Монтаж smd светодиодов своими руками
Светодиод — это обычный диод, в кристалл которого добавлены вещества, излучающие свет при прохождении через них электрического тока. При подаче положительного напряжения на анод и отрицательного на катод происходит свечение. Наиболее частая причина выхода из строя – превышение номинала питающего напряжения.
Распиновка светодиода
В сверхъярких LED полярность обычно маркируют на контактах либо корпусе. Если на ножках контактов маркировки нет, ножка с более широким основанием – катод.
Схема подключения светодиода
В классической схеме рекомендуют производить подключение через токоограничительный резистор. Действительно, правильно подобрав резисторное или индуктивное сопротивление, можно подключить диод, рассчитанный на напряжение питания 3В, даже к сети переменного тока.
Главное требование к параметрам питания – ограничение тока цепи.
Поскольку сила тока – параметр, отображающий плотность потока электронов по проводнику, при превышении этого параметра диод просто взорвется из-за мгновенного и значительного выделения тепла на полупроводниковом кристалле.
Как рассчитать ограничительный резистор
Если мощность резистора будет значительно меньше требуемой, он просто перегорит вследствие перегрева.
Включение светодиода через блок питания без резистора
У меня уже несколько лет работает модернизированная под LED настольная лампа. В качестве источника света используется шесть ярких светодиодов, а в качестве источника питания – старое зарядное устройство от мобильного телефона Nokia. Вот моя схема включения светодиода:
Номинальное напряжение диодов – 3,5В, ток – 140мА, мощность — 1Вт.
При выборе внешнего источника питания необходимо ограничение по току. Подключение этих светодиодов к современным зарядным устройствам с напряжением питания 5В 1-2А потребует ограничивающий резистор.
Что бы адаптировать эту схему к зарядному устройству, рассчитанному на 5В, используйте резистор на 10-20Ом мощностью 0,3А.
Если у вас другой источник питания, убедитесь, что в нем есть схема стабилизации тока.
Схема зарядного устройства от мобильного телефона
Блок питания большинства низковольтных бытовых приборов
Как правильно подключать светодиоды
Параллельное подключение
Вообще параллельное соединение не рекомендуется. Даже у одинаковых диодов параметры номинального тока могут различаться на 10-20%. В такой цепи диод с меньшим номинальным током будет перегреваться, что сократит срок его службы.
Последовательное подключение
Расчёт сопротивления для цепи из нескольких диодов: R = (Uпит — N * Uсд) / I * 0.75
Максимальное количество последовательных диодов: N = (Uпит * 0,75) / Uсд
При включении нескольких последовательных цепочек LED, для каждой цепи желательно рассчитать свой резистор.
Как включить светодиод в сеть переменного тока
Если при подключении LED к источнику постоянного тока электроны движутся лишь в одну сторону и достаточно ограничить ток с помощью резистора, в сети переменного напряжения направление движения электронов постоянно меняется.
При прохождении положительной полуволны, ток, пройдя через резистор, гасящий избыточную мощность, зажжёт источник света. Отрицательная полуволна будет идти через закрытый диод. У светодиодов обратное напряжение небольшое, около 20В, а амплитудное напряжение сети – около 320 В.
Какое-то время полупроводник будет работать в таком режиме, но в любой момент возможен обратный пробой кристалла. Чтобы этого избежать перед источником света устанавливают обыкновенный выпрямительный диод, выдерживающий обратный ток до 1000 В. Он не будет пропускать обратную полуволну в электрическую цепь.
Схема подключения в сеть переменного тока на рисунке справа.
Другие виды LED
Мигающий
Особенность конструкции мигающего светодиода – каждый контакт является одновременно катодом и анодом. Внутри него находятся два светоизлучающих кристалла с разной полярностью. Если такой источник света подключить через понижающий трансформатор к сети переменного тока он будет мигать с частотой 25 раз в секунду.
Для другой частоты мигания используются специальные драйверы. Сейчас такие диоды уже не применяются.
Разноцветный
Разноцветный светодиод – два или больше диода, объединенных в один корпус. У таких моделей один общий анод и несколько катодов.
Изменяя через специальный драйвер питания яркость каждой матрицы можно добиться любого света свечения.
При использовании таких элементов в самодельных схемах не стоит забывать, что у разноцветных кристаллов разное напряжение питания. Этот момент необходимо учитывать и при соединении большого количества разноцветных LED источников.
Другой вариант – диод со встроенным драйвером. Такие модели могут быль двухцветные с поочерёдным включением каждого цвета. Частота мигания задаётся встроенным драйвером.
Более продвинутый вариант – RGB диод, изменяющий цвет по заранее заложенной в чип программе. Тут варианты свечения ограниченны лишь фантазией производителя.
Самое правильное подключение нескольких светодиодов - последовательное. Сейчас объясню почему.
Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя - быстрому перегоранию либо постепенному необратимому разрушению (деградации).
Ток - это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.
Для примера, заглянем в даташит светодиода 2835:
Как видите, прямой ток указан четко и определенно - 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс - от 2.9 до 3.3 Вольта.
Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.
Источник тока (или генератор тока) - источник электрической энергии, который поддерживает постоянное значение силы тока через нагрузку с помощью изменения напряжения на своем выходе. Если сопротивление нагрузки, например, возрастает, источник тока автоматически повышает напряжение таким образом, чтобы ток через нагрузку остался неизменным и наоборот. Источники тока, которыми запитывают светодиоды, еще называют драйверами.
Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.
Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).
Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожжёте его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).
К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.
Вот прекрасная иллюстрация к вышесказанному:
А самое неприятное то, что проводимость любого светодиода (который по сути является p-n-переходом) находится в очень сильной зависимости от температуры. На практике это приводит к тому, что по мере разогрева светодиода, ток через него начинает неумолимо возрастать. Чтобы вернуть ток к требуемому значению, придется понижать напряжение. В общем, как ни крути, а без контроля тока никак не обойтись.
Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.
Теперь, возвращаемся к главному вопросу статьи - почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.
Параллельное подключение
При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).
Очевидно, что такого неравномерного распределения мощностей нужно избегать.
Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:
Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.
Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.
В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:
Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.
Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.
Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):
Uпит | ILED | ||||||||
---|---|---|---|---|---|---|---|---|---|
5 мА | 10 мА | 20 мА | 30 мА | 50 мА | 70 мА | 100 мА | 200 мА | 300 мА | |
5 вольт | 340 Ом | 170 Ом | 85 Ом | 57 Ом | 34 Ом | 24 Ом | 17 Ом | 8.5 Ом | 5.7 Ом |
12 вольт | 1.74 кОм | 870 Ом | 435 Ом | 290 Ом | 174 Ом | 124 Ом | 87 Ом | 43 Ом | 29 Ом |
24 вольта | 4.14 кОм | 2.07 кОм | 1.06 кОм | 690 Ом | 414 Ом | 296 Ом | 207 Ом | 103 Ом | 69 Ом |
При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.
Последовательное подключение
При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.
Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).
Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:
Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ - конечно, последовательным!
Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.
Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.
Вот пример готового устройства:
Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64. 106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток - это от него уже не зависит.
И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.
Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.
Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:
Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) - либо через токоограничительный резистор, либо через токозадающий драйвер.
Как выбрать нужный драйвер?
Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:
- выходной ток;
- максимальное выходное напряжение;
- минимальное выходное напряжение.
Выходной (рабочий) ток драйвера светодиодов - это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.
Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:
Номинальный ток этих диодов - 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.
Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3. 4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.
Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).
Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.
Следовательно, для наших целей подойдет что-нибудь вроде этого:
Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.
Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:
Светодиоды | Какой нужен драйвер |
---|---|
60 мА, 0.2 Вт (smd 5050, 2835) | см. схему на TL431 |
150мА, 0.5Вт (smd 2835, 5630, 5730) | драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов) |
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W) | драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода) |
700 мА, 3 Вт (led 3W, фитосветодиоды) | драйвер 700мА (для 6-10 светодиодов) |
3000 мА, 10 Ватт (XML2 T6) | драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему |
Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.
Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.
Такая конструкция приводит к тому, что технология пайки значительно отличается от пайки проводов обычным паяльником. Работа производится быстро, изделие выглядит аккуратно. Но для работы могут потребоваться особые инструменты и материалы.
Для монтажа компонентов SMD применяют обычные паяльники, паяльные станции, паяльные фены. Существуют также специализированные печи, термопинцеты и станции бесконтактного нагрева. Такое оборудование требует особых навыков работы, а сами детали для поверхностного монтажа — аккуратного обращения и не допускают перегрева.
Особенности пайки
В качестве элементов для поверхностного монтажа сейчас выпускают все разновидности радиодеталей. Особый интерес для домашнего мастера представляет сборка самодельного светильника из отдельных светодиодов и простейшей схемы управления. Это позволяет делать светильники любой необходимой мощности, а главное — нужных размеров.
Пайка светодиодов в виде элементов SMD отличается техникой работы. Светодиоды приходится паять непосредственно на деталь, которая также является радиатором, рассеивающим тепло.
Без надлежащего охлаждения светодиоды быстро выйдут из строя. Хорошо рассеивая тепло, радиатор также отводит жар от жала паяльника, что затрудняет пайку выводов.
Чтобы качественно паять светодиоды, приходится применять дополнительный нагрев радиатора почти до точки плавления припоя. Хорошо помогает использование тонкодисперсной паяльной пасты. Паять нужно как можно более мощным паяльником быстрыми и уверенными движениями.
Существует практика, при которой SMD-светодиоды паяют очень легкоплавкими припоями. Например, сплав Розе плавится при температуре около 100°С. К сожалению, такие припои отличаются плохой механической прочностью. При работе светильники сильно нагреваются, и паяное соединение может расплавиться. Лучше всего использовать классический припой ПОС-60.
Для пайки светодиодов приходится также использовать устройство нижнего подогрева. При этом радиатор оказывается нагрет почти до нужной температуры, и монтаж светодиодов получается быстрым и качественным. В простейшем случае для нижнего подогрева используют электроплитку или даже старый утюг.
Важно не допустить перегрева, поэтому терморегулятор должен обеспечивать точную настройку температуры.
Температура нижнего подогрева обычно устанавливается такой, чтобы флюс начал активно смачивать контакты деталей, но припой ещё не начинал плавиться.
Особой конструкцией отличаются станции бесконтактного нагрева. Монтажная плата не контактирует с нагревателем, тепло к месту пайки доставляется ИК-излучением. Обычно используют ИК-станции нижнего нагрева. Они позволяют равномерно подогреть плату до нужной температуры.
При использовании ИК-нагревателя не всегда допустимо подвергать нагреву всю плату целиком. Рядом с намеченной точкой пайки могут оказаться легкоплавкие детали. Нечаянный перегрев приведёт к тому, что отпаяются мелкие детали. Нагрев ИК-излучением ограничивают с помощью отражательных и изолирующих экранов.
Некоторые виды SMD-радиодеталей вообще не имеют выводов по своим торцам, они есть только на нижней поверхности. Такие элементы невозможно паять обычным паяльником.
Приходится применять паяльную пасту, термофен и станции бесконтактного нагрева ИК-излучением. Если есть паяльная печь, способная обеспечить постепенный нагрев и точную выдержку при нужной температуре, получится собрать радиосхему вполне промышленного вида и качества.
Инструменты и материалы
В большинстве случаев для пайки SMD-компонентов можно с успехом использовать обычный контактный паяльник с тонким жалом. Если контактные площадки хорошо очищены и применяется качественный флюс, при монтаже достаточно нанести крошечные точки припоя прямо на торцы выводов деталей SMD.
Детали расставляют по поверхности монтажной платы, используя радиомонтажный пинцет с немагнитными губками. У хорошего мастера всегда под рукой несколько пинцетов с губками разной формы. Также существуют вакуумные пинцеты с крошечной присоской на торце ручки.
Чтобы пайка получилась качественной, желательно применять оловянно-свинцовый припой с умеренной температурой плавления (245°С). Для очистки и защиты точек контакта надо использовать паяльный флюс-гель. Такие составы обеспечивают качественное соединение и почти не оставляют следов.
Распространён способ массового монтажа SMD-компонентов, при котором для нагрева всей платы целиком используют паяльную печь. Такой прибор можно сделать самому из небольшой кухонной печи.
Главное – предусмотреть точную регулировку температуры по заданной программе.
Вместо припоя в виде тонких проволочек очень удобно использовать паяльную пасту. Такой состав выглядит как густая замазка с металлическим блеском. В ней уже смешаны мельчайшие шарики припоя и качественный флюс. Достаточно нанести пасту на точки пайки и равномерно прогреть детали в печи, паяльником или паяльным феном. Сегодня в магазинах есть широкий выбор хороших паяльных паст.
При пайке радиодеталей вполне возможны ошибки. Демонтировать SMD-детали паяльником очень неудобно. В таком случае применяют термопинцет, который зажимает деталь фактически между двух одинаковых паяльников и снимает за одно движение.
Очень удобен демонтаж SMD-компонентов с помощью термофена. При работе с феном главное – не допустить перегрева соседних деталей, которые смонтированы верно. Надо регулировать толщину раскалённой струи воздуха с помощью насадок подходящих диаметров и регулятора скорости потока.
Способы
Собирая своими руками светильник из SMD-светодиодов, обычно устанавливают детали на алюминиевый радиатор. Непосредственно паять детали к такому основанию невозможно, да и нельзя во избежание короткого замыкания. В таком случае SMD-компоненты устанавливают на промежуточную изолирующую прокладку. Обычно используют тонкий слой специального термопроводного клея.
После такого монтажа приходится соединять светодиоды между собой отдельными изолированными проводниками. Пайка затрудняется тем, что диоды, которые уже смонтированы на радиатор, хорошо охлаждаются. Чтобы правильно спаять детали в таких условиях, нужно использовать мощный паяльник и проводить соединение быстрыми, уверенными движениями.
Очень удобно при поверхностном монтаже радиодеталей использовать паяльные фены и станции. Лучшие аппараты также содержат устройства нижнего подогрева.
Это позволяет нагреть монтажную плату почти до точки плавления припоя, что облегчает дальнейший монтаж.
Температуру нижнего подогрева нужно выбирать так, чтобы припой почти начинал плавиться, но оставался твёрдым. При такой работе лучше спаивать светодиоды, резисторы и прочие детали не прутковым припоем, а с помощью паяльной пасты. Сами детали, смонтированные на островках пасты, нагревают паяльным феном. При этом можно обойтись не слишком горячим воздухом. Лучше всего паять легкоплавкой пастой при 245 градусах.
При необходимости монтажа SMD-конденсаторов учтите, что они боятся перегрева. Сперва надо провести расстановку и пайку резисторов, проводников и светодиодов. Конденсаторы расставляются в последнюю очередь.
При сборке самодельного светильника удобно использовать готовую светодиодную ленту. Это SMD-компонент в виде длинной полосы гибкого изоляционного материала. SMD-светодиоды уже приклеены к ленте и соединены проводниками.
Светодиодную ленту надо приклеить теплопроводным клеем к металлическому радиатору. Это может быть любой подходящий алюминиевый профиль — например, который продаётся в мебельных магазинах.
Есть специальные профили, предназначенные для сборки светильников, — такие изделия, как правило, сразу содержат светорассеивающую крышку.
Распространенные ошибки
Чаще всего при пайке SMD-компонентов мастера ошибаются, неправильно выбирая температуру паяльника. Слишком горячий инструмент может легко повредить деликатные радиодетали. Слишком холодный также приводит к перегреву, потому что пайка выполняется чрезмерно долго.
Самое главное – правильно выбрать для пайки марку припоя и флюса. Несмотря на то, что в промышленности используются бессвинцовые припои, в домашних условиях следует предпочесть простой оловянно-свинцовый (например, марки ПОС-60).
Выбирая флюс, учтите, что после пайки на изделии не должно оставаться даже следов активного флюса. Если чистка изделия невозможна или затруднена, лучше применить пассивный флюс. В обычных условиях сосновая канифоль не требует тщательной очистки.
Также существуют особые марки безотмывочных флюсов. Они дороги, но обеспечивают отличное качество пайки.
Как и при любых видах паяльных работ, соблюдайте технику безопасности. Температура спаиваемых деталей может достигать 300°С. Тяжёлые ожоги могут причинить также разлетающиеся капельки припоя или флюса. Устройство нижнего подогрева часто производит бесконтактный нагрев ИК-излучением. Такой прибор может обжечь мастера на расстоянии десятков сантиметров.
Обязательно работайте с хорошей вентиляцией или под вытяжкой. Помните, что пары свинца и олова ядовиты и постепенно накапливаются в организме. Испарения паяльного флюса и дым от разрушенной изоляции являются канцерогенами.
Как паять SMD-компоненты, смотрите далее.
Сегодня светодиоды признаны обычными пользователями, радиолюбителями и промышленными предприятиями самыми экологичными, компактными и энергоэффективными источниками света. Маломощные диоды используют для подсветки мониторов, мобильных телефонов и в различных игрушках, а мощные светодиоды применяются в цеховых прожекторах и праздничной люминесценции зданий, в рекламном бизнесе. Но непривычный источник света имеет ряд особенностей обслуживания в отличие от энергосберегающих аналогов (ЭСЛ) и ламп накаливания. Не так просто, например, паять светодиоды. Этому вопросу посвящена статья.
Строение диодных элементов
Главное отличие от других ламп в том, что светодиоды имеют плюсовой и минусовой контакт (анод и катод). При пайке диода в цепи важно это учитывать.
Также нужно понимать, что бывают DIP и SMD светодиоды.
Плюсовой контакт в DIP определяется достаточно просто. Стоит внимательно взглянуть внутрь колбы. Плюсовой вывод – анод – меньше минусового. На рисунке плюс – слева.
Есть и второй способ – посмотрите на длину ножки. У положительного вывода она длиннее.
Третий способ – мультиметром. Черная клемма прибора – минусовая, красная – плюсовая. Ставим на прозвон:
Последний способ подходит для обоих типов.
Это, пожалуй, главное, что стоит знать о строении светодиода. Если интересна теория, рекомендуем посмотреть видео:
Особенности пайки
Сложностей в пайке светодиодов DIP типа обычно не возникает. Зная простые правила пайки, ошибиться сложно:
Пайка светодиодов – это в принципе несложно. Небольшие проблемы, как правильно припаять диод, появляются при работе с SMD типом. Дело в том, что эти диоды не имеют токоведущих ножек, вместо них – площадки контактов. И, как правило, SMD паяются в платы или в лентах.
Что необходимо для работы
Для самостоятельной пайки приготовьте необходимый минимум:
- Паяльник не более 60 ВТ или термовоздушный паяльный фен.
- Канифоль или специальная паста для пайки (подробней в главе «выбор пасты для пайки).
- Оловянно-свинцовый припой.
Опытные радиолюбители советуют использовать для SMD типа паяльники с жалом, заточенным под угол. Так, площадка пайки быстро прогреется, припой расплавится, а диод не испортится от перегрева.
Пайка smd светодиодов
Всего два основных вида пайки. Посмотрите данное видео, чтобы определиться с окончательным набором инструментов:
Дополнительно могут понадобиться:
- Регулируемая подставка.
- Пинцет.
- Ножницы.
- Бокорезы.
- Кисточка для флюса.
Температура пайки
Если вы неопытный в пайке, тем более светодиодов, то рекомендуем пользоваться все-таки феном. Шанс перегреть диод резко понижается. Кроме этого паяльник можно подобрать не тот. Максимальная температура нагрева жала должна быть 300 °C.
Конечно, можно купить паяльник с регулируемой температурой. Но это дополнительная трата денег. Впрочем, радиолюбителей со стажем нередко встречаются такие модели паяльника.
Для закрепления материала советуем посмотреть еще одну видео-инструкцию, уже конкретно по пайке феном:
Как выпаять светодиод из ленты
Другая сложность при пайке SMD типа – это замена старого элемента на новый в светодиодной ленте. Решается простым способом:
- Перед тем как отпаять диоды, закрепите ленту, чтобы не попасть паяльником на токопроводящие дорожки.
- Осторожно плавьте олово вокруг контактов и просовывайте под диод лезвие. Приподнимаем сначала с одной стороны, потом с другой, пока диод не будет свободен.
Как выпаять светодиод из LED-лампочки
Вместо лампочек накаливания или энергосберегающих ламп в патрон светодиод не вставишь, нужен как бы посредник. Им является корпус лампы, в котором на плате расположены сразу несколько кристаллов.
Для удобства рекомендуется плотно намотать медную проволоку на жало, сечением не больше 4 мм.
Пинцетом или иголкой отодвигаем кристалл вниз, параллельно контактам.
Как припаять резистор к светодиоду
Если в вашей схеме не предусмотрено ограничение тока так называемым драйвером, то можно по-старинке воспользоваться резисторами.
Подключать напрямую в сеть светодиоды нельзя, так как кроме повышенного тока, он еще и переменный. Резистор и драйвер преобразуют ток в постоянный.
Каждому светодиоду в идеале нужен отдельный резистор. Это если диодов немного. Если их, например, сотня, как в некоторых гирляндах, или пусть даже пару десятков, придется приобрести драйвер.
Выбор пасты для пайки
Качество любого флюса выражается в том, что при пайке он не выгорает, только едва испаряется, а продукты его разложения легко удаляются растворителем. Лучший флюс – специальные пасты. Мы выбрали топовые наименования, исходя из опыта знакомых мастеров:
- Interflux 2005 и 8300
- Kingbo RMA-218
- Amtech RMA-223
- Флюс-гель Rexant BGA и SMD
Ошибки при пайке
- Загрязнение жала паяльника. После каждой пайки советуем очищать – элементарно тряпочкой или губкой.
- Перегрев места пайки. Когда припой растекся, сразу убирайте паяльник, не нужно ждать, пока провод или деталь не перегреются.
- Мало флюса. Если его недостаточно или он некачественный, то спайка может быть недостаточно плотной, слабой.
В заключение
Как можно было убедиться, работа со светодиодами несколько сложней, чем с лампами накаливания. Однако эти сложности нивелируются качеством света. Радиолюбители в последние десять лет придумали на основе осветительных диодов десятки самоделок, которые не уступают заводским аналогам.
Если вас заинтересовала статья, пишите комментарии и делитесь информацией в социальных сетях.
Читайте также: