Обдув для лазерного гравера своими руками
В данной статье мы запустим самодельный лазерный станок собранный своими руками.
Gistroy - это команда инженеров, которые любят свое дело и стремятся сделать мир станочных девайсов доступным для всех.
Сборка пластины обдува
- пластина обдува
- кулер
- 2 винта М3х16
- 2 гайки М3
- 1 винт М3х12
- 1 гайка М3
Собрать пластину и соединить ее с пластиной электроники
По окончании сборки приступить к электронной части, используя инструкцию по пайке собираем лазерный станок своими рукам
Сборка рамы
Закладываем в профиль два сухаря М4 для последующего крепления пластины электроники.
Затем берем подготовленные пластины левого и правого двигателей и уголки (левый и правый) и крепим их к профилю с помощью сухарей своими руками
На каретках оси Y закрепить последний профиль с установленной кареткой оси X и двумя подвижными роликами ремня. Подвести каретку вплотную к двигателям для обеспечения параллельной фиксации профиля. Закрепить профиль на каретках с помощью двух сухарей М4 и винтов М4х8 с каждой стороны чпу своими руками
Возможность изготовления из неиспользуемой или пришедшей в негодность техники чего-то полезного привлекает многих домашних мастеров. Одним из таких полезных устройств является лазерный резак. Имея в своем распоряжении подобный аппарат (некоторые делают его даже из обычной лазерной указки), можно выполнять декоративное оформление изделий из различных материалов.
Самодельным лазерным резаком можно вырезать тонкие деревянные детали или сделать гравировку на стекле
Какие материалы и механизмы потребуются
Чтобы изготовить простейший лазерный резак своими руками, вам потребуются следующие материалы и технические устройства:
- лазерная указка;
- обычный фонарик, оснащенный аккумуляторными батарейками;
- старый пишущий дисковод (CD/DVD-RW), оснащенный лазерным приводом (совершенно не обязательно, чтобы такой дисковод находился в рабочем состоянии);
- паяльник;
- набор слесарных инструментов.
Чем выше скорость записи привода, тем мощнее получится лазерный резак
Таким образом, можно изготовить простейшее устройство для лазерной резки, используя материалы, которые легко найти в домашней мастерской или в гараже.
Процесс изготовления простейшего лазерного резака
Основным рабочим элементом самодельного резака предложенной конструкции является лазерный элемент пишущего компьютерного дисковода. Выбирать именно пишущую модель дисковода следует потому, что лазер в таких устройствах отличается более высокой мощностью, позволяющей выжигать дорожки на поверхности установленного в них диска. В конструкции дисковода считывающего типа также присутствует лазерный излучатель, но его мощность, используемая лишь для подсвечивания диска, невысока.
Извлечение лазерного модуля из привода потребует аккуратности
Лазерный излучатель, которым оснащается пишущий дисковод, размещается на специальной каретке, способной передвигаться в двух направлениях. Чтобы снять излучатель с каретки, необходимо освободить его от большого количества крепежных элементов и разъемных устройств. Снимать их следует очень аккуратно, чтобы не повредить лазерный элемент. Кроме обычных инструментов, для извлечения красного лазерного диода (а для оснащения лазерного самодельного резака нужен именно он) потребуется паяльник, чтобы аккуратно освободить диод от имеющихся паяных соединений. Извлекая излучатель из посадочного места, следует соблюдать аккуратность и осторожность, чтобы не подвергать его сильному механическому воздействию, которое может стать причиной его выхода из строя.
Для резака нужен светодиод с красным свечением
Излучатель, извлеченный из пишущего компьютерного дисковода, необходимо установить вместо светодиода, которым изначально укомплектована лазерная указка. Для выполнения такой процедуры лазерную указку нужно разобрать, разделив ее корпус на две части. В верхней из них и находится светодиод, который следует извлечь и заменить на лазерный излучатель от пишущего компьютерного дисковода. Закрепляя такой излучатель в корпусе указки, можно использовать клей (важно только следить за тем, чтобы глазок излучателя располагался строго по центру отверстия, предназначенного для выхода луча).
Для контроля мощности нужно собрать простейшую электросхему, иначе светодиод может выйти из строя
Напряжения, которое вырабатывают источники питания в лазерной указке, недостаточно для того, чтобы обеспечить эффективность использования лазерного резака, поэтому применять их для оснащения такого устройства нецелесообразно. Для простейшего лазерного резака подойдут аккумуляторные батареи, используемые в обычном электрическом фонарике. Таким образом, совместив нижнюю часть фонарика, в которой размещаются его аккумуляторные батареи, с верхней частью лазерной указки, где уже находится излучатель от пишущего компьютерного дисковода, можно получить вполне работоспособный лазерный резак. Выполняя такое совмещение, очень важно соблюсти полярность аккумуляторных батарей, которые будут питать электроэнергией излучатель.
Схема резака на основе лазерной указки
Перед сборкой самодельного ручного лазерного резака предложенной конструкции из наконечника указки необходимо извлечь установленное в нем стекло, которое будет препятствовать прохождению лазерного луча. Кроме того, надо еще раз проверить правильность соединения излучателя с элементами питания, а также то, насколько точно располагается его глазок по отношению к выходному отверстию наконечника указки. После того как все элементы конструкции будут надежно соединены между собой, можно приступать к использованию резака.
В принципе для самодельного резака этой конструкции можно использовать любой подходящий корпус
Конечно, при помощи такого маломощного лазера не получится разрезать металлический лист, не подойдет он и для работ по дереву, но для решения несложных задач, связанных с резкой картона или тонких полимерных листов, он годится.
Проба резака. Изолента режется как ножом по маслу
По описанному выше алгоритму можно изготовить и более мощный лазерный резак, несколько усовершенствовав предложенную конструкцию. В частности, такое устройство необходимо дополнительно оснастить такими элементами, как:
- конденсаторы, емкость которых составляет 100 пФ и 100 мФ;
- резисторы с параметрами 2–5 Ом;
- коллиматор – устройство, которое используется для того, чтобы собрать проходящие через него световые лучи в узкий пучок;
- светодиодный фонарик со стальным корпусом.
Конденсаторы и резисторы в конструкции такого лазерного резака необходимы для того, чтобы создать драйвер, через который электрическое питание будет поступать от аккумуляторных батарей к лазерному излучателю. Если не использовать драйвер и пустить ток на излучатель напрямую, последний может сразу выйти из строя. Несмотря на более высокую мощность, такой лазерный станок для резки фанеры, толстого пластика и тем более металла также не получится.
Как изготовить более мощный аппарат
Домашних мастеров часто интересуют и более мощные лазерные станки, которые можно изготовить своими руками. Сделать лазер для резки фанеры своими руками и даже лазерный резак по металлу вполне возможно, но для этого необходимо обзавестись соответствующими комплектующими. При этом лучше сразу изготовить свой лазерный станок, который будет отличаться достойной функциональностью и работать в автоматическом режиме, управляясь внешним компьютером.
В зависимости от того, интересует вас лазерная резка металла своими руками или вам необходим аппарат для работ по дереву и другим материалам, следует правильно подбирать основной элемент такого оборудования – лазерный излучатель, мощность которого может быть различной. Естественно, лазерная резка фанеры своими руками выполняется устройством меньшей мощности, а лазер для резки металла должен оснащаться излучателем, мощность которого составляет не менее 60 Вт.
Для серьезного станка лучше потратиться приобрести лазерный диод нужной мощности
Чтобы изготовить полноценный лазерный станок, в том числе и для резки металла своими руками, потребуются следующие расходные материалы и комплектующие:
- контроллер, который будет отвечать за связь между внешним компьютером и электронными компонентами самого устройства, тем самым обеспечивая управление его работой;
- электронная плата, оснащенная информационным дисплеем;
- лазер (его мощность выбирается в зависимости от материалов, для обработки которых будет использоваться изготавливаемый резак);
- шаговые двигатели, которые будут отвечать за перемещение рабочего стола устройства в двух направлениях (в качестве таких двигателей можно применять шаговые электромоторы от неиспользуемых принтеров или DVD-плееров);
- охлаждающее устройство для излучателя;
- регулятор DC-DC, который будет контролировать величину напряжения, подаваемого на электронную плату излучателя;
- транзисторы и электронные платы для управления шаговыми электродвигателями резака;
- концевые выключатели;
- шкивы для установки зубчатых ремней и сами ремни;
- корпус, размер которого позволяет разместить в нем все элементы собираемой конструкции;
- шарикоподшипники различного диаметра;
- болты, гайки, винты, стяжки и хомуты;
- деревянные доски, из которых будет изготовлена рабочая рама резака;
- металлические стержни диаметром 10 мм, которые будут использоваться в качестве направляющих элементов;
- компьютер и USB-кабель, при помощи которого он будет соединяться с контроллером резака;
- набор слесарных инструментов.
Компоненты электронной начинки можно подобрать по отдельности или приобрести набор из комплектующих для станка ЧПУ
Если лазерный станок вы планируете использовать для работ по металлу своими руками, то его конструкция должна быть усиленной, чтобы выдерживать вес обрабатываемого металлического листа.
Наличие компьютера и контроллера в конструкции такого устройства позволяет использовать его не только в качестве лазерного резака, но и как гравировальный аппарат. С помощью данного оборудования, работа которого управляется специальной компьютерной программой, можно с высокой точностью и детализацией наносить сложнейшие узоры и надписи на поверхность обрабатываемого изделия. Соответствующую программу можно найти в свободном доступе в интернете.
По своей конструкции лазерный станок, который можно изготовить своими руками, представляет собой устройство челночного типа. Его подвижные и направляющие элементы отвечают за перемещение рабочей головки по осям X и Y. За ось Z принимается глубина, на которую выполняется резка обрабатываемого материала. За перемещение рабочей головки лазерного резака представленной конструкции, как уже говорилось выше, отвечают шаговые электродвигатели, которые фиксируются на неподвижных частях рамы устройства и соединяются с подвижными элементами при помощи зубчатых ремней.
Подвижная каретка самодельного резка
Опора скольжения Головка с лазером и радиатором Каретка в сборе
Размещение каретки на стойках Установка второго шагового двигателя Проверка плавности скольжения
Средняя панель закрывает электронику и служит подставкой Стенки из ДВП Прозрачная крышка из оранжевого акрила
Очень важным этапом изготовления лазерного станка своими руками является его настройка после окончательной сборки. Настройке и регулировке подвергаются как элементы кинематической схемы резака, так и его лазерная головка. Если с первыми проблем обычно не возникает, то юстировка лазерной головки представляет собой достаточно сложный процесс, правила выполнения которого следует хорошо изучить.
В заключение предлагаем вашему вниманию пару видеороликов о сборке ещё одного варианта лазерного станка из двух DVD-приводов.
Лазерный станок с ЧПУ — высокоточное устройство, которое предназначено для гравировки по фанере, а при достаточной мощности лазера — и для резки фанерных листов. Тем не менее, собрать такой аппарат можно в домашней мастерской, в гараже и даже на кухне. Главное — правильно подобрать компоненты и точно их установить.
Читайте нашу подробную инструкцию, если интересуетесь сборкой самодельного лазерного станка.
Содержание
Материалы для сборки лазерного станка ЧПУ своими руками
Материалы, необходимые для самостоятельной сборки лазерного ЧПУ-станка, зависят от требуемых модификаций. Чем более мощный и производительный требуется станок, тем больше деталей, и тем сложнее необходимые компоненты (особенно, оптическая составляющая). То же самое можно сказать про процесс сборки. Создание аппарата с рабочим столом площадью от 0,5 кв. м требует гораздо больше сил и опыта, чем постройка небольшого настольного станка с рабочим полем формата A4.
Параметры компонентов зависят от модификации будущего станка, в целом, список компонентов для самодельного лазерного станка с ЧПУ стандартный:
- Лазер мощностью от минимальной, достаточной для выжигания по фанере, около 0,5 Вт, до 40 Вт;
- 3 зеркала на шарнирах;
- Фокусирующая линза, установленная в специальную голову;
- Система охлаждения (комплекс воздушного и/или жидкостного охлаждения);
- Древесная плита для корпуса;
- Направляющие – металлические профили;
- Держатели направляющих;
- Подшипники (линейные и опорные) и втулки скольжения;
- 3 шаговых двигателя;
- Контроллер двигателей;
- Блок питания контроллера;
- Ходовые винты и гайки;
- Электрические провода;
- Шкивы для ременной передачи и ремни зубчатого типа;
- Концевые выключатели.
Главный вопрос — где найти лазер. Для начала стоит определить, какой источник лазера необходим — диодный лазер или CO2-трубка. Приобрести источники лазера можно как на AliExpress или eBay, так и в специализированных магазинах. Также можно найти аналог диодного лазера, например — использовать лазер из пишущего DVD-плеера. В любом случае, необходимо понимать, как работает излучатель на максимальной мощности. От этого зависит назначение и конструкция станка. На стадии сборки необходимо определить, какой трансформатор понадобится для лазера, и какая система нужна для охлаждения излучателя, а также лазерной головы с линзой.
Прежде всего, необходимо спроектировать лазерный станок. Для этого подходит любая CAD-программа. Некоторые детали, например — держатели зеркал и корпус лазерной головы, рекомендуется для простоты напечатать на 3D-принтере. Чтобы обеспечить максимальную точность и прочность деталей за разумную цену, рекомендуется использовать PETG. Это прочный пластик, со стойкостью к нагреву до 75 °C.
Как собрать лазерный станок с ЧПУ своими руками: пошаговая инструкция
Сборка лазерного станка с ЧПУ из вышеперечисленных компонентов состоит из нескольких этапов.
- Создание основания. Чаще всего используют 10-мм фанеру, для крупных станков стоит задуматься о металлическом сварном каркасе.
- Фиксация боковых стенок, которые изготовлены из древесных плит или тонкого металла.
- Изготовление подвижных боковых стенок, с отверстиями для направляющих по оси Х.
- Крепление направляющих по оси Y. На этих направляющих предварительно размещают подвижные боковые стенки.
- Сборка рабочей головы станка. Принципиально конструкция должна предусматривать возможность крепления на направляющих, а также горизонтальное размещение фокусирующей линзы.
- Монтаж оптической установки — лазера и зеркал, монтаж электроники и охлаждающей системы.
- Подключение ЧПУ-станка к электросети и отладка оборудования.
После проверки всех элементов можно начинать подготовку станка к работе.
Электроника для самодельного лазерного ЧПУ-станка
Контроллер можно приобрести в собранном виде, либо создать устройство самостоятельно, используя в качестве основы популярную управляющую плату. Среди распространенных плат можно выделить KY-2012 (5 Axis CNC Breakout Board for Stepper Motor Driver с DB25 Cable) и Arduino.
Настройка и отладка самодельного лазерного станка
Самой ответственной частью работы является настройка оптической системы. Работа по отладке узлов производится пошагово: от лазерного излучателя к лазерной голове. Следует помнить, что в процессе работы с лазером обязательно необходимо носить защитные очки, которые рассчитаны на блокировку оптического излучения с определенной длиной волны. Также следует помнить, что лазеры обладают большой оптической мощностью, поэтому следует аккуратно работать с оборудованием при включенном лазере и всегда надевать защитные очки.
Самостоятельная настройка станка с ЧПУ:
- Убедиться, что охлаждающая система CO2-трубки или вентиляторы охлаждения диодного лазера функционируют исправно;
- Перемещая излучатель, добиться, чтобы луч попадал в центр первого зеркала;
- Регулируя первое зеркало, получить на втором зеркале отражение в центре;
- Регулируя второе зеркало, добиваемся попадания луча в зеркало, расположенное в лазерной голове станка.
Самостоятельная сборка лазерного станка с ЧПУ требует, в первую очередь, хороших знаний электротехники. Если инженер способен собрать оборудование с учетом всех параметров, ему не составит труда построить корпус с направляющими и провести отладку оптической системы.
А если вы не готовы тратить время на это в высшей степени увлекательное, но трудоемкое занятие, и рисковать деньгами, — покупайте лазерные станки различной мощности в Top 3D Shop.
Потребуются два механизма привода DVD, один для оси X и второй для оси Y.
Используя небольшую отвертку с головкой Phillips, удалили все винты и отсоединенный шаговый двигатель, скользящие направляющие и толкатель.
Шаговые двигатели представляют собой 4-контактный двухполюсный шаговый двигатель.
Небольшой размер и низкая стоимость DVD-мотора говорит о том, что вам не стоит ожидать высокого разрешение мотора. Это обеспечивается ведущим винтом. Кроме того, не все такие двигатели делают 20 шагов / 24 об., также является общей спецификацией. Вам просто нужно протестировать ваш двигатель, чтобы убедиться, на что он способен.
Порядок расчета разрешающей способности шагового двигателя dvd привода
Чтобы измерить разрешение шагового двигателя привода CD / DVD, нужен цифровой микрометр. Расстояние вдоль винта было уже измерено. Общая длина винта промерена с помощью микрометра, которая оказалась 51,56 мм. Далее нужно определить значение отведения, которое представляет собой расстояние между двумя соседними резьбами на винте. Потоки были рассчитаны на 12 нитей в пределах этого расстояния. Отвод = расстояние между соседними нитями = (общая длина / количество нитей = 51,56 мм) / 12 = 4,29 мм / об. Угол шага составляет 18 градусов, что соответствует 20 шагам / оборот. Теперь, когда вся необходимая информация доступна, разрешение шагового двигателя можно рассчитать, как показано выше: Разрешение = (Расстояние между смежными нитями) / (N шагов / оборот) = (4 ,29 мм / оборот) / (20 шагов / оборот) = 0,214 мм / шаг. Что в 3 раза лучше требуемого разрешения, которое составляет 0,68 мм / шаг.
Подготовка слайдера
Используя супер клей, крепим ползунок и направляющую. Пружина прикреплена для поддержания натяжения между направляющей и ходовым винтом, чтобы избежать зазубрин.
Сборка направляющих для оси Y
Перед установкой ползунка в основание, приклеим 4 маленьких неодимовых магнитов (из механизма линз DVD) на X-пластину. Эти магниты помогут удерживать заготовку в рабочей зоне.
Гладкий стержень сохранит механизм скольжения в целости и сохранности относительно основания.
Сборка направляющих для оси X
Используя супер клей и винт, прикрепим направляющий механизм к корпусу лазера.
Затем прикрепите шаговый двигатель к месту, используя винты и вставьте гладкие стержни и направляющую часть в отверстия, учитывая, что ползунок движется свободно и не слишком сильно. Далее прикрепим к нему боковые стойки рамы.
Подключение шаговых двигателей
Для шаговых двигателей используем старый USB-кабель, потому что он имеет 4 провода внутри и крышку, так же он более гибкий и с ним легко работать.
Используя режим непрерывности в мультиметре, определите 2 катушки, катушку A и катушку B.
Я сделал 2 пары проволоки, выбрав цвета: одну пару для катушки A и вторую для катушки B.
Припаял их и использовал термоусадочную трубку.
Комбинирование осей X и Y
Используя 4 винта M3x12, объедините основание и две боковые рамы в одну сборку.
Электроника
Детали используемые для драйвера:
- Arduino nano.
- 2x A4988 Драйверы шаговых двигателей.
- 1x IRFZ44N N-КАНАЛЬНЫЙ МОП-транзистор.
- 1x LM7805 Регулятор напряжения с радиатором.
- 1x 47 Ом и 1x 10 кОм резистор.
- 1x 1000 мкФ 16 В конденсатор.
- 1x 2,5 мм JST XH-Style 2-контактный разъем.
- Штыри заголовка мужского и женского пола.
- 1x (20 мм х 80 мм пустой печатной платы).
В GRBL защищены цифровые и аналоговые пины Arduino.
Настройка микро шага для каждой оси.
MS0 MS1 MS2 Разрешение микрошагов.
Низкий Низкий Низкий Полный шаг.
Высокий Низкий Низкий Полшага
Низкий Высокий Низкий Квартальный шаг.
Высокий Высокий Низкий Восьмой шаг.
Высокий Высокий Высокий Шестнадцатый шаг.
3 контакта (MS1 , MS2 и MS3) предназначены для выбора одного из пяти шагов решения в соответствии с приведенной выше таблицей правды. Эти контакты имеют внутренние понижающие резисторы, поэтому, если мы оставим их отключенными, плата будет работать в режиме полного шага. Мы использовали 16-ю ступенчатую конфигурацию для плавного и бесшумного. Большинство (но , конечно, не все) шаговых двигателей совершают 200 полных шагов за оборот. Путем надлежащего управления током в катушках можно заставить двигатель двигаться меньшими шагами. Pololu A4988 может заставить двигатель двигаться с шагом 1/16 — или 3200 шагов за оборот. Основное преимущество микрошагования заключается в уменьшении шероховатости движения. Единственные полностью точные позиции — позиции полного шага. Двигатель не сможет удерживать стационарное положение в одном из промежуточных положений с той же точностью положения или с тем же удерживающим моментом, что и в положениях полного шага.
Сборка электроники в кадр
Смонтируйте плату драйвера на задней панели, используя 2 винта M2 и к раме машины, используя 2 винта M3x12. Подключены к соединениям для шаговых двигателей X, Y и Laser.
Регулировка тока шагового драйвера
Лазер, который я использовал, это фокусируемый лазерный модуль 200-250 мВт, 650 нм. Наружный металлический корпус работает как теплоотвод для лазерного диода. Имеет фокусирующую линзу для регулировки лазерной точки.
Подсоедините разъем лазерного провода к лазерному разъему на плате драйвера.
Купить лазер можно тут .
Готовимся!
Используя четыре небольших неодимовых магнита, зафиксируйте рабочую деталь на рабочей станине и установите оси X и Y в исходное положение (home ). Включите плату драйвера через внешний источник питания и подключите Arduino Nano к компьютеру через кабель USB A — USB Mini B.
Также питание платы осуществляется от внешнего источника питания.
БЕЗОПАСНОСТЬ ПРЕЖДЕ ВСЕГО.
ОБЯЗАТЕЛЬНО ИСПОЛЬЗУЙТЕ СПЕЦИАЛЬНЫЕ ОЧКИ ДЛЯ ЗАЩИТЫ ОТ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ.
Прошивка GRBL
Программное обеспечение для отправки G-кода
Также нам нужно программное обеспечение для отправки G-кода в ЧПУ, для этого я использовал LASER GRBL
LaserGRBL — один из лучших стримеров для Windows GCode для лазерных граверов DIY. LaserGRBL может загружать и транслировать путь GCode в arduino, а также гравировать изображения, картинки и логотип с помощью встроенного инструмента конвертации.
Последняя версия, стабильная
LaserGRBL постоянно проверяет наличие COM-портов на машине. Список портов позволяет вам выбрать COM-порт, к которому подключена ваша плата управления.
Пожалуйста, выберите правильную скорость передачи данных для соединения в соответствии с конфигурацией прошивки вашего устройства (по умолчанию 115200).
$$ — Просмотр настроек Grbl
Чтобы просмотреть настройки, введите $$ и нажмите клавишу ввода после подключения к Grbl. Grbl должен ответить списком текущих настроек системы, как показано в примере ниже. Все эти настройки являются постоянными и хранятся в EEPROM, поэтому, если вы выключите питание, они будут загружены обратно при следующем включении Arduino.
$0=10 (step pulse, usec)
$1=25 (step idle delay, msec)
$2=0 (step port invert mask:00000000)
$3=6 (dir port invert mask:00000110)
$4=0 (step enable invert, bool)
$5=0 (limit pins invert, bool)
$6=0 (probe pin invert, bool)
$10=3 (status report mask:00000011)
$11=0.020 (junction deviation, mm)
$12=0.002 (arc tolerance, mm)
$13=0 (report inches, bool)
$20=0 (soft limits, bool)
$21=0 (hard limits, bool)
$22=0 (homing cycle, bool)
$23=1 (homing dir invert mask:00000001)
$24=50.000 (homing feed, mm/min)
$25=635.000 (homing seek, mm/min)
$26=250 (homing debounce, msec)
$27=1.000 (homing pull-off, mm)
$100=314.961 (x , step/mm)
$101=314.961 (y , step/mm)
$102=314.961 (z , step/mm)
$110=635.000 (x max rate, mm/min)
$111=635.000 (y max rate, mm/min)
$112=635.000 (z max rate, mm/min)
$120=50.000 (x accel, mm/sec^2)
121=50.000 (y accel, mm/sec^2)
$122=50.000 (z accel, mm/sec^2)
$130=225.000 (x max travel, mm)
$131=125.000 (y max travel, mm)
$132=170.000 (z max travel, mm)
Настройка системы
Вот самая трудная часть проекта
— Настройка лазерного луча в наименьшую возможную точку на заготовке. Это самая сложная часть, которая требует времени и терпения, используя метод следа и ошибки.
— Настройка GRBL на $ 100, $ 101, $ 130 и $ 131
Настройка для GRBL
Я попытался гравировать квадрат сторон 40 мм и после стольких ошибок и изменения настройки grbl, я получил правильную линию 40 мм, выгравированную как по оси X, так и по оси Y. Если разрешение по осям X и Y не совпадает, изображение будет масштабироваться в любом направлении.
Имейте в виду, что не все шаговые двигатели от DVD приводов одинаковы.
Это длительный и трудоемкий процесс, но результаты будут хороши, если серьезно подойти к настройке.
Пользовательский интерфейс LaserGRBL.
Гравюра на дереве
Растровый импорт позволяет загружать изображения любого вида в LaserGRBL и поворачивать его GCode инструкциями без необходимости использования другого программного обеспечения. LaserGRBL поддерживает фотографии, картинки, карандашные рисунки, логотипы, значки и старается сделать все возможное с любым видом изображения.
Настройки для гравировки различны для всех материалов.
Определите скорость гравировки на мм, а качество линий на мм.
Этот лазер мощностью 250 мВт также способен резать тонкую бумагу, но скорость должна быть очень низкой, т.е. не более 15 мм / мин и лазерный луч должен быть правильно отрегулирован.
Читайте также: