Обогащенный гелием водород galaxy space как сделать
Получение гелия в промышленности осуществляется в основном путем конденсации из гелийсодержащих газов. Добыча гелия из минералов или из воздуха является нерентабельной, но об этом мы расскажем ниже. Газ гелий очень редкий гость в воздушном пространстве планеты Земля и его объемное содержание в воздухе составляет всего 0,00046-0,00052% и с этим связаны основные трудности и проблемы в его получении.
Содержание
Как производят гелий из природного газа
Основным способом получения гелия является метод фракционной конденсации из природных гелийсодержащих газов, т.е. методом глубокого охлаждения. Причем используется его характерное свойство - наиболее низкая по сравнению с известными веществами температура кипения. Это позволяет конденсировать все сопутствующие гелию газы, прежде всего метан и азот. Процесс осуществляется обычно в две стадии:
- выделение так называемого сырого гелия (концентрата, содержащего 70-90% He)
- очистка с получением технически чистого гелия.
На рисунке ниже приведена одна из схем установки для добычи гелия из природного газа.
Схема установки для добычи гелия из природного газа
Газ сжимается до 25 атмосфер и под этим давлением поступает в установку. Очистка от углекислого газа (CO2) и частичная осушка газа производятся в скрубберах, которые орошаются раствором, содержащим:
- 10-20% моноэтаноламина
- 70-80% диэтиленгликоля
- 5-10% воды
После скрубберов в газе остается 0,003-0,008% углекислоты CO2, а точка росы не превышает 5°С. Дальнейшая осушка осуществляется в адсорберах с силикагелем, где достигается температура точки росы -45°С.
Под давлением около 20 атмосфер чистый сухой газ поступает в предварительный теплообменник 1, где охлаждается до -28° С обратными газовыми потоками. При этом происходит конденсация тяжелых углеводородов, которые отделяются в сепараторе 2. В аммиачном холодильнике 3 газ охлаждается до -45°С, конденсат отделяется в сепараторе 4. В основном теплообменнике 5 температура газа снижается до -110°С, в результате чего конденсируется значительная часть метана. Паро-жидкостная смесь (около 20% жидкости) дросселируется до давления 12 атмосфер в первый противоточный конденсатор 6, на выходе из которого паро-газовая смесь обогащается гелием до 3%. Образовавшийся в трубках конденсат стекает в отпарную секцию, на тарелках которой из жидкости удаляется растворенный в ней гелий, присоединяющийся к паро-газовому потоку.
Жидкость дросселируется до 1,5 атмосфер в межтрубное пространство конденсатора, где служит хладагентом. Образовавшийся здесь пар выводится через теплообменники 5 и 1. Паро-газовая смесь, выходящая из конденсатора 6 и содержащая до 3% He, под давлением 12 атмосфер идет во второй противоточный конденсатор 7, состоящий из двух частей: в нижней части находится змеевиковый теплообменник, в трубках которого испаряется сдросселированная с 12 до 1,5 атмосфер кубовая жидкость, а в верхней части - прямотрубчатый теплообменник, в межтрубном пространстве которого кипит азот при температуре -203°С и давлении 0,4 атмосферы. В результате конденсации компонентов газовой смеси в нижней части аппарата 7 газ обогащается гелием до 30-50%, а в верхней части - до 90-92%.
Сырой гелий такого состава под давлением 11-12 атмосфер поступает в теплообменники, где нагревается и выводится из установки. Так как в природном газе содержатся небольшие примеси водорода, то в сыром гелии концентрация водорода увеличивается до 4-5%. Удаление водорода производят каталитическим гидрированием с последующей осушкой газа в адсорберах с силикагелем. Сырой гелий сжимается до 150- 200 атмосфер мембранным компрессором 8, охлаждается в теплообменнике 9 и поступает в прямоточный змеевиковый конденсатор 10, охлаждаемый азотом, кипящим под вакуумом. Конденсат (жидкий азот) собирается в сепараторе 11 и периодически выводится, а несконденсировавшийся газ, содержащий примерно 98% He идет в адсорбер 12 с активированным углем, охлаждаемым жидким азотом. Гелий, выходящий из адсорбера, содержит примесей менее 0,05% и поступает в баллоны 13 в качестве продукта.
Особенно богаты гелием природные газы в США, что определяет широкое применение гелия для TIG сварки в этой стране.
Получение гелия из минералов
Еще одним способом получения гелия в промышленности является добыча его из радиоактивных минералов содержащих уран, торий и самарий:
- клевеит
- фергюсонит
- самарскит
- гадолинит
- монацит
- торианит
В частности монацитовые пески, крупное месторождение которых имеется в Траванкоре (Индия):
Для производства гелия из монацита необходимо нагреть в закрытом сосуде монацит до 1000°С. Гелий выделяется вместе с углекислым газом (CO2), который затем поглощался раствором едкого натрия (NaOH). Остаточный газ содержит 96,6% He. Дальнейшая очистка производится при 600°С на металлическом магнии для удаления азота, а затем при 580°С - на металлическом кальции для удаления оставшихся примесей. Продукционный газ содержит свыше 99,5% He. Из 1000 т монацитового песка можно получить около 80 м 3 чистого гелия. Такой способ получения гелия не представляет технического и промышленного интереса..
Получение гелия из воздуха
В небольшом количестве гелий находится в воздухе, из которого он может быть получен в качестве побочного продукта при получении кислорода и азота из воздуха. В промышленных ректификационных колоннах для разделения воздуха над жидким азотом собирается остающаяся газообразной смесь неона и гелия. На рисунке ниже показан аппарат Клода, специально приспособленный для отделения такой смеси.
Аппарат Клода для выделения неона и гелия из воздуха
Газ, выходящий из аппарата через вентиль R, охлаждается в змеевике S, который поливается жидким азотом из Т, чтобы сконденсировать остаточный азот. Если вентиль R немного открыть, получается смесь, содержащая очень мало азота. При таком методе промышленного получения гелия, кроме трудности, заключающейся в необходимости обработать большое количество воздуха, встречается еще дополнительное затруднение - необходимость отделения гелия от неона. Это отделение может быть выполнено с помощью жидкого водорода, в котором неон отвердевает, или с помощью адсорбции неона активированным углем, охлаждаемым жидким азотом.
Производство гелия из воздуха нецелесообразно вследствие его малого количества - 0,00046% объема или 0,00007% веса. Расчеты показывают, что стоимость одного кубометра гелия, добытого из воздуха, будет в тысячи раз больше, чем при добывании его из природных газов. Такая высокая стоимость, конечно, исключает возможность промышленного получения гелия из воздуха.
Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal
Раз уж зашла речь про дирижабли (речь зашла тут и будет заходить еще на пару постов в ближайшее неопределенное время) не будет грехом написать что-нибудь банальное на банальную тему "Гелий против водорода". Или наоборот.
Как хорошо известно из курса школьной физики (википедии, по телевизору слышал, сосед сказал, . ) плотность водорода 0,0899 кг/м3, плотность гелия 0,179 кг/м3, плотность воздуха при 0 градусов и нормальном давлении 1,292 кг/м3. Получается что один кубометр водорода может поднять 1,2 кг, гелия - 1,113кг, разница в подъемной силе этих двух газов 7%. Теоретически. На практике конечно использовался не чистый гелий, а с примесями, и его подъемная сила уступала водороду где-то 12%. Чистый водород получить легче, допускалось применение как минимум 98%го водорода.
Водород вообще легко получить, он дешев, есть множество способов его генерации. С гелием все гораздо, гораздо сложнее.
Единственный способ получить гелий в промышленных масштабах - извлечь его из природного газа. Например сейчас в России единственный газоперерабатывающий завод в Оренбурге добывает гелий из природного газа с его содержанием 0,055 %, месторождение с более чем 0,5% гелия считается богатым. В США же начиная с первого десятилетия 20 века на границах штатов Техас, Оклахома и Канзас были найдены месторождения с 0,5-2,5%% гелия и выше. Несмотря на все старания Великобритании, Германии и прочих европейских и не очень стран как до ПМВ так и в военный и межвоенный период по поиску столь же богатых и больших месторождений обнаружить их не удалось. Зато в США бизнес быстро поднялся: в 1918 с поддержкой государства строится первый экспериментальный завод в Fort Worth, Техас, по выработке гелия, а 1 декабря 1921 года дирижабль ВМС США C-7 объемом 5125м3 совершил первый полет на гелии. В 1925 году принимается Helium Act, гелий объявляется стратегическим материалом и национальным достоянием, продажа газа на экспорт запрещается и устанавливается монополия государства на его производство и хранение. На приблизительно это время (конец 24го) практически весь мировой запас гелия находился в брюхе американского цеппелина ZR-1 USS Shenandoah, гелий тогда стоил 350 долларов, а водород был в 50 раз дешевле. Или вот еще что писали в 1933 году [1]:
Разведанные запасы гелия в САСШ исчисляются в размере, примерно обеспечивающем эксплоатацию 4 дирижаблей объема 200000 куб. м в течение 30 лет.
В результате постройки новых заводов и развертывания производства стоимость гелия снизилась с 2500 долларов США за кубический фут в 1915 году до 1,5 центов в 1940. Однако несмотря на такое удешевление в США до сих пор существует реликт Акта о гелии - National Helium Reserve, огромное хранилище для этого газа недалеко от Amarillo, Техас.
В общем на практике проигрыш гелиевого дирижабля в подъемной силе против водородного составляет не 7%, а приближается к 50%. Что легко проверяется на примерах.
Дирижабль Zeppelin LZ-126 строился в Германии по репарации для США, в августе 24го он совершил свой первый полет на поле в Фридрихсхафене, в октябре того же года перелетел в США где стал именоваться ZR-3 USS Los Angeles и был сразу же переведен на гелий вместо водорода.
Как изменились при этом характеристики дирижабля? Вот так:
LZ-126 (водород) / ZR-3 Лос-Анджелес (гелий)
ОБъем оболочки, м2 78280,8
Взлетный вес, кг 81314 / 69400
Вес пустого, кг 35306 / 41005
Полезная нагрузка, кг 46008 / 28395
На водороде LZ-126 пролетел из Фридрихсхафена в Лейкхерст, Нью - Джерси без промежуточных посадок, дирижабль преодолел расстояние в 8000 км за 81 час 32 мин. На гелии дальность его полета не превышала 6300 км, продолжительность - 48 часов.
Еще пример:
Развесовка LZ-129 Hindenburg при перелете через Южную Атлантику:
Вес пустого, кг 118000
экипаж, кг 5400
Провизия, кг 3000
Топливо, кг 58880
Масло, кг 4000
Балласт, кг 7950
Прочее, кг 9120
Итого, кг 206350
При заполнении дирижабля водородом он был способен нести полезную нагрузку в 9560кг, при заполнении гелием его пришлось бы разгрузить на 15841кг оставив на земле топливо или что-то еще или все вместе, т.е. Атлантику он бы не пересек.
Из природного газа
В промышленном масштабе этот элемент добывают из природного газа. К сожалению, не каждое газовое месторождение подходит для организации производства гелия. Получение гелия из природного газа только в том случае может считаться рентабельным, если его концентрация составляет более 0,055%. Выделение гелия из газовой смеси осуществляется в результате сильного охлаждения природного газа.
Процесс добычи осуществляется в два этапа:
- Получение концентрата.
- Очистка концентрата до получения технически чистого инертного газа.
Концентрат представляет собой смесь различных газов, в которой содержание гелия составляет около 70%. На заключительном этапе производится очистка газа от водорода и других примесей методом сжатия и охлаждения, а также пропускания жидкого гелия через адсорбер из активированного угля. После завершения операции газ можно заправлять в баллоны.
Из минералов
Гелий может быть получен из некоторых радиоактивных минералов. К этой категории горных пород относятся:
- Клевеит,
- Фергюсонит,
- Монацит.
Производство гелия из минералов осуществляется, если концентрация газа составляет более 1см3 в одном грамме руды. Для того, чтобы извлечь газ из горной породы её нагревают до 1000ºС. При такой температуре гелий выделяется вместе с углекислым газом, который затем удаляют с помощью едкого натрия. В результате очистки получается очень чистый газ, который можно сразу использовать.
Из воздуха
Специально заниматься добычей гелия из воздуха экономически нецелесообразно. В сравнении с производством этого вещества из природного газа финансовые затраты возрастают в тысячи раз.
Водород легко произвести, он дешев, есть множество способов его генерации. С гелием все гораздо, гораздо сложнее.
Единственный способ получить гелий в промышленных масштабах - извлечь его из природного газа. Например сейчас в России единственный газоперерабатывающий завод в Оренбурге добывает гелий из природного газа с его содержанием 0,055 %, месторождение с более чем 0,5% гелия считается богатым. В США же начиная с первого десятилетия 20 века на границах штатов Техас, Оклахома и Канзас были найдены месторождения с 0,5-2,5%% гелия и выше. Несмотря на все старания Великобритании, Германии и прочих европейских и не очень стран как до ПМВ так и в военный и межвоенный период найти столь же богатые и большие месторождения обнаружить их не удалось. Зато в США бизнес быстро поднялся: в 1918 с поддержкой государства строится первый экспериментальный завод по выработке гелия в Fort Worth, Техас, а 1 декабря 1921 года дирижабль ВМС США C-7 объемом 5125м3 совершил первый полет на этом благородном газе. В 1925 году принимается Helium Act, гелий объявляется стратегическим материалом и национальным достоянием, продажа газа на экспорт запрещается и устанавливается монополия государства на его производство и хранение. На приблизительно это время (конец 24го) практически весь мировой запас гелия находился в брюхе американского цеппелина ZR-1 USS Shenandoah, гелий тогда стоил 350 долларов, а водород был в 50 раз дешевле. Или вот что еще что писали в 1933 году [1]:
Разведанные запасы гелия в САСШ исчисляются в размере, примерно обеспечивающем эксплоатацию 4 дирижаблей объема 200000 куб. м в течение 30 лет.
В результате постройки новых заводов и развертывания производства стоимость гелия снизилась с 2500 долларов США за кубический фут в 1915 году до 1,5 центов в 1940. Однако несмотря на такое удешевление в США до сих пор существует реликт Акта о гелии - National Helium Reserve, огромное хранилище недалеко от Amarillo, Техас.
В общем на практике проигрыш гелиевого дирижабля в подъемной силе против водородного составляет не 7%, а приближается к 50%. Что легко проверяется на примерах.
Дирижабль Zeppelin LZ-126 строился в Германии по репарации для США, в августе 24го он совершил свой первый полет на поле в Фридрихсхафене, в октябре того же года перелетел в Америку где стал именоваться ZR-3 USS Los Angeles и был сразу же переведен на гелий вместо водорода.
Как изменились при этом характеристики дирижабля? Вот так:
LZ-126 (водород) / ZR-3 Лос-Анджелес (гелий)
ОБъем оболочки, м2 78280,8
Взлетный вес, кг 81314 / 69400
Вес пустого, кг 35306 / 41005
Полезная нагрузка, кг 46008 / 28395
На водороде LZ-126 пролетел из Фридрихсхафена в Лейкхерст, Нью - Джерси без промежуточных посадок, дирижабль преодолел расстояние в 8000 км за 81 час 32 мин. На гелии дальность его полета не превышала 6300 км, продолжительность - 48 часов.
Еще пример:
Развесовка LZ-129 Hindenburg при перелете через Южную Атлантику:
Вес пустого, кг 118000
экипаж, кг 5400
Провизия, кг 3000
Топливо, кг 58880
Масло, кг 4000
Балласт, кг 7950
Прочее, кг 9120
Итого, кг 206350
При заполнении дирижабля водородом он был способен нести полезную нагрузку в 9560кг, при заполнении гелием его пришлось бы разгрузить на 15841кг оставив на земле топливо, или что-то еще, или все вместе, т.е. Атлантику он бы не пересек.
Читайте также: