Ламповые часы своими руками
Я уже больше 5 лет занимаюсь изготовлением часов на газоразрядных индикаторах, а недавно заполучил довольно редкие лампы ZM1040, часы на которых считаю одними из лучших в своей коллекции. Надеюсь, и вы сможете по достоинству оценить мою работу, ознакомившись с подробностями и процессом изготовления.
Картинка кликабельна
Введение
Газоразрядный индикатор Nixie tube — электровакуумный прибор, в котором используется тлеющий разряд для отображения различных символов за счёт свечения газа вокруг них. Состоит, как правило, из одного анода и 10 катодов в форме цифр, расположенных друг за другом. Подробнее об устройстве и принципе работы можно почитать на Википедии.
Несмотря на то, что ГРИ не производятся уже почти 30 лет, интерес к часам на их основе в настоящее время не утихает. Справедливости ради стоит сразу отметить, что в мире существует по меньшей мере два современных производителя ГРИ: появившийся около 5 лет назад Daliborfarny, создающий аналоги индикаторов Z5680M/Z568M по весьма высокой для рядового радиолюбителя цене в €135 за штуку и Millclock, с 2018 года создающий нечто похожее на ИН-18 по $99. В то же время на различных барахолках, сайтах с объявлениями и даже на Алиэкспресс сейчас можно без труда купить индикаторы ИН-12, ИН-14, ИН-8 и т.д. по цене от 200 рублей за штуку. Все они по-своему хороши и находят своих почитателей.
Подготовка
Первым делом — выбор ламп. Для этого проекта мне удалось приобрести 6 индикаторов ZM1040 производства ныне несуществующей компании Tesla.
Собственно сайт, на котором можно найти больше информации о ГРИ.
Эти ГРИ имеют внушительную по своим меркам высоту символа в 30 мм, что хоть и уступает на 10 мм самым большим из советских индикаторов ИН-18, но при той же ширине символа обеспечивает, на мой взгляд, более гармоничные пропорции.
Вот схема, которую выбрал я:
Картинка кликабельна
При создании часов на ГРИ можно использовать статическую или динамическую индикацию, лично я предпочитаю второй вариант. Именно поэтому на схеме так странно показано соединение дешифратора BU2090F с катодами ламп: все катоды соединены параллельно. Подробнее об этом можно прочитать здесь.
Кроме того, на схеме не показано, к какому катоду подключается каждый выход дешифратора. Дело в том, что для упрощения разводки печатной платы в прошивке имеется возможность "переназначить катоды", то есть задать правильный для конкретного случая порядок отображения цифр.
Для питания ГРИ необходимо напряжение порядка 170 Вольт при токе в несколько миллиампер. Для его получения используется импульсный преобразователь на микросхеме МС34063, хорошо зарекомендовавшей себя в подобных схемах.
Следующий типовой блок — транзисторы для управления анодами ламп — здесь используется ставшее уже классическим сочетание MMBTA42 и MMBTA92.
В качестве микросхемы часов реального времени применена достаточно точная DS3231SN с батарейкой для поддержания хода часов при отключении от сети.
Также на схеме присутствует линейный понижающий преобразователь на 5 Вольт для питания микросхем, датчик температуры DS18B20 и управляющий всем этим микроконтроллер PIC16F628A.
Печатная плата
С лампами, схемой и деталями определились, теперь — плата. Имея некоторый опыт, печатные платы я сразу подготавливаю для изготовления в Китае: два слоя, шелкография, маска, переходные отверстия — всё это здорово упрощает сборку и позволяет позволяет сделать плату в меру компактной. Подробно на этим этапе останавливаться не буду, так как о проектировании и методах изготовления плат написано уже очень много, в частности:
7 правил проектирования печатных плат
Перестаньте травить печатные платы дома — заказывайте их на производстве
Отмечу, что на этом этапе самым сложным для меня оказался поиск чертежа цоколя лампы со всеми размерами. В подобных случаях я всегда стараюсь изготовить первый экземпляр платы (или её фрагмента) самостоятельно, чтобы наверняка исключить возможность ошибки.
В результате моя плата получилась вот такой:
Результат:
На нижней стороне платы перечислены индикаторы, которые можно в неё установить без доработок
Сборка платы
О том, как паять SMD и выводные компоненты я не смогу сказать ничего нового, поэтому лишь уточню пару нюансов.
Во-первых, схему рекомендую собирать по частям: сначала — преобразователи, затем — остальные детали, и только в последнюю очередь — лампы. В данном случае лампы не впаиваются в плату, а устанавливаются через штырьки из разъёма DPBS-25F, которые отдельно можно найти в продаже по запросу "nixie tube pin" — это заметно упрощает сборку.
Во-вторых, если используете какие-то флюсы, не забывайте их потом отмывать. Сам я использую припой с флюсом, не требующим отмывки, что довольно удобно.
В-третьих, советую покупать электронные компоненты только в проверенных магазинах — это поможет избежать множества проблем при сборке и наладке устройства. В случае с этими часами особое внимание советую уделить BU2090F — уж очень часто они мне попадались бракованные: если после сборки в одной или нескольких лампах вместо одной цифры светятся сразу все, проблема почти наверняка в дешифраторе.
После сборки части платы проверяю наличие всех напряжений:
174 Вольта вместо 170 получилось из-за погрешности номиналов резисторов в обратной связи преобразователя, что в данном случае не критично
И полностью собранная плата со всех сторон:
Я собирал сразу две платы, поэтому можно найти некоторые отличия в компонентах между этой и предыдущей фотографией
На этом этапе уже можно установить лампы и продемонстрировать работу часов (что я и делал для окончательной проверки всех элементов), но фотографировать не стал — лучше чуть позже покажу полностью законченные часы.
Изготовление корпуса
В подобного рода изделиях корпус — очень важная составляющая. Вариантов здесь масса: металл, дерево, полимерные материалы (включая 3D печать), камень и различные их комбинации — у кого на что хватит терпения, опыта, оборудования/инструментов и денег. Лично мне нравится древесина.
Именно под деревянный корпус проектировалась плата, и именно этим обусловлено такое расположение разъёма питания и кнопок для настройки.
В качестве материала была выбрана давно полюбившаяся мне древесина бубинга, которая имеет относительно высокую плотность и прочность и хорошо себя зарекомендовала при обработке на фрезерном станке.
Чертёж корпуса в электронном виде я не создавал, но в архиве в конце статьи будет фотография чертежа, сделанного от руки, если кому-то вдруг это нужно.
Модель получилась вот такой:
Извиняюсь за фотографию монитора, сделать скриншот не было возможности
После изготовления, шлифовки и покрытия воском корпус стал выглядеть вот так. Попутно уже вручную были просверлены отверстия для винтов крепления нижней крышки и платы и сделаны небольшие углубления под выступающие детали:
Фотография не очень хорошо передаёт цвет древесины, на КДПВ он больше похож на действительный
Как и ожидалось, после минимальных доработок корпуса, плата была установлена именно так, как и планировалось:
Между нижней стороной платы и крышкой есть зазор в 4 мм для размещения кнопок и конденсаторов
Последняя деталь корпуса — нижняя крышка. Здесь я воспользовался лазерной резкой. Материал — нержавеющая сталь толщиной 1 мм. Так как заготовка не была зеркальной и имела небольшие царапины, после резки с крышкой надо было сто-то делать. Терпения на полировку (после недавней продолжительной обработки корпуса наждачкой) у меня бы не хватило, так что я пошёл другим путём: мелкой наждачной бумагой буквально за минуту шлифовки сделал плоскость матовой, покрытой мелкими царапинами — получилось довольно неплохо:
Размеры получившегося корпуса — около 225х57х19,5 мм. Из-за большой длины для плотного прилегания нижнюю крышку решено было крепить не 4, а 6 винтами. Они разные: 3 с высокими шляпками, 3 — с низкими. Благодаря этому при установке на неровную поверхность часы не будут качаться
Я старался сделать корпус в меру компактным и минималистичным. Понимаю, что некоторым такой подход не понравится, но надеюсь, что кто-то оценит его по достоинству.
Финал
Корпус готов, лампы установлены — вот и всё:
Сбоку:
При другом освещении:
А теперь самое время написать о возможностях часов. Помимо времени они могут показывать дату (в формате "день, месяц, номер дня недели") и температуру (в моём варианте датчик температуры не установлен, но место под него на плате предусмотрено) по нажатию кнопки или автоматически каждую минуту. Ещё одна полезная функция — наличие трёх режимов смены цифр: в первом цифры плавно гаснут, затем плавно загораются следующие; во втором при смене цифр происходит быстрый перебор всех цифр в лампе; в третьем цифры при смене накладываются друг на друга. Всё это показано на трёх видео ниже.
Работают часы от блока питания на 12В 0,5А (потребляют не более 200мА), при отключении от сети за счёт батарейки CR2032 ход времени будет поддерживаться много месяцев.
Перед видео хочу сказать о единственном существенном (на мой взгляд) недостатке динамической индикации — при съёмке на камеру телефона можно увидеть мерцание индикаторов, незаметное для глаз. И я заранее извиняюсь за качество видео, фото- и видеосъёмка — не совсем моё.
Часы на газоразрядных индикаторах в последнее время стали весьма популярными среди радиолюбителей, такие часы привлекают внимание теплым ламповым свечением, желто-оранжевого цвета. В сети можно найти множество различных вариантов и исполнений, вот и я решил разработать и собрать свой вариант часов, с возможностью синхронизации времени по спутникам GPS.
В последние годы появилось много желающих, которые хотят собрать или приобрести часы на газоразрядных индикаторах, это соответственно вызывает большой спрос на индикаторы, вследствие чего самые востребованные из них заметно подорожали, а крупные индикаторы вовсе имеют заоблачную цену.
Газоразрядный индикатор представляет собой лампу с электродами (катодами), наполненную инертным газом неоном. Катоды могут быть выполнены в виде различных знаков, обычно цифр от 0 до 9, которые располагаются друг за другом стопкой, то есть на разной глубине. При подаче напряжения между анодом и катодом величиной примерно 180 В, вблизи катода по его периметру возникает оранжево-желтое свечение газа (тлеющий разряд). Обычно для поддержания свечения требуется меньшее напряжение, чем для зажигания разряда.
Пожалуй, самый популярный газоразрядный индикатор для сборки часов, это ИН-14. Для начала я решил собрать часы на индикаторах ИН-12, потому что мне удалось приобрести их относительно дешево. Часы без особого труда можно переделать под ИН-14, в дальнейшем я выложу печатную плату для них.
Схема часов на газоразрядных индикаторах
Часы собраны на микроконтроллере PIC16F876A, для которого я написал программу на языке СИ, ниже представлена схема часов на газоразрядных индикаторах:
Для питания индикаторов необходимо высокое напряжение порядка 180-200 В, на схеме имеется стандартный DC-DC преобразователь, собранный на полевом транзисторе VT3, диоде VD1, катушке индуктивности L1 и сглаживающем конденсаторе C3, ШИМ сигнал для транзистора формирует микроконтроллер. Данный преобразователь выдает нестабилизированное напряжение, величина которого зависит от нагрузки. Этого вполне достаточно для питания индикаторов, стабилизированное напряжение не обязательно. Высокое напряжение подается на аноды индикаторов с помощью высоковольтных оптопар U1-U5, через балластный резистор R15, который ограничивает ток через катоды индикаторов. Управление катодами осуществляется при помощи отечественного высоковольтного дешифратора К155ИД1. Для отображения цифр используется метод динамической индикации, с частотой 70 Гц. Яркость индикаторов можно регулировать путем изменения длительности свечения. В общем, эта стандартная и устоявшаяся схема управления газоразрядными индикаторами.
Для отсчета времени используется модуль часов реального времени DS3231, о котором я писал отдельную статью. Светодиоды HL2-HL5 установлены для подсветки индикаторов. В качестве разделителя часов и минут установлен неоновый индикатор ИНС-1. Для возможности синхронизации времени, я добавил в схему GPS модуль GY-NEO6MV2 фирмы Ublox, на сайте имеется подробная статья про этот модуль. Питание на модуль подается через полевой транзистор VT4, который управляется от микроконтроллера. Для воспроизведения звука будильника, установлен зуммер HA1 с встроенным генератором. Для настройки часов установлены 3 кнопки: SB1 “Ввод”, SB2 “+”и SB3 “-”.
Выходное напряжение DC-DC преобразователя зависит от многих факторов: это частота и коэффициент заполнения ШИМ сигнала, индуктивность катушки L1, ток нагрузки. По умолчанию частота равна 26,3 кГц, коэффициент заполнения 90%. Эти параметры можно изменить, записав другие значение в EEPROM память, перед программированием микроконтроллера (подробнее про настройку будет сказано ниже в статье). Увеличение частоты, а также уменьшение коэффициента заполнения снижают выходное напряжение. Уменьшать коэффициент заполнения менее 70% лучше не стоит, при этом наблюдается провал в выходном напряжении. Катушка L1 обладает индуктивностью 470 мкГн, уменьшение индуктивности увеличивает выходное напряжение. На холостом ходу без подключенных индикаторов преобразователь выдает около 250 В, при этом в качестве нагрузки выступает только резистор R2 сопротивлением 300 кОм. При подключении газоразрядного индикатора напряжение уменьшается примерно до 153В. При этом балластный резистор R15 ограничивает ток через катод индикатора на уровне 1,7 мА.
Если потребуется настройка преобразователя, то коэффициент заполнения ШИМ сигнала лучше не менять, а регулировать выходное напряжение, изменяя частоту сигнала, или подобрать катушку с другой индуктивностью. В общем, настройка заключается в установке тока через катод индикатора на уровне 1,4 – 2 мА, при этом выходное напряжение преобразователя с подключенным индикатором, должно быть не менее 150В. Ток задается балластным резистором R15, также можно подбирать номинал нагрузочного резистора R13, он также влияет на выходное напряжение.
Все детали смонтированы на двух печатных платах, индикаторы на односторонней плате, остальные элементы на двухсторонней плате. Платы соединяются между собой при помощи разъемов. Разъем питания, кнопки, зуммер, модуль часов и модуль GPS (либо гнездо 3,5 мм) монтируются с задней стороны двухсторонней платы. Из-за отсутствия металлизации, в отверстиях, где проводники подходят с обеих сторон, я прокладывал тонкий луженый провод и пропаивал совместно с выводами элементов. Перед монтажом модуля часов, из него необходимо выпаять резистор, подающий внешнее питание (5В) на батарейку (3В), иначе батарейка выйдет из-строя, также по желанию можно выпаять светодиод и микросхему памяти.
Зуммер HA1 должен быть с встроенным генератором. Отечественный дешифратор DD2 можно заменить зарубежным аналогом SN74141N, полевой транзистор VT4 можно заменить на IRLML2244, IRLML6402 и др., полевой транзистор VT3 на IRF840, высокочастотный диод VD1 на HER107, HER108, STTH110, UF4007. Транзисторы VT1, VT2 можно заменить на любые аналогичные.
Корпус для часов на газоразрядных индикаторах сделан из листового гетинакса толщиной 3мм. Я нарезал 6 прямоугольных пластин, из 4 пластин склеил каркас, с помощью быстросохнущего эпоксидного клея. В лицевой пластине сделал вырезы под индикаторы, с внутренней стороны приклеил 4 стойки с резьбой М4, соосно с отверстиями печатных плат. Корпус соответственно закрывается задней крышкой болтами М4, которые проходят сквозь отверстия печатных плат и вворачиваются в стойки лицевой панели.
Настройка часов на газоразрядных индикаторах
Для питания часов я использовал блок питания на 5В, средний потребляемый ток 0,12А, в режиме синхронизации времени до 0,2А. При первом включении, индикатор разделитель часов и минут мигает с частотой 2Гц, это означает, что время не установлено или не синхронизировано. Время можно установить вручную или синхронизировать по спутникам GPS, после чего светодиод будет мигать с нормальной частотой 1Гц.
Во время отображения текущего времени, кнопки “+” и “–” регулируют яркость светодиодов HL2-HL5 (подсветка индикаторов) от 0 до 100%, всего 10 уровней.
Для входа в меню настройки параметров, нужно одновременно нажать кнопки “+” и “–”, на индикаторах высветятся цифры [10.01], первая цифра слева – номер параметра, последние две или одна мигающая цифра справа – значение параметра.
Первый параметр это часовой пояс, который нужен для корректировки значения часов во время синхронизации по GPS, так как модуль получает всемирное координированное время UTC. Значение часового пояса можно задать кнопками “+” и “–”, в пределах от –12 до +12 (по умолчанию –1 либо 0). Если разделитель светится, то число отрицательное, и наоборот. Для перехода к следующему параметру нужно нажать кнопку “Ввод” (короткое или длительное нажатие).
Второй параметр: режим синхронизации времени по GPS, по умолчанию синхронизация отключена, на индикаторах отображаются цифры [2000]. Кнопками “+” и “–” можно выбрать значение от 0 до 4. Цифре 1 соответствует период синхронизации каждый день, 2 – каждую неделю, 3 – каждые 2 недели, 4 – каждый месяц, 0 – автоматическая синхронизация отключена. По времени, синхронизация происходит в 15.00 по определенным числам месяца, для еженедельного периода это 1, 8, 15, 22 число. Для периода 1 раз в 2 недели это 1 и 15 число, если 1 раз в месяц то 1 число.
Третий параметр – регулировка яркости газоразрядных индикаторов, по умолчанию установлена максимальная яркость, на индикаторах отображаются цифры [3020]. Кнопками “+” и “–” можно задать требуемую яркость в пределах от 1 до 20. Также предусмотрен режим ночной яркости от 22:00 до 08:00, который можно задать через EEPROM память микроконтроллера.
Далее после нажатия кнопки “Ввод”, следует настройка даты и времени, сначала настройка года, на индикаторах отображаются цифры [2000]. Затем следует настройка даты, на индикаторах отображаются слева число месяца, справа номер месяца [07.05]. Короткое нажатие кнопки “Ввод” переключает редактирование между числом и номером месяца, длительное нажатие выполняет переход к очередному параметру. Следующий параметр – день недели, можно задать значения от 1 до 7, цифра 1 соответствует Понедельнику, 2 – Вторник и т.д. И наконец, в последнюю очередь выполняется настройка времени, часов и минут.
Из меню настройки параметров можно выйти в любой момент, для этого нужно удерживать кнопку “Ввод” и одновременно нажать кнопку “+” либо “–”, также имеется автоматический выход из любого меню по бездействию в течение 2-х минут.
Описанные в этой статье часы на газоразрядных индикаторах отличаются от остальных тем, что время можно не настраивать, эти данные можно получить по GPS. Кроме автоматической синхронизации, имеется возможность запуска синхронизации в любой момент, для этого нужно удерживать кнопку “+”. На индикаторах высветятся мигающие цифры [0000], по мере поиска спутников все цифры сменятся на [1111], после чего примерно через 20 секунд произойдет обновление времени, индикатор разделитель при этом начнет мигать с частотой 1Гц. Во время синхронизации дата не обновляется. Если в течение 15 минут GPS модуль не поймает сигнал от спутников, индикатор разделитель будет мигать с частотой 2Гц, индицируя неудачную синхронизацию времени. Удерживание кнопки “–” во время синхронизации, принудительно завершит процедуру обновления времени.
GPS модуль GY-NEO6MV2 выпускается в двух вариантах: это синяя плата с большой антенной и красная плата с маленькой антенной. С маленькой антенной модуль хуже ловит сигнал от спутников, нежели с большой антенной. Я разработал печатные платы под оба варианта. Для улучшения приема и надежной синхронизации, GPS модуль можно отдельно закрепить на окне и соединить с часами при помощи кабеля. Для этого варианта на печатных платах предусмотрено место под гнездо PJ-358 (3,5 мм).
Для связи с микроконтроллером, GPS модуль должен иметь следующие настройки порта: скорость передачи 9600 бит в секунду, 8 бит данных, 1 стоповый бит. Обычно модуль поставляется с указанными настройками, если это не так, нужно изменить параметры порта через программу u-center, подключив модуль к компьютеру через USB-UART переходник.
Для настройки будильника нужно удерживать кнопку “Ввод”, на индикаторах высветится время будильника, по умолчанию 08:00. Редактирование значений часов и минут аналогично настройке времени. Далее после длительного нажатия кнопки “Ввод” следует настройка активации будильника по дням недели. На индикаторах высветятся цифры [1000], первая цифра слева – указывает на день недели, последняя мигающая цифра справа отображает состояние будильника: 0 – выключен, 1 –включен. Кнопки “+” и “–” меняют значение. Короткое нажатие кнопки “Ввод” переключает дни недели. Соответственно можно выбрать дни недели, по которым будет срабатывать будильник. Для завершения настройки нужно удерживать кнопку “Ввод”. Из меню будильника можно выйти в любой момент, таким же способом, как и для меню настройки параметров. Сигнал будильника звучит 3 раза по 5 минут, пауза между сигналами также 5 минут, его можно выключить нажатием любой кнопки.
Все настройки сохраняются в энергонезависимой памяти (EEPROM) микроконтроллера.
Короткими нажатиями кнопки “Ввод” можно посмотреть соответственно дату, год, и перейти к отображению текущего значения минут и секунд.
При потере связи с часами DS3231, на индикаторах высветится код ошибки 3231.
В следующей таблице представлены дополнительные настройки часов на газоразрядных индикаторах, если потребуется изменить параметр, то перед программированием микроконтроллера необходимо записать в соответствующую ячейку EEPROM новое значение параметра.
Вам также может понравиться
Дисплей Nokia 5110 – подключение к микроконтроллеру
Подключение радиомодулей HC-12 на основе трансивера Si4463
Настольные часы на газоразрядных лампах являются украшением интерьера, а их мягкий теплый свет не оказывает негативного влияния на глаза. Для изготовления потребуются специальные индикаторы, которые использовались вплоть до конца 80-х гг. прошлого века в различном оборудовании. Электронные компоненты и блок питания устанавливают на деревянном основании будущих часов, материал корпуса пропитывают декоративными составами и покрывают несколькими слоями лака.
Конструктивные элементы и принцип работы часов на газоразрядных индикаторах
Основой часов является микросхема счетчика времени, от характеристик которой зависит точность хода. Питание для ламп и электроники подается от трансформатора, подключенного к бытовой сети переменного тока. В конструкции предусматривается система светодиодной подсветки с отдельным контроллером, позволяющим менять оттенок и интенсивность свечения. Мощность оборудования не превышает нескольких ватт, что положительно сказывается на энергопотреблении.
При подаче питания счетчик времени транслирует информацию через электронный модуль к газоразрядным лампам. Контроллер обеспечивает включение требуемого регистра, в ряде моделей ретро-часов имеются точечные светодиоды для разделения полей часов и минут. Подсветка обеспечивает красивый фон, вписывающийся в интерьер помещения. Все детали расположены на основании из пластика или дерева, оснащенном резиновыми опорами для защиты от скольжения по поверхности стола.
Блок высокого напряжения
Для обеспечения работы ламп необходимо подать напряжение около 180 В (сила тока в цепи не превышает нескольких мА). Классический вариант с трансформатором используют редко, поскольку блок питания имеет большие размеры и массу. Альтернативой является преобразователь напряжения на основе микросхемы (например, МС34063) с малогабаритным трансформатором и диодным мостом. В схеме присутствует плавкий предохранитель, защищающий оборудование от необратимых повреждений при коротком замыкании или скачке напряжения во внешней сети.
Поскольку газоразрядные лампы чувствительны к перепадам напряжения, то в блоке предусматривают линейный стабилизатор (например, на базе микросхемы LM7805). Оборудование создает на выходе напряжение от 175 до 180 В. Представленная схема позволяет собрать блок питания своими руками, для установки компонентов потребуется отдельная печатная плата.
Блок индикации
Для отображения чисел используются лампы Nixie tube, состоящие из цоколя и стеклянной колбы, заполненной инертным газом. В конструкции изделия предусмотрены катоды для индикации чисел от 0 до 9 и общий анод.
При подаче питания на соответствующие контакты возникает тлеющий разряд, сигналы от счетчика времени позволяют переключать индикаторы.
Для изготовления часов используют советские лампы поколения ИН (изделия периодически встречаются в продаже) либо продукцию компаний Millclock или Daliborfarny, отличающуюся повышенной ценой (около 100 $ за 1 шт.).
Счетчик времени
Блок подсветки
Схема часов
Для сборки оборудования можно использовать готовые схемы. Например, конструктор Тимофей Носов предложил часы на базе микропроцессора PIC16F628A и высоковольтного дешифратора на базе микросхемы К155ИД1. Для питания использован повышающий импульсный преобразователь, предусмотрена резервная подпитка на основе сменного элемента CR2032. При отключении от розетки индикация гаснет, но счетчик времени продолжает работать. Срок годности батарейки составляет 2-3 года.
Для разделения регистров использован цилиндрический индикатор ИНС-1. Лампа оборудована плоской колбой, при включении видна точка ярко-оранжевого цвета, близкого по оттенку к основным лампам. В часах с отображением даты применяют 2 разделительных индикатора ИНС-1.
В схему можно ввести датчик температуры, отключающий оборудование при обнаружении перегрева. Недостатком индикаторов в лампах является оседание частиц металла на цифрах, которые редко используются или не применяются для отображения времени. Существуют схемы с поддержкой перебора цифр в каждой лампе с интервалом в 1 минуту. Технология позволяет убрать налет металла и повысить ресурс газоразрядных ламп.
Изготовление своими руками
Процедура сборки часов на газоразрядных лампах состоит из таких этапов:
- Выбора и приобретения комплектующих.
- Разработки чертежа и травления печатной платы.
- Установки компонентов.
- Изготовления корпуса и монтажа компонентов для окончательной проверки.
Подготовка
На начальном этапе требуется приобрести 6 одинаковых газоразрядных ламп (производитель и дата изготовления не учитываются). Изделия должны относиться к одной серии и иметь одинаковое покрытие колб (некоторые мастера удаляют лакокрасочный слой со стеклянной поверхности). Примерами ламп являются индикаторы ZM1042 или ZM1040 от чехословацкой компании Tesla либо ИН-18, выпускавшиеся на территории СССР.
Для работы оборудования потребуется программное обеспечение, разработанное самостоятельно или написанное другими авторами. Прошивку необходимо загрузить в память микропроцессора с помощью программатора. Затем следует определить модель преобразователя напряжения и выбрать транзисторы для цепи управления анодами.
В качестве микросхемы для часов рекомендуется чип с автономным питанием, позволяющим сохранить работоспособность при отключении часов от розетки.
Печатная плата
Для изготовления печатной платы необходимо:
- Разработать макет с использованием компьютерной программы (например, Sprint Layout), учитывая тип применяемых ламп и электронных компонентов. Зазор между дорожками не следует делать шире 1 мм, иначе увеличивается время травления и происходит быстрая деградация раствора хлорного железа из-за насыщения медью.
- Распечатать проект на лазерном принтере в масштабе 1:1. При создании и печати макета следует помнить о необходимости зеркального отображения будущего изделия. Для печати рекомендуется использовать глянцевую бумагу для журналов (типографский текст или рисунки не оказывают влияния на работу лазерного принтера). Печатать следует в максимальном разрешении с отключенной функцией сохранения тонера, для повышения качества оттиска необходимо использовать новый или заправленный картридж.
- Перенести рисунок на лист текстолита с помощью утюга, имеющего температуру в пределах +140. +160°С. Лист бумаги следует приложить к заготовке, предварительно нагретой утюгом.
- После охлаждения опустить текстолит в теплую воду и удалить остатки бумаги. Использовать щетки не следует из-за риска повреждения дорожек из тонера. Обнаруженные дефекты восстановить перманентным маркером на спиртовой основе.
- Опустить пластину в раствор хлорного железа, предварительно нагретый до +50°С. Процедура травления занимает 4-5 минут, в ходе обработки рекомендуется поддерживать степень нагрева реагента. Для ускорения процесса и улучшения качества следует непрерывно перемещать заготовку в растворе.
- Вынуть плату из емкости, просушить и протереть поверхность тампоном из ваты, смоченной растворителем или ацетоном (для удаления остатков тонера).
Альтернативная методика предусматривает заказ печатной платы в Китае по готовой схеме. Заводское производство позволяет повысить качество продукта, на заготовке присутствуют переходные отверстия, упрощающие сборку. Срок выполнения заявки с доставкой составляет около 30 суток. Начинающим конструкторам рекомендуется сделать пробный экземпляр самостоятельно для последующего устранения недочетов. Цена монтажной платы варьируется в пределах 2-4 долларов США (при ускорении доставки тариф увеличивается).
Сборка платы
Для пайки деталей потребуется паяльная станция с возможностью регулировки температуры. Рекомендуется использовать в качестве флюса канифоль с последующим удалением остатков материала спиртом, допускается наносить препарат, не требующий финишной промывки. Применять флюсы на основе кислоты не следует из-за риска коррозии металлических контактов электронных компонентов. На первом этапе собирают преобразователь напряжения, а затем устанавливают прочие элементы и направляющие для фиксации газоразрядных ламп.
После окончания пайки необходимо подать питание и проверить цифровым вольтметром напряжение на выходе. Значение будет варьироваться в диапазоне от 170 до 180 В из-за погрешности номинала сопротивлений. Элементы не должны качаться в посадочных отверстиях, но не следует наносить лишнюю массу припоя, ухудшающую работу электроники.
Капли металла не должны образовывать мосты, проводящие ток. От качества монтажа платы зависит корректность работы самодельных часов.
Изготовление корпуса
Для изготовления корпуса можно использовать древесину, металл, искусственный камень или полимеры (при наличии доступа к 3-мерному принтеру). Наиболее бюджетным вариантом является деревянный брусок, габариты заготовки подбирают с учетом размеров печатной платы с электронными компонентами. Для изготовления потребуется фрезерный станок, вырезать оболочку с помощью стамесок и напильников не получится.
Общий алгоритм изготовления корпуса часов:
- Разработать чертеж (на бумаге или с использованием компьютерных программ).
- Установить заготовку на рабочий стол станка и вырезать полости в соответствии с габаритами печатной платы. На боковой части предусмотреть отверстие для штекера кабеля питания.
- Просверлить отверстия для газоразрядных ламп и каналы для крепления нижней крышки.
- Провести финишную шлифовку и пропитать изделие воском или залить слоем яхтного лака.
- Вырезать нижнюю крышку из листа нержавеющей стали или толстого пластика. Предусмотреть отверстия для доступа к кнопкам, чтобы можно было корректировать время.
- Собрать часы и проверить работоспособность оборудования.
Альтернативный вариант корпуса предусматривает установку электронных компонентов и индикаторов в центральной части. Переднюю поверхность кожуха закрывают толстым стеклом. В задней панели, выполненной из нержавеющей стали, делают отверстия для регулировки и ввода кабеля питания. На основание приклеивают резиновые демпфирующие опоры. Устойчивость часов зависит от веса компонентов и корпуса.
Особенности эксплуатации
Часы на индикаторных лампах оснащены блоком питания, который прогревается при работе до +40°. +50°С. В корпусе необходимо предусмотреть вентиляционные отверстия, которые должны быть постоянно открытыми. Точность хода зависит от модификации и характеристик кварца, при использовании узлов от мобильных телефонов или материнских плат погрешность не превышает нескольких секунд в год. Корректировка времени потребуется только в случае отключения питания в квартире (например, из-за аварии на линиях электроснабжения).
Последнее время весьма популярны часы в духе ретро, на газоразрядных индикаторах. В забугорье такие часы зовутся "Nixie-clock". Увидев подобный проект на просторах интернета, я загорелся идеей собрать и себе такие-же.
Содержание / Contents
Изучил варианты схем в интернете. Обычно Nixie-часы состоят из четырёх основных частей:
1. управляющий микроконтроллер,
2. высоковольтный блок питания,
3. драйвер-дешифратор и собственно лампы.
↑ Схема часов, применённые детали
С учётом имеющихся компонентов я разработал свою версию схемы часов, в которой роль дешифратора отведена микроконтроллеру.
Рисунок 1. Схема Nixie-часов на МК
Одноименные выводы всех ламп за исключением анода соединены между собой и управляются транзисторами Q11-Q21.
Микроконтроллер ATMEGA8 управляет ключами ламп, он же опрашивает микросхему часов реального времени (RTC) DS1307 и кнопки.
Диоды D3 и D4 обеспечивают генерацию запроса внешнего прерывания по нажатию на любую из кнопок управления.
Питание контроллера выполнено через линейный стабилизатор 78L05.
Лампы ИН-14 — индикаторы тлеющего разряда.
Катоды в форме арабских цифр высотой 18 мм и двух запятых. Индикация осуществляется через боковую поверхность баллона. Оформление — стеклянное, с гибкими выводами.
Питать конструкцию можно постоянным напряжением 6 — 15 Вольт от внешнего БП. Потребление менее одного Ватта (70 мА при 10 В).
Для сохранения хода часов при сбоях питания, предусмотрена батарейка CR2032. Если верить даташиту, потребление у DS1307 всего 500nA при батарейном питании, так что этой батарейки хватит очень надолго.
↑ Управление часами
После подачи питания загорятся четыре нуля, и, если связь с микросхемой DS1307 установлена без ошибок, начнёт мигать разделительная точка.
↑ Плата
Все основные части схемы разведены на одну двухстороннюю плату размером 135×53 мм. Плату изготавливал ЛУТ-ом и травил в перекиси водорода с лимонной кислотой. Слои платы соединял между собой путём впаивания в отверстия отрезков медного провода.
Шаблоны платы совмещал на просвет по отметкам за пределами платы. Стоит напомнить, что верхний слой М1 в Sprint-Layout надо печатать зеркально.
Для программирования контроллера предусмотрены контактные площадки.
↑ Фото собранной платы часов
Фото 1. Плата часов снизу
Фото 2. Плата часов сверху
Высоковольтный эл. конденсатор размещён горизонтально, для него я сделал пропил в текстолите. Я старался сделать собранную плату как можно миниатюрнее. Получилось всего 15 мм в толщину. Можно изготовить тонкий стильный корпус!
Фото 3. Часы в процессе сборки
Фото 4. Готовые часы
↑ Список деталей
Таблица 1. Список деталей
Читайте также: