встроенного в осциллограф АЦП.
Преимуществом цифровых осциллографов является возможность выводить спектрограмму вместо осциллограммы. Это помогает определить частоту помехи, например в шинах питания или в трактах фильтрации. Точность и быстродействие конечно тоже хромает, но сама опция очень полезна в ремонте.
Начнем с серии карманных осциллографов с максимальной рабочей частотой до 500 кГц.
Самый простой вариант создания карманного осциллографа
Самодельная приставка с Bluetooth-модулем
Если же требуется более широкий диапазон частот, то приведенным выше вариантом ограничиться не получится. Тут на помощь приходит новый вариант – отдельный гаджет, представляющий собой приставку с аналогово-цифровым преобразователем, обеспечивающий передачу сигнала в цифровом виде. Аудиотракт смартфона или планшета в данном случае уже не задействуется, а значит, можно достигнуть более высокой точности измерений. По сути, на этом этапе они представляют собой только портативный дисплей, а вся информация собирается уже отдельным устройством.
На 5 месте — серия китайских мини-осциллографов DSO
Серия Mini и Nano DSO — это карманные мини-осциллографы с рабочей частотой до 100 кГц — 500 кГц, с 1 — 4 каналами и максимальным напряжением 50 В. Самые популярные модели этой серии: , , 112, , 150, , 203, 211. Отличаются модели между собой в основном корпусом, частотой дискретизации, размером экранчика, количеством каналов.
Пример работы с карманным осциллографом DSO203 смотрите в видеоролике.
Стоимость: 15 — 160 $ в зависимости от модели
Количество каналов: 1 — 4 в зависимости от модели
Аналоги:
- (30 $, 100 кГц, 1 канал, экран 2,4 дюйма),
- (70 $, 100 кГц, 1 канал, экран 2,9 дюйма, выглядит приличнее),
- (160 $, 7 МГц, 2 аналог. + 2 цифр. канала, экран 3 дюйма).
- (Новинка! 60 $, 30 МГц, 1 канал, экран 2,4 дюйма)
- низкая частота дискретизации
- маленькая разрядность АЦП 8 бит, можно только оценить форму сигнала
- хлипкие разъемы щупов
- проблемы с софтом — глючит на некоторых моделях, читайте отзывы
- маленькое разрешение экрана
- сверхмалые габариты
- низкая цена осциллографа
- встроенный аккумулятор
Сфера применения: измерение аудиосигналов, кварцевых генераторов, сигналов блоков питания с ШИМ. Подойдет для выездной диагностики аудиотехники и блоков питания.
Хорошее, дорогое оборудование — роскошь для радиолюбителя. А китайские измерительные устройства, во-первых, низкокачественные, во-вторых, каких-то денег, да стоят.
Лайфхак для начинающих радиолюбителей и не только: как создать простейший адаптер небольшого диапазона частот, выполняющий функции цифрового осциллографа своими руками.
Все что Вам понадобится: самостоятельно спаянный делитель для осциллографа, звуковая карта, компьютер (ноутбук) и специальное программное обеспечение для визуализации сигнала на экране монитора.
Осциллограф применяется для ремонта и настройки различной аудио-аппаратуры и не только. Работает по принципу исследования параметров сигналов, подаваемых на вход прибора. Незаменим для настройки микросхем и диагностике датчиков.
Хотя, самостоятельно разработанный осциллограф будет значительно уступать профессиональному прибору, он прекрасно справится с такими функциями, как измерение параметров источников питания и усилителей.
Реализация
Для того чтобы соорудить осциллограф, необходимо собрать приставку, в которую должны быть включены 8 полупроводниковых диодов, 3 резистора и один аттенюатор, штекер для подключения к звуковой карте (LINE-IN), все как показано на схеме осциллографа своими руками.
Плата собрана именно по такому принципу, чтобы защитить звуковую карту от скачков напряжения, которые могут поступить на ее вход вместе с исследуемым цифровым сигналом.
Диоды не пропускают сигналы с амплитудой более 2В, а комбинация последовательно соединенных резисторов, образующих делитель, разрешает высокое входное напряжение.
Цифровой сигнал, подлежащий диагностике, поступает на входные клеммы приставки.
Собранная схема имеет линейный вход к звуковой карте через специальный штекер. Здесь важна длина соединительного провода.
Чем провод короче, тем меньше ошибок возникает при измерении сигнала, так как на низких измеряемых уровнях высока вероятность появления высокой погрешности искажений.
Лучше всего использовать двухжильный провод. На фото осциллографа, сделанного своими руками хорошо видно, что используется электрический провод в медной оплетке.
Программное обеспечение
Аппаратная часть готова, теперь необходимо подготовить программную среду, чтобы увидеть результаты измерений на экране компьютера. К счастью, сегодня существует множество программ, работающих с осциллографами.
Современные утилиты оснащены всеми необходимыми функциями для исследования и анализа сигналов, с которыми работает осциллограф.
Организация осциллографа через планшет
Сложность создания датчика для осциллографа через планшет заключается в отсутствии у последнего дискретного линейного входа. Поэтому дополнительным устройством служит телефонная гарнитура со входом для микрофона.
Разводка входных клемм у планшета и телефона должны совпадать. Тогда в клемму для микрофона подсоединяется источник сигнала по схеме, рассмотренной выше.
Так же, как в случае с компьютером (ноутбуком), необходимо установить специальное программное обеспечение для работы с полученным сигналом.
ОБРАТИТЕ ВНИМАНИЕ!
Щуп для компьютерного осциллографа
Даже имея массу различных промышленных кабелей, не лишним будет изготовить своими руками кабель-щуп для осциллографа, работающий на низкой частоте.
Преимуществом самодельного кабеля данного типа является его гибкость и небольшой размером, что очень удобно.
Калибровка компьютерного осциллографа
Если что-то пошло нет так, можно выполнить ремонт осциллографа, сделанного своими руками, произведя его калибровку.
- Цифровой мультиметр.
- Аналоговый прибор, типа стрелочный тестер (ампервольт).
ОБРАТИТЕ ВНИМАНИЕ!
Так как аналоговые приборы дают высокую погрешность измерений переменных напряжений, величиной до 1В, калибровку выполняем на напряжении максимальной амплитуды.
Фото осциллографа своими руками
ОБРАТИТЕ ВНИМАНИЕ!
Читайте здесь - Закалка ножа - пошаговая инструкция по закалке различных типов металлов (75 фото и видео)
раздел осциллограф понравился, спасибо !
вопрос : будут ли темы по отладке собранных схем с помощью осциллографа,очень не помешало бы начинающим разобраться что к чему в мире электроники и освоить этот нужный прибор ?
Здравствуйте Dim!
Пока таких на сайте не планируется. Может, только, если кто из читателей сайта предложит такую статью.
С уважением, Admin.
Осциллограф, в полном смысле слова, можно назвать глазами радиолюбителя. Он позволяет именно посмотреть и оценить зрительно все процессы, происходящие в электронном устройстве.
Но, так сложилось, что из доступных приборов промышленность (как отечественная, так и зарубежная) может предложить радиолюбителю (или самодеятельному радиомастеру) только широкий выбор цифровых мультиметров. В то время, как доступных осциллографов в продаже практически не бывает.
Это при том, что, даже в годы "развитого социализма”, когда любое электронное устройство было в "черном списке”диффицита, в продаже периодически появлялись относительно доступные осциллографы, такие как ОМЛ-2, Н-313, ЛО-70, "Школьник". Вот и приходится радиолюбителям приобретать либо очень старую списанную технику, либо "жить на ощупь". Но можно сделать осциллограф и самостоятельно. Однако, прежде всего нужно "достать" самый главный его элемент - электронно-лучевую трубку со статическим отклонением лучей.
В описываемом в данной статье осциллографе применяется трубка 5Л038И, эта трубка круглая, диаметр её экрана 50 мм. Но, в принципе, в данном приборе можно использовать и многие другие трубки, такие как 16ЛОЗИ, 7Л055И, 6Л014И, 7Л01М, 8Л029И.
Разница только в режимах работы трубки, - некоторым требуется подача дополнительного ускоряющего напряжения около +1500V на конус (как высоковольтное напряжение на конус кинескопа телевизора), другие требуют более высокого отрицательного напряжения на модуляторе (до -2000V). В принципе, все это разрешимо, -нужно по справочникам найти данные имеющейся трубки, сравнить их с 5Л038И и сделать необходимые доработки в схеме прибора.
Принципиальная схема
Принципиальная схема осциллографа показана на рисунке. Это низкочастотный импульсный осциллограф, который позволяет исследовать сигналы частотой от постоянного тока до 100 кГц. Его удобно использовать при налаживании цифровых схем и низкочастотных усилителей, генераторов, других устройств.
Резистор R28 выполняет аналогичную функцию, но для каскада горизонтального отклонения. С его помощью можно пододвинуть осциллограмму по горизонтали так, чтобы она удобнее расположилась на масштабной сетке. К стати, о масштабной сетке - она имеет шесть клеток по вертикали и шесть по горизонтали.
Исследуемый сигнал подается на разъем Х1. При разомкнутом S1 прибор показывает только переменное напряжение, - без постоянных составляющих (сигнал поступает на вход усилителя А1 через разделительный конденсатор С1).
Положения переключателя S2 переключающего чувствительность осциллографа, обозначены в величинах напряжения на одно деление сетки экрана ("V / дел."). Число положений S2 можно увеличить, введя более чувствительные положения или более высоковольтные.
Генератор горизонтальной развертки вырабатывает линейно нарастающее напряжение. Он выполнен на транзисторах VT1-VT7 и цифровой микросхеме К155ЛАЗ Период развертки может быть установлен фиксировано десятью положениями от 10цS/дел. до 10 mS/дел.
Рис. 1. Принципиальная схема самодельного любительского осциллографа.
Всего делений по горизонтали, как уже отмечалось, шесть. Возможна плавная подстройка периода развертки при помощи переменных резисторов R13 и R15.
Период развертки (при максимальном положении сопротивлений R13 и R15) устанавливается пятью позициями при помощи переключателя S4. Переключателем S3 можно период увеличить в 10 раз (х10). Линейно нарастающее напряжение (ЛНН) формируется RС-цепью состоящей из сопротивления R12-R15 и емкости С6-С10. Высокая линейность обеспечивается тем, что конденсаторы заряжаются от генератора тока на транзисторе VT1.
Величина этого тока определяется резисторами R12-R15. Полученное ЛНН через буферный каскад на транзисторах VT2 и VTЗ поступает на усилитель горизонтального отклонения на VT10 и VT11. Амплитуда ЛНН примерно равна 4V, при необходимости (если горизонтальная линия не разворачивается на всю ширину экрана) его можно увеличить подбором сопротивлений резисторов R32, R31, R36, R38.
ЛНН поступает, так же, на одновибратор, выполненный на транзисторе VT5 и RS-триггере на элементах D1.1 и D1.2. Порог срабатывания одновибратора (величина амплитуды ЛНН) зависит от соотношения сопротивлений резисторов R36 и R38, а также, от R32 и R31. Как только ЛНН достигает этого порога одновибратор вырабатывает импульс, поступающий на базы транзисторных ключей на VT4 и VT12.
Открывание транзистора VT4 приводит к разрядке конденсатора (С6-С10), что приводит к началу новой зарядки и формирования нового периода ЛНН. Открывание VT12 приводит к формированию цепью R54-С20 импульса гашения обратного хода луча.
Синхронизация развертки осуществляется входным сигналом, для этого служит каскад на транзисторе VT6, на базу которого поступает сигнал с выхода нормирующего усилителя А1. Триггер Шмитта на элементах D1.3 и D1.4 создает четкий прямоугольный импульс из входного сигнала произвольной формы. Эти импульсы поступают на выпрямитель на VD2 и VDЗ и на С18 возникает напряжение, открывающее транзистор VT7. На вывод 4 D1.2 поступает уровень логической единицы.
При работе в автоколебательном режиме (когда нет переменного входного сигнала) продолжительность импульса, формируемого одновибратором на VT5 и D1.1-D1.2 определяется емкостью конденсатора С11-С15 (и сопротивлением R35). В режиме синхронизации запуск каждого периода развертки происходит по спаду импульса на выходе триггера Шмитта D1.3-D1.4, при помощи короткого отрицательного импульса, сформированного цепью С17-R44, сбрасывающего RS-триггер D1.1-D1.2 и запускающего развертку.
Такая схема синхронизации отличается повышенной стабильностью, поэтому в данном осциллографе нет привычной ручки “уровень синхронизации", при помощи которой на многих других осциллографах нужно “ловить" эпюру. Если необходимо, можно внутреннюю синхронизацию отключить выключателем S6. Тогда эпюру нужно будет "ловить" одним из переменных резисторов (415 или R13 (в зависимости от положения S3).
Переменный резистор R48 служит для фокусировки изображения (так чтобы линия была наиболее тонкой), а R49 для регулировки яркости изображения.
Для обеспечения нормальной яркости свечения трубки 5ЛО38И необходимо чтобы напряжение между её первой сеткой (вывод 7) и катодом было около 400-450 V. Для получения этого напряжения служит делитель на резисторах R46-R47. В процессе налаживания осциллографа нужно выбрать сопротивление R47, при котором будет хорошая яркость и фокусировка. Можно R47, с этой целью, заменить последовательно включенными постоянным резистором на 1 М и переменным на 3 М.
Питается осциллограф от сети 220У через самодельный трансформатор Т1. Обмотка 4 вырабатывает переменное напряжение 6,3V для питания нити накала электроннолучевой трубки.
Обмотка 5 выполнена с отводом, - она служит для формирования двуполярного напряжения ±15V, которое стабилизировано параметрическими стабилизаторами на VT13 и VT4 и однополярного напряжения +5/, стабилизированного интегральным стабилизатором А2. Обмотки 2 и 3 служит для получения нестабилизированных напряжений +200V и -300V необходимых для питания электронно-лучевой трубки.
Детали осциллографа
На схеме указаны емкости С6-С15, которые должны быть теоретически, и их нужно набирать из нескольких конденсаторов, включенных параллельно. Например, емкость 0,025 мкФ получена параллельным включением 0,022 мкФ и 3000 пФ, а емкость 5000 пФ - параллельным включением 4700пф и 300 пф. Более того, в процессе налаживания, - установки требуемого периода развертки, может потребоваться подгонка этих емкостей (особенно, если используете конденсаторы с большим разбросом емкости).
Устаревшие диоды Д223 можно заменить другими импульсными, например, КД522. Транзисторы КТ315 и КТ342 можно заменить на КТ3102. Операционный усилитель КР140УД608 заменим любым другим ОУ широкого применения. Диоды КД209 можно заменить любыми другими выпрямительными диодами, рассчитанными на напряжение согласно схеме, и ток не ниже 0,ЗА. Стабилитроны КС515 можно заменить другими на напряжение 15V или набрать из двух-трех стабилитронов на более низкое напряжение стабилизации.
Для транзисторов VT13 и VT14, а так же, для А2 требуются небольшие радиаторы в виде металлических пластин размерами, примерно, 3x5 см. Стабилизатор А2 можно просто привинтить к металлическому шасси прибора, соединенному с общим минусом питания.
Трансформатор питания выполнен на основе трансформатора с сердечником типоразмера Ш14Х30. Можно использовать и другой сердечник близких размеров, например, ШЛ20х25. Обмотка 1 содержит 1100 витков провода ПЭВ 0,12, обмотка 3 -1400 витков провода ПЭВ 0,06, обмотка 2 -850 витков провода ПЭВ 0,09, обмотка 4 -33 витка провода ПЭВ 0,47, обмотка 5 - 60+ 60 витков провода ПЭВ 0,31.
Накальная обмотка должна быть изолирована от других и не связана с другими цепями прибора кроме нити накала электронно-лучевой трубки. Можно использовать систему питания из нескольких маломощных трансформаторов. Что касается выбора электронно-лучевой трубке, - об этом сказано в начале статьи.
Корпус должен быть металлическим. Авторский вариант прибора не отличается миниатюрностью, в основном из-за выполнения печатных плат с расположением деталей близким к их взаимному расположению на схеме, а также, из-за использования крупных старых галетных переключателей S2 и S4, больших старых тумблеров и переменных резисторов.
Но, используя малогабаритные детали и плотный монтаж можно получить очень компактное устройство. Еще более компактным получится осциллограф, если вместо источника питания на низкочастотном силовом трансформаторе применить импульсную схему питания. В этом случае, даже можно сделать так, чтобы прибор можно было питать и от источника постоянного тока, например, аккумулятора напряжением 12V.
Налаживание
Резисторы R13 и R15 устанавливают в крайне нижнее (по схеме) положение и в таком состоянии подбирают емкости конденсаторов С6-С10. Но сначала попробуйте подобрать R14 и R12 (можно заменить их подстроечными) так, чтобы период развертки на большинстве положений S4 был как можно ближе требуемому , а затем уже можно переходить к подбору конденсаторов. Конденсаторы С11-С15 должны быть такими же как, соответственно, С6-С10.
Читайте также: