Матрица mva и va отличия
Впервые жидкие кристаллы были обнаружены в 1888 году австрийским ботаником Фридрихом Райнитцером в ходе исследования холестеринов в растениях. Он выделил вещество, имеющее кристаллическую структуру, но при этом странно ведущее себя при нагреве. При достижении 145.5°C вещество мутнело и становилось текучим, но при этом сохраняло кристаллическую структуру вплоть до 178.5°C, когда, наконец, превращалось в жидкость. Райнитцер сообщил о необычном явлении своему коллеге – немецкому физику Отто Леманну, который выявил ещё одно необычное качество вещества: эта псевдожидкость в электромагнитных и оптических свойствах проявляла себя как кристалл. Именно Леманн и дал название одной из ключевых технологий отображения информации на сегодняшний день – «жидкий кристалл».
Технический словарь разъясняет термин «жидкий кристалл» как мезофазу, переходное состояние вещества между твёрдым и изотропным жидким. В этой фазе вещество сохраняет кристаллический порядок расположения молекул, но при этом обладает значительной текучестью и стабильностью в широком диапазоне температур.
Почти столетие это открытие относилось к рангу удивительных особенностей природы, пока в 70-х годах ХХ века компания Radio Corporation of America не представила первый работающий монохромный экран на жидких кристаллах. Вскоре после этого технология начала проникать на рынок потребительской электроники, в частности, наручных часов и калькуляторов. Однако до появления цветных экранов было ещё очень далеко.
Принцип работы жидкокристаллических экранов
Работа жидкокристаллических матриц основана на таком свойстве света, как поляризация. Обычный свет является неполяризованным, т.е. амплитуды его волн лежат в огромном множестве плоскостей. Однако существуют вещества, способные пропускать свет только с одной плоскости. Эти вещества называют поляризаторами, поскольку прошедший сквозь них свет становится поляризованным только в одной плоскости.
Если взять два поляризатора, плоскости поляризации которых расположены под углом 90° друг к другу, свет через них пройти не сможет. Если же расположить между ними что-то, что сможет повернуть вектор поляризации света на нужный угол, мы получим возможность управлять яркостью свечения, гасить и зажигать свет так, как нам хочется. Таков, если описывать вкратце, принцип работы ЖК-матрицы. Конкретную реализацию этого принципа в разных матрицах мы рассмотрим ниже.
В упрощенном виде матрица жидкокристаллического дисплея состоит из следующих частей:
- CCFL (ртутная) лампа подсветки;
- система отражателей и полимерных световодов, обеспечивающая равномерную подсветку;
- фильтр-поляризатор;
- стеклянная пластина-подложка, на которую нанесены контакты;
- жидкие кристаллы;
- ещё один поляризатор;
- снова стеклянная подложка с контактами.
В цветных матрицах каждый пиксель формируется из трёх цветных точек (красной, зелёной и синей), поэтому добавляется ещё и цветной фильтр. В каждый момент времени каждая из трёх ячеек матрицы, составляющих один пиксель, находится либо во включённом, либо в выключенном положении. Комбинируя их состояния, получаем оттенки цвета, а включая все одновременно – белый цвет.
Глобально матрицы делятся на пассивные (простые) и активные. В пассивных матрицах управление производится попиксельно, т.е. по порядку от ячейки к ячейке в строке. Проблемой, встающей при производстве ЖК-экранов по этой технологии, стало то, что при увеличении диагонали увеличиваются и длины проводников, по которым передаётся ток на каждый пиксель. Во-первых, пока будет изменён последний пиксель, первый успеет потерять заряд и погаснуть. Во-вторых, большая длина требует большего напряжения, что приводит к росту помех и наводок. Это резко ухудшает качество картинки и точность цветопередачи. Из-за этого пассивные матрицы применяются только там, где не нужны большая диагональ и высокая плотность отображения.
Для преодоления этой проблемы были разработаны активные матрицы. Основой стало изобретение технологии, известной всем по аббревиатуре TFT, что означает Thin Film Transistor – тонкоплёночный транзистор. Благодаря TFT, появилась возможность управлять каждым пикселем на экране отдельно. Это резко сокращает время реакции матрицы и делает возможными большие диагонали матриц. Транзисторы изолированы друг от друга и подведены к каждой ячейке матрицы. Они создают поле, когда им приказывает управляющая логика – драйвер матрицы. Для того, чтобы ячейка не потеряла заряд преждевременно, к ней добавляется небольшой конденсатор, который играет роль буферной ёмкости. С помощью этой технологии удалось радикально уменьшить время реакции отдельных ячеек матрицы.
Виды матриц
Различия между разными типами матриц обусловлены расположением жидких кристаллов и, как следствие, особенностями прохождения через них света.
TN+film
Кристаллы в TN-матрице
Первой и наиболее простой технологией производства матриц была технология TN (Twisted Nematic, скрученные нематические), представленная в далёком 1973 году. Особенностью нематических кристаллов является то, что они выстраиваются друг за другом, как солдаты в колонне. Организация их в матрице выглядит как спираль. Для этого на стеклянных подложках делаются специальные бороздки, благодаря которым первый кристалл в спирали всегда расположен в одной и той же плоскости. Следующие за ним кристаллы располагаются друг за другом по спирали, пока последний не укладывается в аналогичную бороздку на второй подложке, расположенную под углом 90° к первой. К каждому концу спирали подведены электроды, которые и влияют на расположение кристаллов созданием электрического поля. При отсутствии напряжения и поля кристаллы поворачивают ось поляризации света, прошедшего через первый поляризатор, на 90°, чтобы он оказался в одной плоскости со вторым поляризатором и беспрепятственно прошёл сквозь него. Так получается белый пиксель. Если подать напряжение на электроды, спираль начинает сжиматься. Максимальное значение напряжения соответствует такому положению, при котором кристаллы не поворачивают поляризованный свет, и он поглощается вторым поляризатором (чёрный пиксель). Для получения градаций (оттенков серого) напряжение варьируется, тогда кристаллы занимают такое положение, при котором свет проходит через фильтры неполностью.
Принцип работы ЖК-матриц на примере TN
Из-за особенностей TN чёткое формирование оттенков сильно затруднено, и по сей день цветопередача является их ахиллесовой пятой.
Проблемой первых TN-матриц были очень небольшие углы обзора, при которых ячейка была видна с нужным цветом. Поэтому была разработана специальная плёнка, которая накладывается сверху на матрицу и расширяет углы обзора. Технология стала называться TN+film. В этом исполнении она существует и по сей день. Разъясним её. Угол между нормалью фронта световой волны и углом директора молекул ЖК (так научно называются те самые бороздки) равен j. Интенсивность пропущенного через 2 поляризатора света равна sin2 j. С практической точки зрения эти построения означают, что при полностью включённом пикселе угол j составляет не более 30°, а интенсивность света меняется в пределах 10%. А вот в среднем положении при уровне серого 50% угол j составит 45°, а изменение интенсивности – примерно 90%. Естественно, вряд ли кого устроит то, что, пошевелившись на стуле, он увидит вместо красного цвета зелёный. Поэтому сверху на матрицу клеится плёнка, имеющая другое значение j, из-за чего изменение интенсивности при смене угла обзора уже не так заметно. Сегодняшние матрицы обеспечивают нормальное изображение при отклонении от центра примерно на 50-60° по горизонтали (угол обзора 100-120°), а вот с вертикальными углами дело обстоит хуже. При отклонении от центра по вертикали хотя бы на 30 градусов нижняя часть матрицы начинает светлеть, иногда появляются тёмные полосы и т.д.
Ещё одна особенность TN состоит в том, что положением пикселя по умолчанию (т.е. при отключённом токе на электродах) является белый цвет. При этом, если транзистор сгорает, мы получаем всегда ярко горящую точку на мониторе. А если учесть, что добиться абсолютно точного положения кристаллов невозможно, на TN-матрицах невозможно добиться и хорошего отображения чёрного цвета.
В связи с ограниченной скоростью пассивных матриц для уменьшения скорости реакции была разработана технология STN (Super Twisted Nematic). Смысл её заключается в том, что бороздки на стеклянных подложках, ориентирующие первый и последний кристалл, расположены под углом более 200° друг к другу, а не 90°, как в обычной TN. В таком случае переход между крайними состояниями резко ускоряется, однако становится крайне сложно управлять кристаллами в средних положениях. Более-менее стабильными они были при углах между бороздками около 210°. Однако без недостатков не обошлось и тут: при отклонении от центра ячейки белый свет становился либо грязно-жёлтым, либо голубоватым. Чтоб хоть как-то сгладить эту проблему, инженеры Sharp разработали DSTN – Dual-Scan Twisted Nematic. Суть технологии состоит в том, что экран делится на две части, каждая из которых управляется отдельно. Помимо увеличения скорости, преимуществом технологии было смягчение искажений цветов, а недостатком – большой вес и высокая стоимость.
Итак, выделим достоинства и недостатки матриц TN+film (во всех исполнениях) на сегодняшний день:
Плюсы | Минусы |
высокая скорость переключения ячеек | абсолютно низкое качество цветопередачи |
низкая цена | малые углы обзора |
низкая контрастность (соотношение между белым и чёрным) | |
низкая цена |
К сожалению, подавляющее большинство производимых сегодня ЖК-мониторов самой ходовой диагонали 17” производится на базе TN+film из-за дешевизны технологии. В принципе, для нетребовательного к качеству изображения пользователя ничего страшного в этом нет, однако для работы с графикой придётся обратить взор на другие матрицы.
Вероятно, вы помните громоздкие ящики с дисплеями, которые стояли дома у каждого. Ранее у мониторов, которые изготавливались с применением вакуумной трубки, не было никаких аналогов. Но техника эволюционирует очень быстро, и на замену старым CRT-дисплеям пришли жидкокристаллические экраны. Технология производства полностью соответствует названию инновации – в основе таких мониторов используются жидкие кристаллы. В статье мы сосредоточим свое внимание именно на современных дисплеях LCD (Liquid Crystal Displays), тем более, что выбор таковых перед покупателем открывается обширный.
TN (Twisted Nematic)
На данный момент самый популярный тип матриц, который появился в далеком 1971 году. Популярность экранов этого вида обусловлена в первую очередь их низкой ценой. Среди всех остальных типов матриц, используемых в современных мониторах – TN имеет самую низкую стоимость из-за того, что она стояла у истоков зарождения жидкокристаллических дисплеев. Во всех бюджетных мониторах вы гарантированно увидите этот тип матрицы или ее усовершенствованный аналог – TN+film. Помимо невысокой цены TN обладает также и низким временем отклика (некоторые модели имеют менее 1 мс). Но на этом основные плюсы Twisted Nematic заканчиваются.
Нельзя обобщить и сказать, что все TN-дисплеи не смогут передать насыщенную картинку, всё зависит от технологии производства, которая практически у каждого разработчика своя. Но всё равно, даже не смотря на наличие хороших моделей, Twisted Nematic проигрывает в плане передачи красок другим типам матриц.
Кому подойдет TN? В первую очередь, это геймеры, которым важна актуальность выводимого изображения за счет низкого времени отклика. Цветопередача в играх – это, конечно, приятный бонус, но не основополагающая характеристика. Тем более, что игровое железо имеет довольно высокие ценники, поэтому оправдана экономия на матрице ради нескольких десятков FPS, которые даст более мощная видеокарта. Во-вторых, TN – оптимальный выбор для офисных машин, главная задача которых – вывод на экран текстовых документов. Ведь не так важно, насколько естественно белым выглядит документ в Word, верно? Самые дешевые модели на рынке – TN с большим временем отклика.
IPS (In-Plane Switching)
- IPS – полная противоположность TN-матрице. Имеет огромное множество вариаций, которые направлены на улучшение тех или иных параметров. Например:
- S-IPS (Super IPS) – самая первая модификация стандартной IPS матрицы. В продаже уже найти практически нереально. Из-за того, что кардинальных улучшений не было, в мире дисплеев быстро появились более продвинутые аналоги. Вся разница с IPS заключалась лишь в увеличенных углах обзора с более высокой скоростью реакции пикселя.
- H-IPS (Horizontal IPS) – отличается от предыдущей версии лишь увеличенной контрастностью. И поэтому тоже уже практически не встречается в продаже.
- P-IPS (Professional IPS) – из расшифровки аббревиатуры становится ясно, что предназначен данный тип матрицы для профессиональных задач. Потребности в таких матрицах у среднестатистического пользователя, даже если он работает с фотографиями – нет. А потому встретить на рынке представителей данной разработки можно очень редко. Ключевая особенность – великолепная цветопередача (глубина цвета 30 бит и 1.07 миллиарда цветов).
- AH-IPS (Advanced High Performance IPS) – самая новая разработка IPS матриц. Здесь немного улучшены все параметры в сравнении с обычной IPS. Увеличена яркость, улучшена цветопередача, снижено энергопотребление и время отклика. На данный момент – это самая распространенная матрица IPS на рынке.
В зависимости от типа технологии производства, IPS матрицы могут различаться пиксельной структурой, контрастностью панелей, цветовыми фильтрами и так далее. Но если обобщить, то все IPS в производстве очень дорогие относительно той же простой TN, имеют большее время отклика, а также отличаются повышенным энергопотреблением. Связано это с конструктивными особенностями матрицы, в которые мы не будем углубляться.
На другой стороне весов, напротив вышеперечисленных недостатков, лежат весомые плюсы – хорошая цветопередача, высокая контрастность и большие углы обзора (значения могут достигать 178 градусов по горизонтали). Сегодня можно найти различные виды данной матрицы, которые будут иметь низкое время отклика (вплоть до 1 мс) и обладать высокой энергоэффективностью – но такие дисплеи будут стоить в разы дороже TN.
Вам стоит присмотреться к IPS, если вы профессионально работаете с изображениями. Например, если вы фотограф или монтажер видео. В этих профессиях естественные цвета – неотъемлемая часть качественно выполненной работы. Также такой тип матрицы будет лучшим выбором для тех, кто проводит много времени за компьютером – высокая контрастность и правильная цветопередача снижают нагрузку на глаза при долгой работе.
Кстати, матрицы IPS используются не только в мониторах и дисплеях ноутбуков, но и в телевизорах. Как выбрать хороший ТВ, мы рассказывали в отдельной статье.
PLS (Plane to Line Switching)
Во многих магазинах можно встретить отдельную категорию матриц под названием PLS. По сути это вышеописанная IPS, только доработанная компанией Samsung. Как правило, такие мониторы слегка дешевле и при одинаковой стоимости в сравнении с IPS имеют меньшее время отклика. Однако подобных моделей на рынке крайне мало относительно других типов матриц.
VA (Vertical Alignment)
- VA – технология матриц, разработанная компанией Fujitsu. Золотая середина между TN и IPS. Это касается, как плюсов, так и минусов. В сравнении с IPS – лучшая контрастность, но не такая хорошая цветопередача. В сравнении с TN – большие углы обзора, но не такое низкое время отклика. По цене данная матрица находится тоже где-то посередине. Существует несколько основных разновидностей дисплеев формата VA:
- MVA (Multidomian Vertical Aligment) – доработанная технология. Отличается большими углами обзора, хорошей цветопередачей, высокой контрастностью, но, как правило, имеет более высокую цену, чем классическая VA.
- PVA (Patterned Vertical Alignment) – еще одна уникальная технология от компании Samsung. В отличие от MVA имеет сниженную яркость черного цвета и традиционно стоит немного дешевле.
S-PVA (Super PVA) – еще одна южнокорейская разработка. На этот раз Samsung объединили свои усилия с Sony и улучшили PVA (название говорит само за себя). В отличие от обычного PVA она имеет более широкие углы обзора.
Если не хотите выбирать между двумя принципиально разными концепциями – IPS и TN, то можете смело присмотреться к VA. Рекордно низкого времени отклика вы здесь не увидите, впрочем, как и невероятной цветопередачи (кроме как в MVA), но зато найдете компромисс между всеми основными характеристиками любого монитора.
OLED (Organic Light Emitting Diode)
Одна из самых свежих технологий по производству дисплеев на данный момент. Как и подобает любой инновации, добраться до рынка широкого потребления ей удастся только через несколько лет, потому что цены на OLED-мониторы гораздо выше любых LED-аналогов. Ноутбуки с OLED дисплеями тоже не распространены – это только продвинутые геймерские модели. Тем не менее, технология активно завоевывает рынок телевизоров.
В основе OLED лежит использование углеродных органических материалов. Как заявляют разработчики, ни один тип ранее изобретенных матриц не сможет даже близко сравниться по уровню контрастности и глубине черного цвета с OLED дисплеями. Обзор при этом составляет полных 180 градусов, а яркость не изменяется при отклонении монитора.
К сожалению, долговечность OLED матриц и, конечно же, их цена на данный момент оставляет желать лучшего. Совершенно точно ясно, что такие матрицы не будут широко использоваться в мониторах и останутся популярны только в телевизорах.
Качество изображения стало одной из главных потребностей пользователей ПК и ноутбуков наших дней. Технологии, применяемые при изготовлении мониторов, прошли большой путь. Это дорога от громоздких ламп до жидких кристаллов.
В наше время на смену TN матрицам пришли более современные VA и IPS технологии. И эти технологии соперничают друг с другом и по сей день.
Что такое va
Появление VA матрицы
Технология изготовления VA
Принцип вертикального выравнивания говорит сам за себя. Жидкие кристаллы расположены перпендикулярно по отношению к фильтрам. В таком положении свет без затруднений через них проходит. Но остаётся в пределах самой матрицы. Второй же поляризатор блокирует прохождение света. И это создаёт глубокий контраст. А также делает чёрный цвет более насыщенным.
В момент поступления сигнала кристаллы поворачиваются на 90 градусов, давая свету пройти. Поэтому первые мониторы с VA матрицей сильно искажали цвет под определённым углом. Например, человек, находящийся не по центру экрана, видел сильное затемнение. Если же посмотреть на монитор сверху, то становится видимым проникающий свет. Что также портило картинку. Поэтому изображение приемлемого качества можно было увидеть, только находясь напротив центра экрана.
Разработчики не могли оставить без решения такую проблему. И уже в модифицированной MVA матрице были использованы новые технологии многодоменной структуры. Теперь каждая ячейка имела несколько кристаллов. При подаче сигнала они разворачивались в разные стороны. А также модифицировали и сами фильтры. Все новые наработки помогли уверенно повысить качество изображения под любыми углами обзора.
Виды VA матриц
Как мы уже говорили, с момента первых VA экранов эти технологии постоянно модифицировались. И в результате на свет появились различные виды таких дисплеев. Появились MVA матрицы, о которых было указано выше. А затем и PVA матрицы, созданием которых занимается компания Samsung. Для того чтобы понимать основные аспекты этой технологии, нужно подробнее рассмотреть виды VA мониторов. Рассмотрим различные типы VA экранов. А также разберём их достоинства и недостатки.
VA матрица делает изображение более глубоким благодаря повышенной контрастности. Мониторы, изготовленные с применением этой технологии, отличаются высокой чёткостью изображения. И даже при ярком освещении картинка остаётся на хорошем уровне. Но как упоминалось выше, у таких экранов присутствует и недостаток:
– даже при небольших изменениях угла обзора, цвета искажаются.
MVA матрица
Данный тип дисплея является глубокой модернизацией VA технологии. Эксперимент получился более чем удачным. И разработчикам удалось устранить большинство недостатков предыдущей версии:
- Повышена частота обновления экрана. Так что картинка стала более плавной. А также удалось избавиться от большинства «артефактов».
- Повышена точность передачи цвета. Поэтому изображение стало более красочным и качественным.
- Углы обзора заметно увеличились. Раньше приемлемую по качеству картинку можно было увидеть сидя строго по центру экрана. А теперь и люди, сидящее сбоку, смогли наслаждаться изображением без видимых искажений.
Увы, некоторые проблемы всё же остались. Несмотря на то что углы обзора увеличили, при отклонениях всё ещё можно было наблюдать «ложные» цвета. А также проявлялось скрадывание деталей на тёмных изображениях.
PVA матрицу можно считать уникальной разработкой компании Samsung. Потому что разработчики уделили ещё больше внимания устранению недостатков предшествующей модели. И смогли добиться на этом пути впечатляющих результатов.
Новые экраны сохранили лучшие качества от MVA. Но при этом картинка стала ещё чётче и контрастней. Так что такой тип дисплея уже подойдёт и профессионалам, работающим в сфере cgi, фотографии или видеомонтажа.
Имеют место и другие матрицы на основе VA. Например, тип матрицы UWVA, SVA матрица и WVA матрица.
Особенности и характеристики
Итак, мы рассмотрели различные типы VA мониторов. Так что стоит уделить внимание особенностям и характеристикам, присущим всем этим видам.
Угол обзора
Эта характеристика отвечает за то, под каким углом изображение остаётся чётким и естественным.
У стандартных VA экранов с этим параметром всё плачевно. И если отклониться от центра экрана, изображение сильно исказится. Эту проблему частично получилось решить в MVA матрицах. И практически полностью искоренить в PVA.
Цветовая эффективность
Это параметр, отвечающий за то, насколько качественно передаются цвета. С этим у VA дисплеев не было замечено проблем. Если не считать первых версий линейки. А самая качественная цветопередача у PVA матриц. Но и они немного искажают цвет по сравнению с IPS мониторами.
Контрастность
Этот параметр всегда был центральной «фишкой» VA мониторов. Даже ранние версии могли похвастаться достойной передачей чёрного цвета. А что же касается PVA матрицы, то она остаётся вне конкуренции среди подобных технологий.
Время отклика
Этот параметр крайне важен для геймеров. Потому что чем меньше время отклика, тем быстрее матрица отвечает на сигнал видеокарты. А в этом плане TFT VA мониторы сильно превосходят технологии IPS. И уже в MVA экранах время отклика было на хорошем уровне. Ну а в PVA ещё выше.
Воспроизведение движения
На этот показатель влияют время отклика и частота обновления экрана. И чем быстрее монитор реагирует на сигналы видеокарты, тем плавнее будут сменяться кадры. Потому как по сути, матрица напрямую влияет и на fps. И с этим у VA мониторов также всё в порядке. Так что и геймеры, и любители фильмов останутся довольными.
Частота обновления
Частота обновления напрямую влияет на качество изображения. И если частота обновления монитора на низком уровне, то цвета будут передаваться некорректно. А также будет присутствовать то, что известно как «артефакты» (шлейфы, полосы и рябь). В этом плане VA матрицы уверенно справляются со своей задачей. А особенно MVA и PVA.
Для каких целей лучше подходит монитор с VA матрицей
Этот тип мониторов просто необходим геймерам. Потому как, практически, мгновенное время отклика создаст комфортные условия для игры. И тем более в онлайн-проектах.
А также VA мониторы подойдут для профессионалов, работающих с изображением и видео. Ведь высокая цветопередача позволит более тонко настроить изображение. А хорошая частота обновления монитора поможет комфортно работать с видео.
Ну а главным плюсом является небольшая цена таких мониторов в отличие от IPS.
Ложка дёгтя VA матриц
Довольно заметным недостатком VA матриц является искажение изображения при изменении угла обзора. И если для компьютеров и ноутбуков сей недуг не так страшен. То для телевизоров подобный недостаток иногда становится фатальным. И даже в современных PVA матрицах, эту «старую болячку» полностью искоренить не удалось. Так что если стоит задача выбрать телевизор или большой монитор для просмотра фильмов, то будьте внимательны с выбором.
Заключение
VA технологии идут в ногу со временем и уверенно закрепились на рынке. И проблема с углами обзора с лихвой перекрывается высокой контрастностью. А также временем отклика и демократичной ценой.
И если вы часто работаете с компьютером или увлекаетесь видеоиграми, то этот монитор точно для вас.
Выбирая монитор, покупатель в основном обращает внимание на диагональ. Более продвинутые юзеры смотрят на параметры частоты обновления, время отклика и пр.
Всё это значимые характеристики. Но не менее важно определиться с выбором матрицы, которая используется в основе дисплея. Ведь она способна существенно повлиять на целый ряд характеристик.
У каждого покупателя свои цели, задачи, финансовые возможности. Отталкиваясь от того, для чего именно приобретается монитор, подойдут соответствующие матрицы. То, что в одной ситуации станет идеальным выбором, в другом случае совершенно не подойдёт.
Потому следует узнать, какие вообще существуют матрицы, чем они отличаются, в чём сходство между ними, и какой из них в итоге отдать предпочтение.
Актуальные разновидности
Многие спорят о том, что лучше брать, когда на выбор предлагается VA или IPS матрица. Но это далеко не единственные варианты, представленные на рынке.
Да, будет отдельно рассмотрен вопрос касательно того, какая матрица в итоге лучше – IPS или VA, поскольку они относятся к числу наиболее универсальных и востребованных вариантов. Но правильно также изучить все остальные варианты матриц, предлагаемые производителями мониторов для ПК и ноутбуков.
В список актуальных матриц входят такие разновидности:
В действительности разнообразие матриц куда более скромное, нежели представленный список. Просто у разных матриц есть несколько подвидов и технологических особенностей, что позволяет их разделять на разные категории. Но по факту это одно и то же, с некоторыми отличиями и модернизациями.
Изучив все варианты, можно будет сделать определённые выводы, какую матрицу в итоге лучше выбрать для монитора ПК или портативного компьютера, то есть ноутбука.
Размышляя о том, какой тип матрицы для монитора будет лучше выбрать, не стоит ориентироваться на TN технологию. Да, она всё ещё актуальная, но считается одним из самых устаревших вариантов.
Постепенно стандартная TN матрица отходит на второй план. Её место заняла TN Film матрица, являющаяся улучшенной модификацией предшественника. Она более предпочтительная и обладает двумя ключевыми преимуществами. А именно быстродействием в виде малого времени отклика и задержки, а также низким ценником. Для такой матрицы, а точнее для монитора с такой матрицей, отклик около 1 мс считается нормой.
При этом недостатки здесь тоже существенные. Несмотря на их наличие, матрицу продолжают производить и активно использовать. В особенности при изготовлении ноутбуков бюджетной категории. Среди минусов стоит отметить небольшой угол обзора, далеко не образцовую цветопередачу, низкую контрастность. Плюс глубина чёрного цвета оставляет желать лучшего. Если работать с таким монитором, установив его прямо перед глазами, все эти минусы становятся не такими заметными.
Многое ещё зависит от конкретного производителя. На дорогих мониторах и ноутбуках используется весьма солидные TN матрицы, прекрасно справляющиеся со своими задачами. А вот в бюджетном сегменте найти что-то стоящее сложно. Особенно на фоне конкурирующих матриц.
А вот TFT матрица – не совсем самостоятельная технология. Правильно называть её TN TFT матрицей. Здесь речь идёт не о типе матрицы, а об используемой технологии производства.
Фактически единственным отличием от TN является способ, применяемый для управления пикселями. В случае с TFT используются микроскопические полевые транзисторы, что позволяет отнести эти мониторы к категории активных ЖКИ. Тут речь идёт не про тип матрицы, а про способ управления.
Это IPS или SFT матрица, которые отличаются лишь названием, а по факту являются одним и тем же. Как и PLS матрица. Но тут нужно внести некоторые пояснения.
По сути, IPS или SFT матрица является модернизированной версией TFT технологи. Здесь удалось увеличить угол обзора, который на некоторых устройствах составляет порядка 178 градусов. Также значительно улучшился цветовой охват, максимально приблизившийся к естественному.
IPS мониторы в настоящее время являются основными конкурентами для TN аналогов и их производных. В IPS удалось устранить ряд недостатков предшественника, но всё же определённые минусы остались. Их стоимость выше, а время отклика больше. Потому от IPS матриц стоит отказаться тем, кто планирует покупку игрового ноутбука, либо монитора для игр под персональный компьютер.
А вот в ситуации, когда приходится много и профессионально работать с графикой, при необходимости получить высококачественную цветопередачу, внушительный цветовой охват, IPS матрица станет идеальным выбором.
Поскольку технологии постоянно развиваются и совершенствуются, появились новые виды IPS матрицы. Тут можно выделить несколько разновидностей:
- SIPS. Второе поколение технологии. Пиксельная структура немного изменилась, улучшилось время отклика, что позволило по этому параметру максимально приблизиться к TN технологиям.
- ASIPS. Следующий шаг в усовершенствовании технологии. Здесь основная задача заключалась в том, чтобы повысить контрастность и сделать матрицы более прозрачными. Тем самым они стали сопоставимы с S PVA матрицами.
- HIPS. Снова поменяли пиксельную структуру, повысили их плотность. За счёт этого увеличилась контрастность, и сделать изображения однородными.
- HIPS ATW. Это специальная разработка от компании LG. В основе лежит матрица предыдущего поколения, куда добавили специальный TW фильтр, что позволило улучшить белый цвет. Также устранили проблему засветов при больших углах обзора, увеличили их. Такие матрицы применяются на мониторах профессионального уровня.
- IPS Pro. Эта разработка принадлежит компании BOE Hydis. Расстояние между пикселями стало меньше, повысили яркость, увеличили углы обзора.
- EIPS. Повысили светопроницаемость, мониторы стали экономичнее и дешевле за счёт применения более доступных ламп для подсветки. Время отклика также уменьшилось. При такой матрице диагональ экрана обычно не превышает 24 дюймов.
- PIPS. Профессиональные матрицы с улучшенной цветопередачей.
- AH IPS. Здесь самые внушительные углы обзора, повышенная яркость и улучшенная контрастность при незначительном времени отклика.
Стоит отметить, что PLS матрица также является модернизированной версией IPS. Здесь удалось снизить себестоимость производства, а также уменьшить до 5 мс время отклика. Это разработка компании Samsung. Фактически это аналоги уже представленных AH IPS и HIPS матриц.
VA/MVA
Эту технологию разработали специалисты из компании Fujitsu. Считается, что это промежуточное звено между технологиями IPS и TN. К примеру, углы обзора здесь лучше в сравнении с TN, как и цветопередача, но уступают IPS по этим параметрам. То же самое с временем отклика. Зато VA выигрывает у IPS в цене.
Некоторые уверены, что существуют только VA, MVA и PVA матрицы. В действительности MVA является модифицированной технологией VA. Но их воспринимают как единое целое. И уже у них есть несколько разновидностей:
- PVA. Это вариация VA технологии от компании Samsung. Причём особенности разработки держатся в секрете. При этом важно заметить, что у таких матриц контрастность оказалась лучше, а цены снизилась. Но фактически существенной разницы между MVA и PVA нет. Потому часто мониторы с такими матрицами могут маркироваться как MVA/PVA.
- SPVA. Здесь удалось улучшить показатели углов обзора. Разработка является совместным проектом двух ведущих компаний. Речь идёт о Samsung и Sony.
- SMVA. За разработку этой матрицы отвечает компания Chi Mei. Ей удалось не только улучшить контрастность, но и увеличить углы обзора.
- AMVA. Следующий шаг в развитии технологии SMVA. Автором проекта выступает компания AU Optronics. Их усилиями удалось снизить время отклика.
Такие матрицы считаются оптимальным компромиссом между двумя конкурирующими технологиями. А именно – между TN и IPS. Если TN дешёвые, но имеют ряд недостатков, то IPS заметно улучшенные, но при этом более дорогостоящие.
Единственным важным недостатком у MVA матрицы является дефицит цветопередачи по мере увеличения угла обзора. Особенно это заметно в полутонах.
Да, если использовать такие мониторы для повседневных задач, то заметить подобное будет сложно. Если же речь идёт о покупке монитора для профессионалов, работающих с графикой, то для них такой недостаток может оказаться существенным. Им лучше присмотреться к иным вариантам матрицы.
А вот OLED дисплеи заметно отличаются от всего того, что было представлено ранее. Технология производства здесь совершенно другая.
Но вместе с тем матрицы оказались очень дорогими. Сложность производства не позволяет внедрять технологию в массы, и выпускать компьютерные мониторы и дисплеи для ноутбуков. Зато отлично удалось продвинуться в сегменте создания телевизоров.
Такие экраны отличаются высокими параметрами контрастности и яркости. У них шикарные углы обзора, при которых не наблюдается искажения изображения. Также на высоком уровне оказалась энергоэффективность. По скорости отклика превосходят даже TN матрицы.
Технология, о которой стоит говорить в контексте перспективы. Пока ещё речи не идёт об её глобальном внедрении в производство мониторов. Пока что число QD экранов, доступных на рынке, незначительное. Плюс они очень дорогие.
Зато технология лишена практически всех недостатков, актуальных для предшественников. Единственный минус наблюдается в отношении глубины чёрного цвета. Пока не удалось превзойти параметры OLED экранов.
Что лучше выбрать
Актуальным остаётся вопрос о том, какую матрицу будет лучше выбрать для монитора, учитывая такое разнообразие технологий и их модификаций. Чаще всего сравнивают, что же лучше — матрица VA, или всё-таки IPS.
Также закономерно спросить, какая матрица окажется лучше для глаз, поскольку вопрос сохранения зрения очень актуален для пользователя любого возраста. Всё же мало кому захочется сидеть перед вредным экраном, который буквально за пару лет способен посадить зрение. А ведь многим людям в современном мире приходится постоянно находиться за компьютером или перед экраном ноутбука, поскольку это их работа.
Чтобы определить лучший тип матрицы, применяемой для мониторов, стоит сравнить все представленные варианты. Разумеется, в основе будет лежать базовая технология. Сравнивать абсолютно все модификации бессмысленно и проблематично.
Потому в основе будут лежать технологии TN, IPS и MVA (PVA). Да, сюда также можно включить OLED. А вот про QD дисплеи говорить пока слишком рано. Большинству покупателей они просто недоступны.
Перед тем как выбрать ту или иную матрицу для компьютера или ноутбука, их следует сравнить между собой по нескольким основным параметрам.
- Угол обзора. Здесь явным аутсайдером выступает TN матрица. Следом идёт MVA технология со средними показателями. Углы обзора у IPS выше предыдущих вариантов, но уступает по этому показателю только OLED и QD матрицам.
- Время отклика. Тут доминирует OLED технология с очень низким временем отклика. Далее идёт, как ни странно, TN матрица. А вот у IPS и MVA технологий время отклика среднее.
- Цветопередача. Она же цветовая эффективность. Самая низкая у TN. На втором месте с конца стоит поставить MVA. Она лишь немного уступает IPS дисплеям. Лучшими в этой категории являются OLED и QD.
- Контрастность. Между IPS и MVA можно смело ставить знак равенства. А вот у TN дела обстоят несколько хуже. Претензий по контрастности к OLED нет и быть не может.
- Воспроизведение движения. Это не особо зависит от самой матрицы. Тут вопрос, скорее, к самой технике, то есть к мониторам. Здесь MVA и IPS примерно на одном уровне, а TN традиционно немного уступает.
- Стоимость. Самыми дешёвыми мониторами закономерно будут те, которые основаны на TN матрицах. Далее идут MVA дисплеи. Чуть дороже обойдутся IPS, что вполне ожидаемо. А самыми дорогими закономерно станут мониторы с матрицей OLED или QD.
Важно понимать, что окончательный выбор конкретной матрицы для монитора – вопрос достаточно индивидуальный и зависит от нескольких факторов.
У покупателей ноутбуков вариантов не так много. Недорогие модели часто используют TN матрицы, хотя всё больше появляется ассортимент с IPS технологией. Намного реже встречаются варианты с иными решениями.
А вот для мониторов под обычные настольные компьютеры ограничений по выбору типа матриц нет. Тут главное – ориентироваться на поставленные перед дисплеем задачи, а также на собственные финансовые возможности. Если нужен недорогой дисплей, на котором можно заниматься офисной работой, периодически играть и смотреть фильмы, то даже качественной TN матрицы будет вполне достаточно.
MVA и IPS матрицы считаются более универсальными. Только здесь следует учесть некоторые моменты. IPS хороши в плане отображения графики. Они прекрасно подойдут для дизайнеров, решения полиграфических задач. А вот для активных геймеров это не лучшее решение из-за времени отклика. Для кино, спокойной и размеренной работы превосходный выбор. Для динамичных компьютерных игр лучше выбрать альтернативную матрицу. Хотя глаза при этом уставать не будут.
Но и VA матрицу нельзя назвать идеальным решением для видеоигр. Всё зависит от конкретной модели и применяемой технологии. Самые простые варианты плохо реагируют на резкую смену картинки.
IPS мониторы считаются наиболее популярными. И это вполне закономерное явление. Постепенно их вытесняют OLED дисплеи, что также ожидаемо. Ситуация в 2020 году неизменная. Но есть высокая вероятность того, что ряд представленных технологий в скором времени прекратят своё существование. Если IPS ещё держится, то времени у TN матриц осталось не так много. Будущее за OLED и QD матрицами.
Как узнать тип матрицы
Некоторые пользователи, уже купившие себе монитор или ноутбук, порой даже не задумывались над вопросом о том, какая же матрица используется. И тут возникает закономерное желание получить ответ.
Фактически определить тип матрицы можно 3 способами:
- Упаковка или техническая документация. Если коробки уже давно большинство пользователей прекратили хранить дома по несколько лет, то техническую документацию обычно сохраняют. Чтобы узнать тип матрицы, достаточно взглянуть на эти бумаги, и всё станет ясно.
- Интернет. Поскольку даже на самом мониторе для персональных компьютеров пишется название модели, причём порой это достаточно длинный индекс, информацию можно пробить через онлайн ресурсы. В случае с ноутбуком важно указать в запросе не только название модели, но и конкретную модификацию. В зависимости от неё, ряд характеристик одной и той же модели ноутбука могут отличаться, включая тип используемой матрицы.
- Наглядный эксперимент. Его суть заключается в том, чтобы изучить особенности изображения. Это во многом даёт понять, какая матрица используется в основе устройства.
Есть несколько простых рекомендаций для определения типа матрицы.
Пользователю требуется сделать следующее:
- Если это TN матрица, то при просмотре цветного изображения под разными углами, а также снизу и сверху, можно увидеть цветовые искажения. Картинка будет блёклой, белый фон начнёт желтеть под другим углом. Полностью чёрный цвет для TN матриц невозможен. Он будет тёмно-серым, но всё равно не чёрным.
- Идентифицировать IPS матрицу проще всего с помощью чёрного изображения. Оно будет становиться фиолетовым, если отклонить взгляд относительно перпендикулярной оси.
- Если все указанные особенности при просмотре изображений на дисплее будут отсутствовать, то тут есть два варианта. Либо это современная модификация IPS технологии, либо уже полноценная OLED матрица.
- Определить OLED также несложно. Отличительной особенностью является отсутствие у таких мониторов ламп подсветки. А потому чёрный здесь будет абсолютно чёрным цветом, поскольку в этом случае пиксели полностью обесточены. Даже у самых продвинутых IPS матриц минимальная чёрная подсветка всё равно будет.
На чём остановить свой выбор, тут уже каждый пользователь должен решать самостоятельно.
Ещё важно понимать, что ориентироваться исключительно на тип матрицы не совсем правильно. Грамотный выбор монитора для ПК или дисплея в ноутбуке предполагает комплексный подход, где каждой характеристике уделяется особое внимание.
При этом стоит ориентироваться на более современные решения, а также на наиболее актуальные модификации применяемых в мониторах матриц.
Читайте также: