Мультиметр своими руками
Невозможно представить рабочий стол ремонтника без удобного недорогого цифрового мультиметра.
В этой статье рассмотрено устройство часто распространенных цифровых мультиметров 830-й серии, его схема, а также наиболее часто встречающиеся неисправности и способы их устранения.
В настоящее время выпускается огромное разнообразие цифровых измерительных приборов различной степени сложности, надежности и качества. Основой всех современных цифровых мультиметров является интегральный аналого-цифровой преобразователь напряжения (АЦП). Одним из первых таких АЦП, пригодных для построения недорогих портативных измерительных приборов, был преобразователь на микросхеме ICL7106, выпущенной фирмой MAXIM.
В результате было разработано несколько удачных недорогих моделей цифровых мультиметров 830-й серии, таких как M830B, M830, M832, M838. Вместо буквы M может стоять DT. В настоящее время эта серия приборов является самой распространенной и самой повторяемой в мире. Ее базовые возможности: измерение постоянных и переменных напряжений до 1000 В (входное сопротивление 1 МОм), измерение постоянных токов до 10 А, измерение сопротивлений до 2 МОм, тестирование диодов и транзисторов.
Кроме того, в некоторых моделях есть режим звуковой прозвонки соединений, измерения температуры с термопарой и без термопары, генерации меандра частотой 50…60 Гц или 1 кГц. Основной изготовитель мультиметров этой серии — фирма Precision Mastech Enterprises (Гонконг).
СХЕМА И РАБОТА ПРИБОРА
Структурная схема
Принципиальная схема мультиметра
Основа мультиметра — АЦП IC1 типа 7106 (ближайший отечественный аналог — микросхема 572ПВ5). Его структурная схема приведена на рис. 1, а цоколевка для исполнения в корпусе DIP-40 — на рис. 2. Перед ядром 7106 могут стоять разные префиксы в зависимости от производителя: ICL7106, ТС7106 и т.д. В последнее время все чаще используются бескорпусные микросхемы (DIE chips), кристалл которых припаивается непосредственно на печатную плату.
Рассмотрим схему мультиметра М832 фирмы Mastech (рис. 3). На вывод 1 IC1 подается положительное напряжение питания батареи 9 В, на вывод 26 — отрицательное. Внутри АЦП находится источник стабилизированного напряжения 3 В, его вход соединен с выводом 1 IC1, а выход — с выводом 32. Вывод 32 подсоединяется к общему выводу мультиметра и гальванически связан с входом COM прибора. Разность напряжений между выводами 1 и 32 составляет примерно 3 В в широком диапазоне питающих напряжений — от номинального до 6,5 В. Это стабилизированное напряжение подается на регулируемый делитель R11, VR1, R13, а с его выхода -на вход микросхемы 36 (в режиме измерения токов и напряжений). Делителем задается потенциал U на выводе 36, равный 100 мВ. Резисторы R12, R25 и R26 выполняют защитные функции. Транзистор Q102 и резисторы R109, R110 и R111 отвечают за индикацию разряда батареи питания. Конденсаторы C7, C8 и резисторы R19, R20 отвечают за отображение десятичных точек дисплея.
Диапазон рабочих входных напряжений Umax напрямую зависит от уровня регулируемого опорного напряжения на выводах 36 и 35 и составляет
Стабильность и точность показаний дисплея зависят от стабильности этого опорного напряжения.
Показания дисплея N зависят от входного напряжения U и выражаются числом.
Рассмотрим работу прибора в основных режимах.
Измерение напряжения
Упрощенная схема мультиметра в режиме измерения напряжения представлена на рис. 4.
При измерении постоянного напряжения входной сигнал подается на R1…R6, с выхода которого через переключатель [по схеме 1-8/1…1-8/2) подается на защитный резистор R17. Этот резистор, кроме того, при измерениях переменного напряжения вместе с конденсатором C3 образует фильтр нижних частот. Далее сигнал поступает на прямой вход микросхемы АЦП, вывод 31. На инверсный вход микросхемы подается потенциал общего вывода, вырабатываемый источником стабилизированного напряжения 3 В, вывод 32.
При измерениях переменного напряжения оно выпрямляется однополупериодным выпрямителем на диоде D1. Резисторы R1 и R2 подобраны таким образом, чтобы при измерении синусоидального напряжения прибор показывал правильное значение. Защита АЦП обеспечивается делителем R1…R6 и резистором R17.
Измерение тока
Упрощенная схема мультиметра в режиме измерения тока представлена на рис. 5.
В режиме измерения постоянного тока последний протекает через резисторы R0, R8, R7 и R6, коммутируемые в зависимости от диапазона измерения. Падение напряжения на этих резисторах через R17 подается на вход АЦП, и результат выводится на дисплей. Защита АЦП обеспечивается диодами D2, D3 (в некоторых моделях могут не устанавливаться) и предохранителем F.
Измерение сопротивления
Упрощенная схема мультиметра в режиме измерения сопротивления представлена на рис. 6. В режиме измерения сопротивления используется зависимость, выраженная формулой.
Режим прозвонки. В схеме прозвонки используется микросхема IC2 (LM358), содержащая два операционных усилителя. На одном усилителе собран звуковой генератор, на другом — компаратор. При напряжении на входе компаратора (вывод 6) меньше порогового, на его выходе (вывод 7) устанавливается низкое напряжение, открывающее ключ на транзисторе Q101, в результате чего раздается звуковой сигнал. Порог определяется делителем R103, R104. Защита обеспечивается резистором R106 на входе компаратора.
ДЕФЕКТЫ МУЛЬТИМЕТРОВ
Все неисправности можно разделить на заводской брак (и такое бывает) и повреждения, вызванные ошибочными действиями оператора.
Поскольку в мультиметрах используется плотный монтаж, то возможны замыкания элементов, плохие пайки и поломка выводов элементов, особенно расположенных по краям платы. Ремонт неисправного прибора следует начинать с визуального осмотра печатной платы. Наиболее часто встречающиеся заводские дефекты мультиметров М832 приведены в таблице.
Исправность ЖК-дисплея можно проверить с помощью источника переменного напряжения частотой 50.60 Гц и амплитудой в несколько вольт. В качестве такого источника переменного напряжения можно взять мультиметр M832, у которого есть режим генерации меандра. Для проверки дисплея следует положить его на ровную поверхность дисплеем вверх, подсоединить один щуп мультиметра M832 к общему выводу индикатора (нижний ряд, левый вывод), а другой щуп мультиметра прикладывать поочередно к остальным выводам дисплея. Если удается получить зажигание всех сегментов дисплея, значит, он исправен.
Вышеописанные неисправности могут появиться и в процессе эксплуатации. Следует отметить, что в режиме измерения постоянного напряжения прибор редко выходит из строя, т.к. хорошо защищен от перегрузок по входу. Основные проблемы возникают при измерении тока или сопротивления.
Ремонт неисправного прибора следует начинать с проверки питающего напряжения и работоспособности АЦП: напряжения стабилизации 3 В и отсутствия пробоя между выводами питания и общим выводом АЦП.
В режиме измерения тока при использовании входов V, Q и mA, несмотря на наличие предохранителя, возможны случаи, когда предохранитель сгорает позже, чем успевают пробиться предохранительные диоды D2 или D3. Если в мультиметре установлен предохранитель, не соответствующий требованиям инструкции, то в этом случае возможно выгорание сопротивлений R5…R8, причем визуально на сопротивлениях это может никак не проявиться. В первом случае, когда пробивается только диод, дефект проявляется только в режиме измерения тока: ток через прибор протекает, но дисплей показывает нули.
В случае выгорания резисторов R5 или R6 в режиме измерения напряжения прибор будет завышать показания или показывать перегрузку. При полном сгорании одного или обоих резисторов прибор не обнуляется в режиме измерения напряжения, но при замыкании входов дисплей устанавливается на нуль. При сгорании резисторов R7 или R8 на диапазонах измерения тока 20 мА и 200 мА прибор будет показывать перегрузку, а в диапазоне 10 А — только нули.
В режиме измерения сопротивления повреждения происходят, как правило, в диапазонах 200 Ом и 2000 Ом. В этом случае при подаче на вход напряжения могут сгорать резисторы R5, R6, R10, R18, транзистор Q1 и пробиваться конденсатор C6. Если полностью пробит транзистор Q1, то при измерении сопротивления прибор будет показывать нули. При неполном пробое транзистора мультиметр с разомкнутыми щупами будет показывать сопротивление этого транзистора. В режимах измерения напряжения и тока транзистор замыкается переключателем накоротко и на показания мультиметра не влияет. При пробое конденсатора C6 мультиметр не будет измерять напряжение в диапазонах 20 В, 200 В и 1000 В или существенно занижать показания в этих диапазонах.
В случае отсутствия индикации на дисплее при наличии питания на АЦП или визуально заметного выгорания большого количества элементов схемы существует большая вероятность повреждения АЦП. Исправность АЦП проверяется контролем напряжения источника стабилизированного напряжения 3 В. На практике АЦП выгорает только при подаче на вход высокого напряжения, гораздо выше 220 В. Очень часто при этом в компаунде бескорпусного АЦП появляются трещины, повышается ток потребления микросхемы, что приводит к ее заметному нагреву.
При подаче на вход прибора очень высокого напряжения в режиме измерения напряжения может произойти пробой по элементам (резисторам) и по печатной плате, в случае режима измерения напряжения схема защищена делителем на сопротивлениях R1.R6.
У дешевых моделей серии DT длинные выводы деталей могут закорачиваться на экран, расположенный на задней крышке прибора, нарушая работу схемы. У Mastech такие дефекты не наблюдаются.
Источник стабилизированного напряжения 3 В в АЦП у дешевых китайских моделей может на практике давать напряжение 2,6.3,4 В, а у некоторых приборов перестает работать уже при напряжении питающей батареи 8,5 В.
В моделях DT используются низкокачественные АЦП, они очень чувствительны к номиналам цепочки интегратора C4 и R14. В мультиметрах фирмы Mastech высококачественные АЦП позволяют использовать элементы близких номиналов.
Поскольку дешевые китайские фирмы используют низкокачественные бескорпусные АЦП, то нередки случаи обрыва выводов, при этом определить причину неисправности очень трудно и проявляться она может по-разному, в зависимости от оборванного вывода. Например, не горит один из выводов индикатора. Поскольку в мультиметрах используются дисплеи со статической индикацией, то для определения причины неисправности необходимо проверить напряжение на соответствующем выводе микросхемы АЦП, оно должно быть около 0,5 В относительно общего вывода. Если оно равно нулю, то неисправен АЦП.
Эффективным способом поиска причины неисправности является прозвонка выводов микросхемы аналого-цифрового преобразователя следующим образом. Используется еще один, разумеется, исправный, цифровой мультиметр. Он включается в режим проверки диодов. Черный щуп, как обычно, устанавливается в гнездо COM, а красный в гнездо VQmA. Красный щуп прибора подсоединяется к выводу 26 (минус питания), а черный поочередно касается каждой ножки микросхемы АЦП. Поскольку на входах аналого-цифрового преобразователя установлены защитные диоды в обратном включении, то при таком подключении они должны открыться, что будет отражено на дисплее как падение напряжения на открытом диоде.
Реальная величина этого напряжения на дисплее будет несколько больше, т.к. в схеме включены резисторы. Точно так же проверяются все выводы АЦП при подключении черного щупа к выводу 1 (плюсу питания АЦП) и поочередного касания остальных выводов микросхемы. Показания прибора должны быть аналогичными. Но если поменять полярность включения при этих проверках на противоположную, то прибор должен показывать всегда обрыв, т.к. входное сопротивление исправной микросхемы очень велико.
Таким образом, неисправными можно считать выводы, которые показывают конечное сопротивление при любой полярности подключения к микросхеме. Если же прибор показывает обрыв при любом подключении исследуемого вывода, то это на девяносто процентов говорит о внутреннем обрыве. Указанный способ проверки достаточно универсален и может применяться при проверке различных цифровых и аналоговых микросхем.
Бывают неисправности, связанные с некачественными контактами на галетном переключателе, прибор работает только при нажатом галетнике. Фирмы, производящие дешевые мультиметры, редко покрывают дорожки под галетным переключателем смазкой, отчего они быстро окисляются. Часто дорожки бывают чем-нибудь загрязнены. Ремонтируется следующим образом: из корпуса вынимается печатная плата, и дорожки переключателя протираются спиртом. Затем наносится тонкий слой технического вазелина. Все, прибор починен.
У приборов серии DT бывает иногда так, что переменное напряжение измеряется со знаком минус. Это указывает на неправильную установку D1, обычно из-за неправильной маркировки на корпусе диода.
Случается, что изготовители дешевых мультимет-ров ставят низкокачественные операционные усилители в цепи звукового генератора, и тогда при включении прибора раздается жужжание зуммера. Этот дефект устраняется подпаиванием электролитического конденсатора номиналом 5 мкФ параллельно цепи питания. Если при этом не обеспечивается устойчивая работа звукового генератора, то необходимо заменить операционный усилитель на LM358P.
Часто встречается такая неприятность, как вытекание батареи. Небольшие капли электролита можно протереть спиртом, но если плату залило сильно, то хорошие результаты можно получить, промыв ее горячей водой с хозяйственным мылом. Сняв индикатор и отпаяв пищалку, с помощью щетки, например зубной, нужно тщательно намылить плату с обеих сторон и промыть под струей воды из-под крана. Повторив мойку 2.3 раза, плату высушивают и устанавливают в корпус.
В большинстве приборов, выпускаемых в последнее время, применяются бескорпусные (DIE chips) АЦП. Кристалл устанавливается непосредственно на печатную плату и заливается смолой. К сожалению, это значительно снижает ремонтопригодность приборов, т.к. при выходе АЦП из строя, что встречается достаточно часто, заменить его трудно. Приборы с бескорпусными АЦП иногда бывают чувствительны к яркому свету. Например, при работе рядом с настольной лампой погрешность измерений может возрасти. Дело в том, что индикатор и плата прибора обладают некоторой прозрачностью, и свет, проникая сквозь них, попадает на кристалл АЦП, вызывая фотоэффект. Для устранения этого недостатка нужно вынуть плату и, сняв индикатор, заклеить место расположения кристалла АЦП (его хорошо видно сквозь плату) плотной бумагой.
При покупке мультиметров DT следует обратить внимание на качество механики переключателя, следует обязательно прокрутить галетный переключатель мультиметра несколько раз, чтобы убедиться, что переключение происходит четко и без заеданий: дефекты пластмассы не поддаются ремонту.
Промышленность выпускает универсальную микросхему серии КР572ПВ2 (с буквенными индексами А, Б, В), включающую в себя несколько электронных устройств. На ее базе не трудно собрать достаточно простой и портативный мультиметр, позволяющий измерять напряжения, токи, сопротивления. Но прежде чем рассказать о самом приборе, несколько слов о микросхеме и ее работе.
Измеритель температуры и частоты на основе компьютера
Не секрет, что после приобретения (или самостоятельной сборки) современного высокопроизводительного персонального компьютера (ПК) перед владельцами устаревших машин (286-х, 386-х) неизбежно возникает вопрос: что делать со старой? Продать ее за сколько-нибудь приличную цену нереально, а выбросить .
Универсальный измерительный прибор (частота, фаза, ёмкость)
Схема комбинированного измерительного прибора, позволяет измерять частоту, фазу электрического переменного напряжения и емкость конденсаторов. Значение измеряемой емкости зависит от частоты внешнего генератора, с которым производят измерения. Так, для измерения емкости до 1 мкФ необходимо установить .
Комплекс для НЧ измерений - генератор, частотомер, вольтметр
Схема универсального прибора - генератор сигналов прямоугольной и синусоидальной формы, вольтметр переменного тока и частотомер. Низкочастотный измерительный комплекс очень удобен в домашней лаборатории радиолюбителя, так как объединяет в себе сразу несколько устройств. Питается прибор от одного общего блока питания. Основные параметры .
Широкодиапазонный измеритель RCL на двух транзисторах
Схема простого широкодиапазонного мостового измерителя RCL на двух транзисторах. В этом измерителе использован мостовой метод, но благодаря специальным мерам достигнута широкодиапазонность, чего нет в обычных мостовых схемах измерений. На транзисторе V1 собран генератор рабочей частоты, на транзисторе V2 — усилитель сигнала разбаланса .
Схема прибора агронома для измерения влажности, температуры и освещенности
Схема прибора агронома, который позволяет измерять температуру, абсолютную влажность почвы и освещенность. Датчиком температуры служит терморезистор R4, включенный в одно из плечей моста, образованного резисторами R1—R5. Балансируют мост при температуре 0 °С переменным резистором R1. С изменением.
Схема Генриметра Схема генриметра, основанная на методе резонанса и построенная на регулируемом НЧ-генераторе на полевом транзисторе Q1, измеряет любые индуктивности от 60 мкГн до 60 000 Гн. После подключения катушки с неизвестной индуктивностью к выводам XX внешний генератор, присоединенный к входу.
Простой измерительный мост RC на одном транзисторе
Измерительный мост, схема которого изображена ниже, позволяет измерять сопротивления резисторов в пределах от 10 Ом до 10 МОм и емкостей конденсаторов от 10 пФ до 10 мкФ. Генератор переменного напряжения собран на одном транзисторе .
Схема малогабаритного цифрового мультиметра (тестер)
Цифровой мультиметр (тестер), конструктивно выполнен на интегральной схеме К572ПВ2А (Б, В) (БИС). По своему устройству интегральная схема К572ПВ2А представляет собой милливольтметр с входным сопротивлением 20 МОм с аналоговоцифровым преобразованием н выходом на семиэлементный индикатор.
Простой транзисторный вольтомметр
Для проверки и настройки транзисторных приемников, портативных магнитофонов, ЭВМ и других устройств требуется измерять напряжения от сотых долей вольта. Для таких измерений необходим ламповый или транзисторный вольтомметр постоянного тока.
На данный момент выпускается три основные модели цифровых мультиметров, это dt830, dt838, dt9208 и m932. Первой на наших рынках появилась модель dt830.
Цифровой мультиметр dt830
Постоянное напряжение:
Предел: 200мВ, разрешение: 100мкВ, погрешность: ±0,25%±2
Предел: 2В, разрешение: 1мВ, погрешность: ±0,5%±2
Предел: 20В, разрешение: 10мВ, погрешность: ±0,5%±2
Предел: 200В, разрешение: 100мВ, погрешность: ±0,5%±2
Предел: 1000В/600В, разрешение: 1В, погрешность: ±0,5%±2
Переменное напряжение:
Предел: 200В, разрешение: 100мВ, погрешность: ±1,2%±10
Предел: 750В/600В, разрешение: 1В, погрешность: ±1,2%±10
Частотный диапазон от 45Гц до 450Гц.
Постоянный ток:
Предел: 200мкА, разрешение: 100нА, погрешность: ±1,0%±2
Предел: 2000мкА, разрешение: 1мкА, погрешность: ±1,0%±2
Предел: 20мА, разрешение: 10мкА, погрешность: ±1,0%±2
Предел: 200мА, разрешение: 100мкА, погрешность: ±1,2%±2
Предел: 10А, разрешение: 10мА, погрешность: ±2,0%±2
Сопротивление:
Предел: 200Ом, разрешение: 0,1Ом, погрешность: ±0,8%±2
Предел: 2кОм, разрешение: 1Ом, погрешность: ±0,8%±2
Предел: 20кОм, разрешение: 10Ом, погрешность: ±0,8%±2
Предел: 200кОм, разрешение: 100Ом, погрешность: ±0,8%±2
Предел: 2000кОм, разрешение: 1кОм, погрешность: ±1,0%±2
Напряжение выхода на диапазонах: 2,8В
Тест транзистора hFE:
I, пост.: 10мкА, Uк-э: 2,8В±0,4В, диапазон измерения hFE: 0-1000
Тест диода
Ток теста 1,0мА±0,6мА, U теста 3,2В макс.
Более совершенной и многофункциональной моделью цифрового мультиметра, стала dt838. Наряду с обычными возможностями, здесь добавили в строенный генератор синусоидального сигнала 1 кГц .
Цифровой мультиметр dt838
Количество измерений в секунду: 2
Постоянное напряжение U= 0,1мВ – 1000В
Переменное напряжение U~ 0,1В – 750В
Постоянный ток I= 2мA – 10A
Диапазон частот по перем. току 40 – 400Гц
Сопротивление R 0,1 Ом – 2 МОм
Коэффициент усиления транзисторов h21 до 1000
Питание 9В, Крона ВЦ
Цена – около 5 уе.
Внутренняя и внешняя начинка практически идентична модели dt830. Аналогичной особенностью является и невысокая надёжность подвижных контактов.
На настоящее время одной из самых продвинутых моделей является цифровой мультиметр m932 . Особенности: автоматический выбор диапазонов и бесконтактный поиск статического электричества.
Цифровой мультиметр m932
Технические характеристики цифрового мультиметра m932 :
ПОСТОЯННОЕ НАПРЯЖЕНИЕ Пределы измерений 600 мВ; 6; 60; 600; 1000 В
Погрешность ± (0.5 % + 2 е.м.р.)
Макс. разрешение 0.1 мВ
Вх. сопротивление 7.8 МОм
Защита входа 1000 В
ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ Пределы измерений 6; 60; 600; 1000 В
Погрешность ± (1.2 % + 3 е.м.р.)
Макс. разрешение 1 мВ
Полоса частот 50 – 60 Гц
Измерение среднеквадратичных значений – 50 – 60 Гц
Вх. импеданс 7.8 МОм
Защита входа 1000 В
ПОСТОЯННЫЙ ТОК Пределы измерений 6; 10 А
Погрешность ± (2.5 % + 5 е.м.р.)
Макс. разрешение 1 мА
Защита входа Предохранитель 10 А
ПЕРЕМЕННЫЙ ТОК Пределы измерений 6; 10 А
Погрешность ± (3 % + 5 е.м.р.)
Макс. разрешение 1 мА
Полоса частот 50 – 60 Гц
Измерение среднеквадратичных значений – 50 – 60 Гц
Защита входа Предохранитель 10 А
СОПРОТИВЛЕНИЕ Пределы измерений 600 Ом; 6; 60; 600 кОм; 6; 60 МОм
Погрешность ± (1 % + 2 е.м.р.)
Макс. разрешение 0.1 Ом
Защита входа 600 В
ЁМКОСТЬ Пределы измерений 40; 400 нФ; 4; 40; 400; 4000 мкФ
Погрешность ± (3 % + 5 е.м.р.)
Макс. разрешение 10 пФ
Защита входа 600 В
ЧАСТОТА Пределы измерений 10; 100; 1000 Гц; 10; 100; 1000 кГц; 10 МГц
Погрешность ± (1.2 % + 3 е.м.р.)
Макс. разрешение 0.001 Гц
Защита входа 600 В
КОЭФ. ЗАПОЛНЕНИЯ ИМПУЛЬСОВ Диапазон измерений 0.1 – 99.9 %
Погрешность ± (1.2 % + 2 е.м.р.)
Макс. разрешение 0.1 %
ТЕМПЕРАТУРА Диапазон измерений – -20°С – 760°С (-4°F – 1400°F)
Погрешность ± 5°С/9°F)
Макс. разрешение 1°С; 1°F
Защита входа 600 В
ИСПЫТАНИЕ P-N Макс. ток теста 0.3 мА
Напряжение теста 1 мВ
Защита входа 600 В
ПРОЗВОН ЦЕПИ Порог срабатывания
О полезной доработке цифровых тестеров можно прочитать здесь . А документацию на несколько десятков других моделей ищите в разделе схем.
Размышляю над программированием микроконтроллера на предмет иметь самодельный мультиметр, который бы я сам программировал под свои нужды. Собственно, здесь проработка идеи, тренировка в программировании, изучение электро-физики на исследовании, проговор мыслей, вопросов пока нет. Достало - что дешовые мультиметры не обладают максимальными функциями, дорогие - всё-равно под вопросом, и при выходе из строя - под вопросом ремонтабельность. Есть разные приборы, но хочется много в одном, что видится реализуемым в программировании. Чтобы не городить с нуля сложный переключатель - предполагаю воспользоваться донором в виде сгоревшего мультиметра DT830. Выломав родной микроконтроллер, я предполагаю проводками кинуть сигналы на монтажную плату с распаянным другим микроконтроллером с обвеской. Дополнительные функции будут реализованы через разные режимы реакции на сигнал с уникального порта - например - для проверки диодов, или аналогичный. Режимы будут переключаться дополнительной кнопочкой. Из функций превидится всё - что в голову взбредёт - вплоть до анализа добротности, проницаемости феррита, расстояния до обрыва кабеля и др. Питание кроной нужно будет заменить на два пальчика на три вольта (плату нужно будет подпилить). Я не вижу препятствий в программировании, переделка железа тоже сводится к минимуму - почему бы и "нет".
Собственно, хочется определиться - а стоит-ли этим заниматься? Может там реализация некоторых функций будет нереальна - да я не знаю. Что скажете?
Щупы измерительные, у которых провода имеют ПВХ изоляцию, в качестве материала для штекеров и держателей используется пластмасса, а сами наконечники изготовлены из стали, как правило, самые недорогие. Именно они входят в комплект к бюджетным моделям мультиметров, таких как DT-838 или DT-830B.
Измерительные провода подбираются разного цвета, чтобы правильно подключить прибор к измеряемой цепи. Стандартная толщина электрода у таких изделий 4мм, а длина варьируется в зависимости от модели. Форма держателей может иметь несколько вариаций, но эта незначительная конструктивная особенность не влияет на надежность.
Рисунок . Недорогие мультиметры комплектуются соответствующими щупами.
Такие изделия не являются лучшим вариантом, любое неосторожное движение может привести к отрыву наконечника. Помимо этого не следует забывать о недостатках, присущих ПВХ изоляции, они следующие:
- сохраняется форма у смотанных проводов, что приводит к неудобствам при работе;
- низкая термостойкость, изоляцию легко повредить паяльником;
- провод становится жестким на морозе и может потрескаться.
Также необходимо заметить, что наконечники для щупов с иглами диаметром 4мм подойдут не для всех работ. Например, для снятия замеров с электронных плат, где находятся SMD-компоненты, потребуются тонкие щупы для тестера. Единственное достоинство бюджетных моделей — невысокая цена. Такие изделия вполне оправдывают себя при использовании мультиметра на непрофессиональном уровне, то есть, в бытовых целях для мелкого ремонта.
Профессиональное оборудование
Приведем характерные отличительные особенности, свойственные качественному инструменту:
- провода с силиконовой изоляцией, они обладают хорошей гибкостью и термостойкостью;
- держатель и штекер должны обладать гибкими герметичными вводами, благодаря такой конструкции провода не вырвутся из них, даже если допустить случайный рывок;
- держатели имеют прорезиненное покрытие и снабжены специальными выступами для удобства захвата пальцами;
- иглы электродов (а нередко и штекеры) снабжены специальными снимающимися колпачками. Такой вид защиты несет две функции: не допускает загрязнения контактной поверхности и существенно снижает риск получить колотую травму;
- анодированные или покрытые золотом электроды;
- небольшое внутреннее сопротивление провода (в идеале около 0,04 Ом).
Таким требованиям отвечает продукция следующих брендов: Fluke, Unitrend, Mastech и т.д.
Как правило, хорошие профессиональные щупы разборные, это позволяет использовать для них специальные насадки. Имеет смысл рассказать о них подробнее.
Универсальные щупы
Эти изделия – самые простые и дешевые. Ими комплектуется большинство недорогих моделей мультиметров. Кабели этих элементов снабжены ПВХ изоляцией, а штекеры и держатели наконечников изготовлены из пластмассы. Изнутри держателя к стальному электроду прикреплен тонкий провод. Такие наконечники легко могут оторваться при недостаточно аккуратном обращении. Понятно, что о долговечности и высокой надежности здесь говорить не приходится.
Различные модели универсальных контактов имеют неодинаковую длину центрального электрода штекера и выступающей части его корпуса. Отличаются они и по посадочной глубине штекера.
Фирменные изделия
Мультиметр может иметь щуп из различных материалов. Качественные и надежные контакты можно отличить по следующим признакам:
- Провода для щупов мультиметра изготовлены из материала, обладающего высокой гибкостью.
- Ввод держателя отличается гибкостью и герметичностью. Жила в нем держится крепко и не поддается случайным рывкам.
- Поверхность изделия около основания держателя не скользит и во время измерений удобно удерживается пальцами. Оптимальный вариант – держатель с прорезиненной поверхностью.
Всеми перечисленными свойствами обладают силиконовые щупы. Этими параметрами и обусловлена высокая популярность таких изделий.
Нередко вводы держателей изготавливаются из пластика, но в этом случае на них должны быть специальные выемки, иначе элемент не будет иметь нужной гибкости. Практически на всех фирменных моделях штекеры и электроды снабжены колпачками, которые защищают элементы от загрязнений и сводят к минимуму возможность получения колотых травм.
Эти щупы разработаны с учетом опыта использования более ранних моделей, поэтому отличаются продуманностью и удобством в работе. Провод таких контактов обладает достаточно высокой прочностью и гибкостью, устойчив к случайным рывкам и не трескается при сгибании.
Изготавливаем щупы своими руками
Зачищаем канцелярским ножом по 5 мм. с концов обоих проводов, и лудим их оловом для дальнейшего удобства при пайке.
Далее, берём шпильку от лазерного привода CD, и режем её напополам.
Почему именно шпилька – она идеально подходит по своим параметрам, у неё острые концы и она сделана из превосходной стали. Далее, обрабатываем флюсом отпиленные края шпильки, припаиваем к ним луженые провода по одному концу каждого провода, надеваем термотрубки, усаживаем их зажигалкой.
Теперь отрезаем от фломастеров верхнюю часть, 5-7 см. – это будут рукоятки щупов.
Продеваем шпильки, с припаянными к ним проводами, сверху вниз, чтобы шпилька вылезла из кончика фломастера, откуда раньше торчало пишущее перо. Капаем туда же каплю секундного клея, и бросаем щепотку соды, чтобы закрепить всё это изнутри. Продеваем полученную рукоятку щупа в термоусадочную трубку красного цвета, и усаживаем её зажигалкой. Ту же процедуру повторяем и со вторым щупом, только теперь с черной термотрубкой.
Втыкаем трубку в разъем. Оставшиеся от фломастеров отрезки идеально подходят под корпус штекера в разъёме мультиметра. Вставляем поверх латунной трубки пластмассовую, замеряем, и отрезаем.
Далее, припаиваем оставшиеся концы проводов к латунным трубкам, наращиваем изолентой на них диаметр под пластмассовые трубки, смазываем секундным клеем и вставляем в пластмассовые трубки. Сверху можно закрепить всё секундным клеем с содой.
Отрезаем по 4 см. термотрубок, красного и чёрного цветов, надеваем их на соответствующие штекера, и усаживаем зажигалкой.
Вот и готово. Ничего сложного. Вся работа заняла около 40-50 минут. Теперь можно опробовать новые щупы.
Колпачки можно сделать из оплётки usb кабеля. На подходящий отрезок оплётки надеваем красную термотрубку, и усаживаем зажигалкой. Равняем ножницами. Для чёрного щупа моно и без термотрубки, оплётка сама по себе чёрная.
Замена провода и щупов мультиметра
В первую очередь с чем сталкивается 99% пользователей дешевых китайских мультиметров — это выход из строя некачественных щупов для замеров.
- Во-первых, кончики щупов могут поломаться. Когда прикасаетесь для измерения к окисленной или слегка ржавой поверхности, чтобы появился надежный контакт, эту поверхность нужно слегка зачистить. Удобнее всего это конечно сделать с помощью самого щупа. Но как только начинаете шкрябать, в этот момент кончик может обломиться.
- Во-вторых, сечение проводов идущих в комплекте также не выдерживает никакой критики. Мало того, что они хлипкие, так это еще будет влиять на погрешность работы мультиметра. Особенно когда сопротивление самих щупов при замерах играет существенную роль.
Чаще всего излом провода происходит в местах подсоединения на втычном контакте и непосредственно на пайке острого наконечника щупа.
Когда это произойдет вы удивитесь насколько проводок внутри действительно тонкий.
А между тем мультиметр должен быть рассчитан на измерение токовых нагрузок до 10А! Как это можно сделать с помощью такого провода не понятно.
Вот реальные данные замеров тока потребления для фонариков, выполненные с помощью стандартных щупов идущих в комплекте и с помощью самодельных щупов сечением 1,5мм2. Разница погрешности как видите более чем существенная.
Втычные контакты в разъемы мультиметра также со временем разбалтываются и ухудшают общее сопротивление цепи при измерениях.
В общем однозначный вердикт всех владельцев мультиметров DT830 и других моделей — щупы необходимо дорабатывать или менять сразу же после покупки инструмента.
Если вы счастливый обладатель токарного станка или у вас есть знакомый токарь, то ручки щупов можно изготовить самостоятельно из какого-нибудь изоляционного материала, например кусков ненужного пластика.
Наконечники щупов делаются из заточенного сверла. Сверло само по себе закаленный металл и им можно спокойно соскабливать любой нагар или ржавчину без риска повредить щуп.
При замене втычных контактов лучше всего использовать вот такие штекеры применяемые в аудио аппаратуре под гнезда динамиков.
Если уж совсем колхозить или других вариантов под рукой нет, то в крайнем случае можно применить обычные контакты из разборной вилки. Они также идеально подходят под разъем на мультиметре.
При этом не забудьте заизолировать термотрубкой концы, которые будут торчать снаружи мультиметра, в местах пайки проводов к вилке. Когда возможности самостоятельно изготовить щупы нет, то корпус можно оставить прежний, заменив лишь провода.
При этом возможны три варианта:
После замены такие провода очень легко будут собираться в пучок и при этом не путаться. Во-вторых, они рассчитаны на огромное количество изгибов и переломятся не раньше чем выйдет из строя сам мультиметр. В третьих погрешность измерений из-за их большего сечения по сравнению с оригинальными будет минимальна. То есть везде сплошные плюсы.
Важное замечание: при замене проводов не нужно стремиться сделать их гораздо длиннее тех, что шли в комплекте. Помните что длина провода, как и его сечение влияет на общее сопротивление цепи.
Если будете делать длинные провода до 1,5м, с учетом всех мест соединений, сопротивление на них может доходить до нескольких Ом! Те, кто не хочет заниматься самоделками, может заказать уже готовые качественные силиконовые щупы с множеством наконечников на АлиЭкспресс здесь.
Чтобы новые щупы с проводом занимали минимум места, можно их скрутить спиралью. Для этого новый провод наматывается на трубку, оборачивается изолентой для фиксации и все это дело прогревается строительным феном в течении пары минут. В итоге получаете вот такой результат.
В дешевом варианте такой фокус не пройдет. А при использовании для разогрева строительного фена изоляция и вовсе может поплыть.
Доработка крепления мультиметра
Еще одно неудобство при измерениях с мультиметром – это нехватка третьей руки. Постоянно приходится в одной руке удерживать мультиметр, а другой работать одновременно двумя щупами.
Если замеры происходят за рабочим столом, то нет проблем. Положил инструмент, освободил руки и работай.
А что делать если измеряешь напряжение в щитке или в распредкоробке под потолком?
Читайте также: