Миллиамперметр на оу своими руками
Одним из самых необходимых приборов в арсенале радиолюбителя коротковолновика безусловно является высокочастотный вольтметр.
В отличии от НЧ мультиметров и недорогих, компактных ЖК осциллографов такие приборы значительно более редки, а новые, фирменные, еще и достаточно дороги.
Поэтому было решено собрать самодельный прибор, с учетом обычно предъявляемых требований.
При выборе варианта индикации остановился на аналоговой. В отличии от цифровой, аналоговая индикация позволяет легко и наглядно оценивать изменения показаний количественно, а не только путем сравнения результатов. Это особенно важно при настройке схем, где амплитуда измеряемого сигнала постоянно меняется.
В то же время, точность измерений при соответствующей схемотехнике вполне достаточна.
Как правило разделяют два вида ВЧ вольтметров. В первых, используются широкополосные усилители [1], обеспечивающие работу детекторного элемента на линейном участке ВАХ, либо включением выпрямителя в цепь ООС такого усилителя.
Во вторых, используется простейший детектор, иногда с высокомным УПТ. Шкала такого ВЧ вольтметра нелинейна на нижних пределах измерений и требует применения специальных таблиц, либо индивидуальной калибровки шкалы[2].
Попытка линеаризировать в какой то мере шкалу, а также сдвинуть порог чувствительности вниз, за счет пропускания небольшого тока через диод не решает проблему. Полученные ВЧ вольтметры до начала линейного участки ВАХ остаются по сути, индикаторами. [3] Тем не менее, такие ВЧ вольтметры как в виде законченных приборов, так и в виде приставок к цифровым мультиметрам весьма популярны, о чем свидетельствуют многочисленные публикации в журналах и интернете.
Существует еще один способ линеаризации измерительной шкалы, когда линеаризирующий элемент включается в цепь ОС УПТ, обеспечивая необходимое изменение усиления в зависимости от амплитуды входного сигнала.
Подобные схемы нередко используются в узлах профессиональной аппаратуры, например, в широкополосных высоколинейных измерительных усилителях с АРУ. Именно на базе такого решения был создан описываемый здесь прибор [4].
Автором данной статьи впервые такой прибор был собран примерно в годы его публикации, недавно пересобран, перенесен в другой корпус, на новые печатные платы и под новые комплектующие.
При всей очевидной простоте схемы, данный ВЧ вольтметр обеспечивает очень неплохие параметры.
Диапазон измеряемых напряженией (конечные деления шкалы) от 10мВ до 20В. Диапазон частот от 100Гц, до 75МГц, входное сопротивление не менее 1МОм, при входной емкости не более нескольких пФ (определяется, в основном, конструктивом ВЧ головки). И, естественно, имеет линейную шкалу, избавляющую от проблем с градуировкой. Точность измерений, при качественной настройке, не хуже 5%.
Схема прибора показана на рисунке1.
Конструктивно прибор состоит из трех частей. Измерительный детектор (ВЧ головка), плата УПТ с узлом линеаризации и плата стабилизаторов.
Линеаризирующий узел выполнен на микросхеме ОР1 с диодом в цепи ООС. Из-за наличия в цепи отрицательной обратной связи диода D2, усиление этого каскада УПТ при малых входных напряжениях увеличивается. Благодаря этому, уменьшение выходного напряжения детектора компенсируется и шкала прибора оказывается линейной.
Конденсаторы С4, С5 предотвращают самовозбуждение УПТ и уменьшают возможные наводки.
Прибор примененный в вольтметре на ток 1мА.
Резисторы нестандартных номиналов состоят из 2-х. ОУ можно применить любые, с высоким входным сопротивлением. Конденсатор С3 монтируется непосредственно на входном BNC разъеме.
Резистор R7 случит для оперативной установки стрелки головки на 0. При этом ВЧ головка должна быть замкнута по входу.
Налаживание прибора начинают с балансировки усилителя на ОУ OP2. Для этого переключатель пределов измерения ставят на 5В, замыкают ВЧ головку и подстроечным резистором R13 устанавливают стрелку прибора на 0. Далее, переключаем на 10мВ, подаем такое же напряжение, устанавливаем резистором R14 стрелку на последнее деление шкалы. Подаем на вход 5мВ, стрелка должна быть примерно на середине шкалы. Линейности добиваемся подбором резистора R2.
Далее, калибруем прибор на всех поддиапазонах соответствующими подстроечными резисторами.
Внешний вид готового прибора:
Детекторная ВЧ головка
Рисунки печатных плат вольтметра и стабилизаторов можно взять здесь .
Любые вопросы по устройству можно задать на форуме ARCalc.
1. "Радио" №7 1982 с.31
2. "Радио" №8 2006, с.58, 59.
3. "Радио" №1 2008, с.61, 62.
4. "Радио" №7 1992, с.39
ВЧ вольтметр
Вольтметр переменного и постоянного тока предназначен для измерения постоянных и переменных высокочастотных напряжений при налаживании различных радиоэлектронных устройств в любительских условиях.
Принципиальная схема вольтметра приведена на рисунке.
Измеряемое напряжение подается на гнезда Х1 и Х2 и далее на подвижный контакт переключателя S1. Резисторы R1-R6 образуют делитель напряжения.
Стрелочный прибор РА1 включен в диагональ моста, образованного резисторами R7, R9, R10 и транзисторами V1, V3. Для начальной балансировки моста служит переменный резистор R9.
При подаче напряжения на затвор транзистора V1 мост разбалансируется и в цепи прибора РА1 протекает ток, пропорциональный входному напряжению.
При измерении переменного напряжения к гнездам Х1 и Х2 подключают вилки Х6 и Х7 выносного детектора. Высокочастотное напряжение подается на гнездо Х5.
Вольтметр собран в экранированном корпусе размерами 130х90х48 мм.
На передней панели установлен микроамперметр М2001 со шкалой 0…50 мкА.
При налаживании, подав напряжение питания, резистором R9 добиваются нулевых показаний микроамперметра. Затем на гнезда Х1 и Х2 подают напряжение 0,25 В и устанавливают переключатель S1 в положение 0,25. Подбирая резисторы R1 и R8, добиваются отклонения стрелки прибора на всю шкалу.
Милливольтметры с линейной шкалой, описанные в литературе, традиционно выполняют по схеме с диодным выпрямителем, включенным в цепь отрицательной обратной связи усилителя переменного тока. Такие устройства довольно сложны, требуют применения дефицитных деталей, кроме того, к ним предъявляются достаточно жесткие конструктивные требования.
Рис.1
На рис. 1 изображена упрощенная схема прибора. Измеряемое высокочастотное напряжение выпрямляется диодом VD1 в выносном щупе и через резистор R1 поступает на вход УПТ А1. Из-за наличия в цепи отрицательной обратной связи диода VD2 усиление УПТ при малых напряжениях на входе увеличивается. Благодаря этому уменьшение выпрямленного диодом VD1 напряжения компенсируется и шкала прибора линеаризируется.
Рис.2
Примечание. Обращаем внимание читателей, что согласно справочным данным максимальные постоянные и импульсное обратные напряжения для примененного автором статьи в выносном щупе (диод ГД507А) равны 20 В. Поэтому далеко не каждый экземпляр этого типа диодов сможет обеспечить работу прибора на двух последних поддиапазонах.
Не всегда надпись на приборе соответствует действительности. Возможно использовался внешний шунт или делитель. Если шунт расположен внутри прибора, его надо будет удалить. Потом вам надо собрать измерительную схему: Собрать цепь из последовательно включенных миллиамперметра, переменного сопротивления порядка 100-200 Ом, включенного параллельно головке миллиамперметра как шунт и тестера в режиме измерения тока. Цепь подключить к источнику постоянного напряжения 12-24 В через ограничительное переменное сопротивление порядка 1 Ком, проследив за полярностью включения приборов (чтобы стрелки отклонились в нужную сторону). Изменяя напряжение источника или величину ограничительного сопротивления, выставить ток по тестеру 200мА. После этого скорректировать шунт, изменяя его сопротивление, чтобы стрелка миллиамперметра установилась на конечном делении , что и будет соответствовать 200 мА. После этого замерить сопротивление получившегося шунта омметром и заменить постоянным сопротивлением. Ничего сложного, и точность нормальная.
Начинающим радиолюбителя можно рекомендовать изготовить не сложный прибор, наиболее часто используемым при ремонте или настройки радиотехнических устройств. Авометр объединяет в себе многопредельные амперметр и вольтметр постоянного и переменного тока, омметр, а иногда еще и испытатель маломощных транзисторов.
Четырехпредельный вольтметр образуют тот же микроамперметр ИП1 и добавочные резисторы R3—R6. С резистором R3 (при включении второго Щупа в гнездо Гн2) отклонение стрелки микроамперметра на всю шкалу соответствует напряжению 1 В, с резистором R4—3 В, с резистором R5— 10 В, с резистором R6—30 В.
Миллиамперметр пятипредельный: 0—1, 0—3, 0—10, 0—30 и 0—100 мА. Его образует универсальный шунт составленный из резисторов R7—R11, к которому кнопкой Кн1 подключают микроамперметр ИП1. Так сделано для того, чтобы при измерении микроамперметр подключался к шунту, через который течет большая часть измеряемого тока, а не наоборот.
Конструкция рекомендуемого комбинированного измерительного прибора показана на рис. Микроамперметр типа М49 на ток полного отклонена стрелки 300 мкА с сопротивлением рамки 300 Ом. Переменный резистор R1 (СПО-0,5), кнопка КН (КМ1-1) и все гнезда прибора укреплены непосредственно на лицевой панели, выпиленной из листового текстолита толщиной 2 мм. Роль гнезд Гн1—Гн11 выполняет гнездовая часть десятиконтактного разъема. Низкоомные резисторы R9-R11 типа МОИ (или проволочные), остальные МЛТ на мощность рассеяния 0,5 или 0,25 Вт. Необходимые сопротивления резисторов подбирают при налаживании путем их замены, параллельным или последовательным соединением нескольких резисторов. В описываемом приборе каждый из резисторов R3 и R6, например, составлен из двух последовательно соединенных резисторов, каждый из резисторов R5 и R11 также из двух резисторов, но соединенных параллельно.
Калибровка вольтметра и миллиамперметра заключается в подгонке сопротивлений добавочных резисторов и универсального шунта под максимальные напряжения и токи соответствующих пределов измерения, а омметра — к разметке шкалы по образцовым резисторам.
Калибровку вольтметра производите по схеме, показанной на рис. Параллельно батарее Б1 напряжением 13,5 В (или от БП) подключите переменный резистор Rp сопротивлением 2—3 кОм, который будет выполнять роль регулировочного, а между его движком и нижним (по схеме) выводом,— параллельно соединенные самодельный калибруемый (VK) и образцовый (V0) вольтметры. Образцовым может быть вольтметр заводского авометра. Предварительно движок регулировочного резистора поставьте в крайнее нижнее (по схеме) положение, а калибруемый вольтметр включите на первый предел измерений — до 1 В. Постепенно увеличивая напряжение, подаваемое от батареи на вольтметры, установите на них по образцовому вольтметру напряжение, точно равное 1 В. Если при этом стрелка калибруемого вольтметра не доходит до конечной отметки шкалы, это укажет на то, что сопротивление добавочного резистора R3 оказалось больше, чем надо, а если уходит за пределы шкалы, то — меньше. Подбирая этот резистор, добейтесь, чтобы при напряжении 1 В стрелка вольтметра устанавливалась точно против конечной отметки шкалы.
Точно так же, но при напряжениях 3 и 10 В, фиксируемых образцовым вольтметром, подгоняйте добавочные резисторы R4 и R5 следующих двух пределов измерений. Для калибровки четвертого предела измерений не обязательно подавать на вольтметры напряжение 30 В. Можно подать 10 В и подбором резистора R6 установить стрелку калибруемого вольтметра на отметку, соответствующую первой третьей части шкалы. При этом отклонение его стрелки на всю шкалу будет соответствовать напряжению 30 В.
Для калибровки миллиамперметра потребуются: миллиамперметр на ток до 100 мА, свежий элемент 343 или 373 и два переменных резистора — пленочный (СП, СПО) сопротивлением 5—10 кОм и проволочный сопротивлением 50—100 Ом. Первый из этих регулировочных резисторов будете использовать при подгонке резисторов R7—R9, второй — при подгонке рези-, сторов R10 и R11 универсального шунта.
Аналогично подгоняйте: резистор R8 — на пределе 3 мА, резистор R9— на пределе 10 мА, а затем, заменив пленочный регулировочный резистор проволочным, резистор R10 — на пределе 30 мА и, наконец, резистор R11— на пределе 100 мА. Подбирая сопротивление очередного резистора шунта, уже подогнанные не трогайте — можно сбить калибровку прибора на первых пределах измерения.
Шкалы самодельного комбинированного измерительного прибора должны иметь вид, показанный на рис.
Верхняя из них — шкала омметра, нижняя — общая шкала вольтметра и миллиамперметра. Их надо возможно точнее начертить на плотной лакированной бумаге по форме шкалы микроамперметра. Затем осторожно извлечь магнитоэлектрическую систему прибора из корпуса и наклеить новую шкалу, точно совместив дугу шкалы омметра с прежней шкалой. Чтобы не разбирать микроамперметр, шкалы самодельного прибора можно начертить на плотной бумаге в соответствующем масштабе прямолинейными и наклеить ее на лицевую или переднюю боковую стенку ящика прибора.
В описанном комбинированном приборе использован микроамперметр на ток Iи=300 мкА с сопротивлением рамки Rи, равным 300 Ом. При таких параметрах микроамперметра относительное входное сопротивление вольтметра не превышает 3,5 кОм/В. Увеличить относительное входное сопротивление и тем самым уменьшить влияние вольтметра на режим в измеряемой цепи можно только использованием более чувствительного микроамперметра. Так, например, с микроамперметром на ток I=200 мкА относительное входное сопротивление вольтметра будет 5, а с микроамперметром на ток I =100мка — 10кОм/В. С такими приборами расширится и предел измерения омметром. Но при замене микроамперметра более чувствительным надо с учетом его параметров I и К пересчитать сопротивление всех сопротивлений авометра.
Таким способом можно проверить или откалибровать любой стрелочный или цифровой вольтметр (амперметр). В качестве образцового рекомендуется использовать цифровой прибор заводского исполнения.
Такой прибор можно также положить в бардачок автомобиля. В поездке он может пригодиться для отыскания повреждений электропроводки, не годных ламп, соответствия бортового напряжения автомобиля.
Здравствуйте! Расскажу о небольшой доработке приблуды для вейперов.
В радиолюбительской практике нужно бывает измерять очень низкие сопротивления, вроде шунтов и тд. Мультиметром не измерить сопротивления меньше ома. Я измерял по падению напряжения и потом высчитывал, но не удобно. И вот, попался мне такой приборчик, для вейпа. Может измерять напряжение батареи(не интересно) и сопротивления аж от 0.01 до 20ом. Сразу прикинул-это же отличный миллиомметр! Конечно, если он точный. Во общем забрал я приборчик…
Размером 6.5х4.5см, имеется индикатор, включатель и разъемы для подключения самих эл.сигарет.
Работает от 2 АА
Вскроем и глянем что внутри
Все залито герметиком, расковырял и достал начинку
Чем то напоминает дешевые китайские вольтметры. Я же поставил клеммы для более удобного использования
Приступим к измерениям. Первым пойдет 0.1 с 10% погрешности
Неплохо! Идем дальше, 0.15 5%
Следом уже советский 0.33 с 1%
По итогам имеем очень даже точные измерения! Для радиолюбителя должно точно хватить точности.
Еще решил измерить сопротивление самодельных проводов для мультиметра, провод 18awg
Всем добрый вечер! Хочу поделится методикой изготовления шунта для амперметра в зарядное устройство. Не давно у знакомого в зарядном устройстве перегорел шунт и соответственно сгорел и сам амперметр.
И так, нашол вот такой прибор со шкалой от 0 до 50А.
Обмотка измерительной головки и контакты не рассчитана на ток в 50А, для применения в нашем ЗУ надо изготовить шунт.
Шунт — устройство, которое позволяет электрическому току протекать в обход какого либо участка электрической схемы. В нашем случае через шунт проходит основной зарядный ток, а через амперметр малая часть, пропорциональная основной величине тока.
Для шунта берем обычную канцелярскую скрепку.
На упаковке со скрепками было написано "Скрепки никелированные", фото не сделал самой упаковки. Разгибаем ее, чтоб из нее получился прямой кусочек проволоки…
Далее сгибаем кончики проволоки под гайки прибора и прикручиваем их вместе с проводами к амперметру.
Для калибровки амперметра нам понадобится регулируемый блок питания от 0 до 20 В с током в 5А, но можно обойтись обычным автомобильным аккумулятором (напишу далее), проволочный 100 Вт резистор ПЭВ-100,
мультиметр и соединительные провода. Все соединяем проводами между собой последовательно и подключаем к блоку питания.
Выставляем ток в 1А и смотрим на наш амперметр. Он показывает около 1,5 А. Нам надо 1 А.
Уменьшаем длинну шунта, чтоб стрелка амперметра стала показывать 1А.(По шкале амперметра это будет 10А). Далее вместо резистора подключаем лампочку с фары на ближний свет. Проверяем как работает амперметр на больших токах.
После, когда длинна шунта уже нам известна, завернутые под гайку кончики необходимо залудить оловом.
После разбираем наш прибор и белым корректором зарисовываем на шкале нули, собираем прибор. Шкала прибора получилась от 0 до 5А вместо 0-50А.
Если нету под рукой блока питания с регулировкой и проволочного 100 Вт резистора, вместо блока питания можно использовать автомобильный аккумулятор, а вместо резистора лампочку с габаритов задней фары на 15Вт. При подключении к аккумулятору, ток в цепи будет равен около 1 А, что достаточно для начальной калибровки амперметра. Потом так же можна подключить лампочку с передней фары в режиме ближнего света, для проверки амперметра под большим током.
Делаем контрольную поверку мультиметром и прибор можно устанавливать в зарядное.
Вот я поделился наглядной методикой изготовления шунта для амперметра в зарядное устройство…
Задавайте вопросы если что то не понятно…
Удачи всем на дорогах!
Читайте также: