Кулер для воды на пельтье своими руками
В английском языке термин упоминается как ТЕС — термоэлектрический охладитель. Элемент пельтье своими руками представляет собой температурно электрический преобразователь, который работает по принципу возникновения разницы температур в момент подачи электрического тока. Возможно ли собрать его самостоятельно и какое применение ему найти?
Элемент пельтье своими руками
Изготовить устройство в домашних условиях практически невозможно, тем более это не имеет особого смысла, учитывая его невысокую рыночную стоимость.
Но большинство умельцев все же предпочитает мастерить элемент пельтье своими руками, ссылаясь на ряд его достоинств:
- Компактность, удобство установки на самодельное электронное плато.
- Отсутствие движущихся деталей, что увеличивает сроки его эксплуатации.
- Возможность соединения нескольких элементов в каскадной схеме для снижения очень больших температур.
Тем не менее, пельтье своими руками имеет определенные недостатки: низкий коэффициент полезного действия (КПД), необходимость подачи высокого тока для получения заметного перепада температуры, сложность отведения тепловой энергии от охлаждаемой поверхности.
Рассмотрим на примере схем, как сделать пельтье своими руками:
- Задействовать его в качестве детали термоэлектрического генератора, согласно рисунку подключения.
- Собрать простой преобразователь на микросхеме ИМС L6920 (рисунок 1).
Далее стоит следовать простой инструкции, как сделать пельтье своими руками:
Описание технологии и принцип действия
Способ работы термоэлектрического охладителя достаточно прост. Эффект пельтье своими руками основывается на контакте двух проводников тока, обладающих разным уровнем энергии электронов в зоне своей проводимости.
При подаче электротока через такую связь, электрон приобретает высокую энергию, позволяющую ему перейти в более высокоэнергетическую зону проводимости второго полупроводника. Когда эта энергия поглощается, происходит остуживание места охлаждения проводников (рисунок 2).
При протекании процесса в обратном направлении — реакция приводит к нагреванию контактного места и обычному тепловому эффекту.
Посмотрев пельтье своими руками видео, можно сделать определенные выводы о принципе его действия:
- Величина подаваемого тока будет пропорциональной степени охлаждения — если с одной стороны модуля сделать хороший теплоотвод, при использовании радиаторных схем, его холодная сторона обеспечит максимально низкую температуру.
- При смене полярности тока — нагревающая и охлаждающая плоскости меняются метами.
- При контакте объекта с металлической поверхностью, он становится настолько мал, что его нельзя увидеть на фоне омического нагрева, других эффектов теплопроводности, поэтому на практике применяют два полупроводника.
- Благодаря разнообразному количеству термопар — от 1 до 100, можно добиться практически любого показателя холодильных мощностей.
Технические характеристики элемента пельтье
Компонент получил широкое применение в различных холодильных схемах.
Что неудивительно, так как пельтье своими руками имеет следующие технические характеристики:
- Способен достигнуть низких температур, что служит отличным решением для охлаждения электрических приборов и тех оборудования, подвергающегося нагреву.
- Прекрасно выполняет работу обычного куллера, что делает возможным его установку в современные звуковые и акустические системы.
- Абсолютно бесшумен — в процессе работы не издает никаких посторонних и интенсивных звуков.
- Обладает мощной теплоотдачей при сохранении нужной температуры на радиаторе достаточно продолжительное время.
Холодильник на элементах пельтье своими руками
Чтобы собрать холодильный агрегат вам понадобятся достаточное количество электрических проводников и специальные инструменты (рисунок 3).
Холодильник на пельтье своими руками требует особого подхода к сборке и используемым материалам:
- Основой для платы должна служить прочная керамика;
- Для максимального температурного перепада надо подготовить не менее 20 связей;
- Правильные расчеты — залог увеличения коэффициента полезного действия на 70%;
- Наибольшую мощность используемому оборудованию даст фреон;
- Самодельный модуль устанавливается возле его испарителя, рядом с мотором;
- Монтаж производится стандартным набором инструментом с применением прокладок;
- Они необходимы для изолирования рабочей модели от пускового реле;
- Изоляция понадобится и для самой проводки, перед ее подключением к компрессору;
- Чтобы избежать короткого замыкания, сила предельного напряжения звонится тестером.
Кондиционер пельтье своими руками
Кондиционер пельтье своими руками собирается только на них, так как они выдерживают аномальные температуры и выдают напряжение до 23В:
- Применяется в основном для охлаждения компьютерных видеокарт.
- Его сопротивление колеблется в пределах 3 Ом.
- Температурный перепад равен 10 градусам, а КПД — 65%.
- Для него требуется 14 медных проводничков.
- Для подключения задействуется немодульный переходник.
- Устройство монтируется рядом с встроенным кулером на видеокарте.
- Конструкция крепится металлическими уголками и обычными гайками.
Если во время работы кондиционера замечаются сильные посторонние шумы, другие нехарактерные звуки — он проверяется на работоспособность мультиметром.
Генератор пельтье своими руками
Самостоятельно собрать подобный прибор не так и сложно. Генератор пельтье своими руками имеет свои особенности: производительность собранного устройства поднимается на 10% за счет большего охлаждения мотора, но нагревать основные комплектующие до показателя свыше 200 градусов не рекомендуется. Прибор выдерживает максимальную нагрузку в 30А, а его сопротивление способно составлять 4Ом благодаря большему количеству проводников (рисунок 5).
Стоит помнить, что генератор на элементах пельтье своими руками:
- Имеет температурное отклонение в системе, примерно равное 13 градусам.
- В большинстве случаев сборки и разборки конструкции, статор им не мешает.
- Модуль крепится непосредственно к ротору, для чего нужно отсоединять центральный вал.
- Во избежание нагрева роторной обмотки от индуктора, следует использовать керамические пластины.
Теплогенератор на пельтье своими руками собирается из двух пластин 10*10см, толщиной в 1мм, закрепленных термопастой, которые закрывают собой четыре искомых модуля. Поверх них ставится консервная банка или любая другая емкость для розжига огня, которая обеспечит 170-180 градусов. К нижней части одной из пластин прикрепляется при помощи винтов медный или алюминиевый радиатор. К нему присоединяется еще одна пластинка 20*12см, к которой крепится еще одна такая деталь. На нее устанавливается заводской кожух от аккумулятора, к которому припаивается разъем для зарядки смартфона.
Осушитель пельтье своими руками
В отличие от того же кондиционера, реализация этой идеи вполне себя оправдывает. Осушитель пельтье своими руками имеет простую конструкцию и низкую себестоимость, а его охлаждающий модуль понижает температуру радиатора ниже точки росы, что приводит к оседанию на нем влаги, содержащейся в воздухе, проходящем через прибор. Далее — осевшая вода отправляется в специальный накопитель (рисунок 6).
Осушитель воздуха своими руками пельтье:
- Подключается без проблем — на провода выходов подается постоянное напряжение, величина которого прописана в его даташит.
- Имеет стандартную полярность — красный проводок идет на плюс, черный — на минус, если их перепутать охлаждаемая и нагреваемая поверхности поменяются местами.
- Проверяется тактильно — при подключении к источнику напряжения одна сторона будет холодной, вторая — теплой.
- Если источника тока поблизости нет — подключаем щупы к выводам модуля и подносим зажженную спичку или зажигалку к одной из сторон, наблюдаем за показаниями прибора.
Как подключить элементы пельтье на модуле
Модуль пельтье своими руками имеет следующие нюансы подключения:
- Первый токопроводящий провод монтируется у нижнего основания конструкции.
- Он фиксируется возле крайнего проводящего звена.
- При этом стоит избегать любых соприкосновений с металлической деталью.
- Далее крепится второй такой проводок в верхней части.
- Его фиксируют аналогично предыдущему.
Тестируем модуль пельтье, собранный своими руками
Как показывает пельтье своими руками видео, для теста необходимо:
- Перед пуском стоит устранить любые сторонние соприкосновения с металлической деталью и проверить надежность крепления проводов, качество пайки схем.
- Функциональность готового устройства, проверенного на предмет технических несоответствий, проверяется тестером.
- Прибору присоединяется два проводка и проверяется вольтаж — отклонения напряжения будут составлять примерно 23В.
- Если в результате, одна из сторон отдает тепло, а другая остается холодной, то ваша конструкция собрана верно.
Аквариум – это небольшой параллельный мир, в который можно периодически уходить, когда в существующей вселенной становится неуютно. Однако поддержание нормального микроклимата в аквариуме является не самой простой задачей и требует применения специализированного оборудования. Конечно, может показаться, что сейчас на рынке есть все, что для этого необходимо, но, как оказалось на практике, это не совсем так.
Одной из проблем содержания аквариумных рыбок является необходимость охлаждения воды летом, когда температура воздуха перестает опускаться ниже 25 °C. Например, в Одессе этот период начинается с середины июля и может продолжаться до двух месяцев. Если в помещении нет кондиционера, то для многих рыбок наступление этого сезона заканчивается самым печальным образом.
Уменьшить температуру воды намного сложнее, чем увеличить. На рынке присутствует огромный выбор недорогих и надежных аквариумных обогревателей, в том числе и со встроенными терморегуляторами, но стоимость охладителей (чиллеров) в большинстве случаев оказывается заоблачной. Да и рассчитаны они обычно на охлаждение больших объемов воды, поэтому приобретать их, например, для маленького 10-литрового аквариума нет особого смысла. Существует еще несколько проектов чиллеров, которые можно изготовить в домашних условиях, однако они тоже достаточно сложны для повторения.
Методы уменьшения температуры воды в аквариуме
Существует два основных способа охлаждения воды в аквариуме: добавление холодных объектов, например, контейнеров со льдом, и использование тепловых насосов. Добавление льда или холодной воды требует постоянного присутствия человека рядом с аквариумом и холодильником, что не всегда возможно, особенно для людей с напряженным рабочим графиком, поэтому лучше всего использовать для этого автоматизированные устройства.
На сегодняшний день существует два основных вида тепловых насосов: на основе компрессоров и на основе элементов Пельтье. Компрессорные тепловые насосы имеют высокую эффективность и могут создать достаточно большую разницу температур в рабочих контурах. Из-за этого они активно используются в бытовых и промышленных холодильных установках, а также системах отопления и кондиционирования. Однако они имеют достаточно сложную конструкцию, а для того, чтобы изготовить их в домашних условиях, необходимы специальное оборудование, знания и практические навыки, обычно отсутствующие у большинства специалистов в области электроники.
Эффективность элементов Пельтье меньше, чем у компрессорных систем. Однако они компактны, и намного проще в эксплуатации, чем компрессоры. С точки зрения электроники, элемент Пельтье является относительно простым радиоэлементом, не требующим для своей работы сложных алгоритмов запуска или высокостабильных токов. Кроме того, элементы Пельтье доступны для приобретения практически у всех поставщиков электронных компонентов и имеют относительно невысокую стоимость.
Особенности использования элементов Пельтье
Принцип работы элементов Пельтье широко описан в технической литературе, поэтому нет смысла подробно останавливаться на этом вопросе. На сегодняшний день самыми популярными и доступными на рынке являются элементы Пельтье TEC1 с размерами 40 × 40 × 3.8 мм. В охладителе был использован элемент TEC1-12706 (Рисунок 1), содержащий 127 последовательно включенных полупроводниковых элементов, способных работать при токе до 6 А.
Рисунок 1. | Внешний вид элемента Пельтье TEC1 12706. |
Элементы TEC1 состоят из двух керамических пластин, обычно белого цвета, между которыми располагаются активные полупроводники. Промежуток между пластинами заливается герметичным компаундом. Электрическая энергия на полупроводниковые компоненты подается с помощью двух проводов, как правило, красного и черного цветов. При подключении красного провода к положительному полюсу источника питания, а черного – к отрицательному сторона, на которой нанесена маркировка, обычно охлаждается, а противоположная сторона, без маркировки, нагревается. Если изменить полярность напряжения, то передача тепла (энергии) будет происходить в обратном направлении.
Срок службы элементов Пельтье во многом зависит от режима их работы. Лучше всего подавать на них постоянное напряжение с коэффициентом пульсаций не более 5%. В процессе работы элемента Пельтье лучше всего стабилизировать уровень потребляемой мощности, а также контролировать температуру горячей пластины, которая не должна превышать 50 °C. Питание элементов Пельтье импульсным напряжением, например, с использованием ШИМ, а также частое включение-выключение, не рекомендуется – материалы этих элементов деградируют при каждом изменении температурного режима, поэтому циклические режимы работы могут быстро разрушить эти приборы.
Конструкция и сборка охладителя
Размеры элемента TEC1 12706 равны 40 × 40 мм, что соизмеримо с размерами процессоров компьютеров. Поэтому в качестве теплообменников удобнее всего использовать готовые радиаторы от старых компьютеров – элементы TEC1 12706 на них устанавливаются без какой-либо доработки (Рисунок 2). Кроме того, практически всегда можно найти готовый комплект радиатор + вентилятор, который вряд ли уже когда-нибудь будет использоваться по своему прямому назначению.
Рисунок 2. | Элементы охладителя аквариума. |
Размеры радиатора, предназначенного для охлаждения воды, должны быть максимально большими. При этом желательно выбирать радиатор с длинными ребрами, чтобы не утратить контакт с водой при возможном ее испарении. Поскольку вода имеет достаточно высокую теплопроводность, то вентилятор для этого радиатора не нужен.
Из-за низкой теплопроводности воздуха радиатор с горячей стороны элемента Пельтье должен или иметь большие размеры или обдуваться вентилятором. Если использовать радиаторы, предназначенные для охлаждения процессоров, то вентилятор нужен обязательно, хотя бы потому, что воздушные радиаторы, рассчитанные на работу при принудительном охлаждении, плохо работают при естественном обдуве. Без вентилятора температура горячего радиатора очень быстро достигает 50 °C и ток, потребляемый элементом Пельтье, катастрофически падает. В таком режиме уменьшение температуры воды не превышает 1 °C (проверено).
Единственным элементом, который придется изготовить самостоятельно, является основание, предназначенное для сборки конструкции целиком. Основание должно быть изготовлено из материала с невысокой теплопроводностью, поскольку оно контактирует и с горячим, и с холодным радиаторами, и если сделать его, например, из металла, то произойдет тепловое короткое замыкание и эффективность работы охладителя уменьшится до нуля. Геометрические размеры основания во многом зависят от размеров и способа крепления радиаторов. Желательно делать его максимально большим, поскольку оно еще и выполняет функцию теплового экрана, препятствуя смешиванию вентилятором холодного воздуха у поверхности воды с горячим воздухом, выдуваемым с радиатора.
Для изготовления основания лучше всего использовать материал такой же толщины, как и элемент Пельтье – приблизительно 4 мм. Это позволит хорошо прижать радиаторы друг к другу, не создавая при этом значительных механических усилий на сам элемент. В данном случае, самым доступным материалом для основания оказалась трехслойная 4-миллиметровая фанера, хотя можно использовать и другие листовые материалы подходящей толщины, например, акрил или поликарбонат.
Для установки элемента Пельтье в центре освнования лобзиком выпиливается прямоугольное отверстие с размерами 50 × 50 мм (Рисунок 3). При необходимости с одной из сторон этого квадрата делаются два пропила для проводов. Форма и размеры остальных отверстий зависят от имеющихся радиаторов, поэтому на чертеже указаны лишь общие цифры – при использовании других радиаторов отверстия будут другими.
Рисунок 3. | Чертеж и пример основания. |
Способ объединения всех элементов конструкции, опять же, зависит от имеющихся радиаторов. В данном случае горячий радиатор изначально был рассчитан на установку с помощью пружины. Эта пружина и была использована для соединения всей конструкции в единое целое. Для этого пришлось немного изменить ее форму, разогнув один конец с помощью плоскогубцев, а в холодном радиаторе просверлить два отверстия и нарезать в них резьбу (Рисунок 4). После этого, сделав в основании необходимые прорези, всю конструкцию можно собрать в единое целое с помощью двух винтов М3 или М4. Винты для соединения радиаторов лучше использовать с низкой теплопроводностью, например, изготовленные из пластика или капрона, поскольку через металл замыкается часть теплового потока. Перед сборкой обе стороны элемента Пельтье нужно смазать термопастой, например, КПТ-8 для лучшего теплового контакта с радиаторами.
Рисунок 4. | Крепление радиаторов. |
Для установки охладителя в аквариуме были использованы четыре металлические полосы из мягкого металла (Рисунок 5). В данном случае они были сделаны из оставшихся после ремонта прямых подвесов для стоечного профиля, используемых при монтаже гипсокартоновых стен. Металл полос должен быть мягким, чтобы можно было легко регулировать положение охладителя в аквариуме. Соединить полосы с основанием можно любым способом, например, с помощью шурупов или винтов М3 или М4. Длина полос зависит от размера аквариума и должна быть достаточна для того, чтобы охладитель случайно не упал в воду.
Рисунок 5. | Охладитель в сборе. |
Последний этап сборки заключается в установке клеммной колодки и электрического соединения всех элементов охладителя в единое целое (Рисунок 6). Поскольку и для элемента Пельтье, и для вентилятора необходимо постоянное напряжение величиной 12 В, то никаких проблем на этом этапе возникнуть не должно. Если вентилятор имеет встроенный датчик оборотов, то его выход также лучше подключить на отдельную клемму, хотя это совершенно необязательно. Закрепить клеммную колодку на основании можно любым способом, например, с помощью шурупов или винтов М3/М4.
Рисунок 6. | Электрическая схема охладителя. |
При использовании элемента TEC1 12706 для питания охладителя необходим источник постоянного напряжения с максимальным выходным током не менее 5 A. Для этого можно использовать любые выпрямительные устройства общего назначения, например, используемые для питания светодиодных лент (Рисунок 7). Соединить блок питания с охладителем можно любым проводом необходимой длины, рассчитанным на работу при длительном токе не менее 3 А, то есть имеющим сечение не менее 0.75 мм 2 .
Рисунок 7. | Блок питания 12 В, 5 А. |
После этого охладитель готов к работе. В аквариуме его желательно установить в центре так, чтобы нижний радиатор имел хорошее соприкосновение с водой, при этом основание должно находиться выше уровня воды (Рисунок 8). Не лишним будет напомнить, что блок питания нужно устанавливать таким образом, чтобы исключить даже малейшую возможность как попадания его в воду, так и попадания воды на него, а включать систему в электрическую сеть можно только после завершения всех монтажных работ.
Рисунок 8. | Установка охладителя в аквариуме. |
Результаты тестирования охладителя
Испытание охладителя было произведено в тестовом аквариуме емкостью 20 литров. Измерения температуры проводились с помощью четырех аквариумных термометров (Рисунок 9), три из которых были установлены на передней стенке и измеряли температуру в верхней, средней и нижней частях аквариума (Рисунок 8). Четвертый термометр располагался недалеко от аквариума и измерял температуру воздуха в помещении. При приобретении термометров особое внимание было уделено совпадению результатов измерений, чем были немало озадачены продавцы на одесском Староконном рынке. В конечном итоге удалось найти четыре прибора, дававших одинаковые результаты в диапазоне температур 10…25 °C.
Рисунок 9. | Аквариумный термометр. |
Аквариум был установлен на ровном деревянном основании в сухом неотапливаемом помещении без постоянных воздушных потоков. Мощность, потребляемая из сети, контролировалась энергометром Intertek Power Meter PP-3460, напряжение и ток элемента Пельтье – стендовым вольтамперметром DC0-100V/10A.
В момент включения, когда температура охладителя не отличалась от температуры окружающей среды, ток, потребляемый элементом Пельтье, был равен 3.1 А при выходном напряжении источника питания, равном 12 В. После этого ток достаточно быстро – за несколько минут – уменьшился до величины 2.85 А. Таким образом, в установившемся режиме элемент Пельтье потреблял мощность, равную 34 Вт. Энергометр, подключенный к сети, при этом, показывал потребление мощности на уровне 41 Вт, что позволило определить КПД блока питания – приблизительно 83%.
В начале эксперимента температура воды и воздуха были приблизительно одинаковы – перед этим помещение несколько дней стояло закрытым, что исключало поступление внутрь воздуха с иной температурой. Кроме того, перед началом эксперимента в течение нескольких дней стояла пасмурная погода, что значительно уменьшало дневной нагрев помещения солнечными лучами, проникающими через окно.
Спустя сутки непрерывной работы разница температур воды и воздуха составила 4.3 °C. При этом в верхней части аквариума температура воды была на 1 °С меньше, чем в нижней и средней части. В конечном итоге, эксперимент был прекращен после 24 часов непрерывной работы охладителя при показаниях термометров: воздух – 21 °С, верхняя часть аквариума – 16 °С, средняя – 17 °С, нижняя – 17 °С.
Результаты измерения теплового сопротивления аквариума показали, что оно приблизительно равно 0.263 °С/Вт. При разнице температур 4.3 °С (определяется как средняя температура воды) мощность теплового потока, проходящего через поверхности аквариума, равна 4.3/0.263 = 16.35 Вт, что позволяет определить КПД охладителя на уровне 16.35/34 = 48%. Общий КПД системы при этом составил 0.48∙0.83 = 40%.
Выводы
Данное решение оказалось далеко не самым эффективным – больше половины затраченной энергии теряется впустую. Однако и никаких действий по оптимизации этого охладителя еще не выполнялось. Весь этот проект от начала и до конца был придуман и реализован за несколько часов из того, что было под руками.
В конечном итоге, в прошлом году он свою функцию выполнил – все обитатели моего аквариума благополучно пережили летнюю жару, потому что при температуре воздуха в помещении 29…30 °С температура воды в нем не поднималась выше 25 °С. И с большой вероятностью они переживут и следующий жаркий сезон, поскольку разбирать эту систему я пока не собираюсь.
В последнее время китайцы поднажали, и заполонили интернеты своими относительно дешевыми модулями, так что эксперименты с ними уже не отнимают слишком много денег. Китайцы обещают максимальную разницу температуры между горячей и холодной стороной в 60-67 градусов. Хммм… А что если мы возьмем 5 элементов, подключим последовательно, тогда у нас должно получиться 20С-67*5 = -315 градусов! Но что-то мне подсказывает, что все не так просто…
Нужно помнить, что элемент Пельтье — это не резистор, его сопротивление нелинейно, так что если мы прикладываем 12В — у нас может не получится 6 ампер (для 6-и амперного элемента) — ток может изменятся в зависимости от температуры (но не слишком сильно). Также при 5В (т.е. меньше номинала) ток будет не 2.5А, а меньше.
Количество перенесенного тепла пропорционально току. Но помимо этого есть паразитный нагрев от протекания тока, и паразитная теплопроводность — все это делает элемент Пельтье хоть сколько-то эффективным в очень узких условиях.
Кроме того, количество перенесенного тепла сильно зависит от разницы температуры между поверхностями. При разнице 60-67С — перенос тепла стремится к 0, а при нулевой разнице — 51 Ватт для 12*6 = 72-х Ваттного элемента. Очевидно, уже это не позволяет так просто соединять элементы в серию — нужно чтобы каждый следующий был по размерам меньше предыдущего, иначе самый холодный элемент будет пытаться отдать больше тепла (72Вт), чем элемент следующей ступени может пропустить через себя при желаемой разнице температур (1-51Вт).
Итак, маленький элемент — 5В*2А, большой — 12*9А. Кулер на тепловых трубках, температура комнатная. Результат: -19 градусов. Странно… 20-67-67 = -114, а получились жалкие -19…
Результат шокирующий — те же -19 как с одной, так и с двумя стадиями. Температура окружающего воздуха — -10. Т.е. с нулевой нагрузкой мы еле-еле выжали жалкие 9 градусов разницы.
Эффективность обычных китайских элементов Пельтье быстро падает при температуре ниже нуля. И если охладить банку колы еще можно с видимой эффективностью, то температуры ниже -20 добиться не удается. И проблема не в конкретных элементах — я пробовал элементы разных моделей от 3-х разных продавцов — поведение одно и то же. Похоже на криогенные стадии нужны элементы из других материалов (и возможно для каждой стадии нужен свой материал элемента).
Ну а с оставшимся сухим льдом можно поступить следующим образом:
Стандартные термоэлектрические модули имеют взаимообратный принцип действия. В этой статье мы расскажем о применении модулей Пельтье-Зеебека в теплообменных устройствах и приведём пример сборки кулера для воды и базовой охлаждающей системы для воздуха с возможностью обратного запуска (нагрева).
Принцип действия термоэлектрических модулей (ТЭМ), используемых для охлаждения, основан на эффекте Зеебека — обратном процессе относительно эффекта Пельтье. Основной элемент — всё тот же ТЭМ, описанный в первой части. При подаче постоянного тока на поле термопар наблюдается разность температур на плоскостях керамической пластины. Это факт, основанный на термодинамическом процессе, который мы описывать не будем (чтобы не утомлять научными выкладками), но покажем, как применить его в быту.
Примечание. Для постройки агрегатов, инструкции к которым приведены ниже, понадобятся базовые практические навыки сборки электрических цепей. Приведённые модели узлов являются примерными и могут быть заменены на аналогичные (или более/менее мощные) по усмотрению мастера.
Как самостоятельно изготовить кулер для охлаждения воды
ТЭМ применены в каждом кулере для воды. Аналог этого заводского прибора вполне можно построить своими руками, при этом работать он будет не хуже. Мы опишем сам принцип работы и схему сборки. Компоновку и варианты исполнения можно подобрать, исходя из собственных потребностей. Например, сделать его переносным или стационарным, интегрированным в кухонную мебель или систему подготовки питьевой воды. Последний вариант оптимален, поскольку охлаждение в системе будет управляемым (по факту подачи питания).
Для этого нам понадобится:
- Прямоугольная плоская герметичная ёмкость из нержавейки с размерами 100х100х30 (фляга-теплообменник) с резьбовыми выходами на ½ дюйма по коротким сторонам. Это единственный элемент, изготовление которого лучше заказать мастеру на заводе.
- Подводка питьевой воды с фитингом на ½ дюйма (из ёмкости или водопровода).
- Блок питания на 10–12 вольт с регулировкой силы тока.
- Термоэлектрические модули TEC1–12705 (40x40) — 2 шт.
- Провода сечением 0,2 мм.
- Термоклей или термопаста.
- Ключ на 2 канала (тумблер, кнопка).
- Кран, паяльник, припой.
При помощи термоклея фиксируем ТЭМ на флягу. Соединяем провода по соответствующим группам (плюс и минус). Определяем удобное место расположения ключа, учитывая возможность замены при ремонте и доступность при использовании. Включаем его в схему. Присоединяем провода к блоку питания. Проводим испытания цепи.
Внимание! При испытаниях ограничьтесь наблюдением самого факта правильной работы, но не пытайтесь дать максимальную нагрузку насухую — это может привести к выходу из строя ТЭМ (ремонту не подлежит).
Затем соединяем входной фитинг фляги-теплообменника с каналом подачи воды, а выходной — с подводкой (гибкой или жёсткой) к крану.
Заполняем систему водой и выставляем оптимальную силу тока при нужном напоре струи. Оптимальный напор — чуть сильнее самотёка. Для забора прохладной питьевой воды этого будет вполне достаточно. Остальные нюансы — крепёж, длина проводов, расположение — сугубо индивидуальны в каждом отдельном случае.
Данную базовую систему можно развивать и совершенствовать. Например, установить термостат в теплообменнике и включить его в цепь вместо ключа (тумблера) — подойдёт там, где постоянно нужна вода определённой температуры. Флягу-теплообменник можно выполнить из серебра для дополнительной ионизации воды. Включив в систему повышающий преобразователь постоянного напряжения ЕК-1674, можно сократить расход электроэнергии до минимума.
Расчёт затрат на построение кулера:
Наименование | Ед. изм. | Кол-во | Цена ед./руб. | Ст-ть, руб. |
Теплообменник из нержавейки (с работой) | шт. | 1 | 1000 | 1000 |
ТЭМ TEC1-12705 (40x40), 53 ватт | шт. | 2 | 300 | 600 |
Блок питания | шт. | 1 | 300 | 300 |
Ключ | шт. | 1 | 50 | 50 |
Провода 0,2 мм | м | 5 | 6 | 30 |
Термоклей (термопаста) Radial 2 мл | шт. | 1 | 150 | 150 |
Трубы, фитинги, подводки | - | - | 300 | 300 |
Итого | 2430 |
В этой системе не задействован ребристый радиатор, т. к. поставленная цель — охлаждение (но не заморозка) небольшого объёма воды (300 мл) — достигается и без него.
Как изготовить мини-холодильник, чиллер или кондиционер на теплоэлектрических модулях своими силами
Более сложная задача — охлаждение воздуха. Если в случае с водой эффективность работы кулера гарантирована разницей плотности сред (вода — воздух), то в случае с однородной средой (воздух — воздух) дело обстоит сложнее. Основная трудность — отвод температуры с горячей стороны поверхности ТЭМ. Точнее — синхронный отвод температуры с обеих поверхностей. Если просто запустить элемент Пельтье-Зеебека, нагретый и охлаждённый воздух смешаются, и температура выровняется.
В замкнутых пространствах малого объёма (до 0,7 м 3 ) вполне применима система охлаждения на основе ТЭМ с двусторонним воздушным отводом. Это позволяет построить новый охлаждающий бокс или дать вторую жизнь старому холодильнику (морозильной камере). Для этого придётся немного усложнить систему, включив в неё пару отводящих вентиляторов обоюдной мощности, реле температуры, ребристый радиатор и использовать более производительные теплоэлектрические модули.
Нам понадобится (для одной базовой точки охлаждения):
- ТЭМ ТЕС1–12712 (40Х40), 106 ватт — 1 шт.
- Вентилятор RQA 12025HSL 110VAC (или мощнее) — 2 шт.
- Радиатор HS 036–100 (100x85x25 мм).
- Термостат ТАМ-133–1м (реле температуры с датчиком).
- Блок питания постоянного тока 12 вольт, 6 ампер (с регулировкой).
- Лист дюралюминия.
- Провода, термопаста, крепёж
В готовом боксе, в верхней части охлаждаемой зоны, делаем прямоугольное окно размерами 100х100 мм. Вырезаем две пластины дюралюминия размерами 130х130 мм и 180х180 мм. Закрепляем вентилятор по центру меньшей пластины таки образом, чтобы оставался продух 1 см. Устанавливаем реле температуры внутри бокса. Монтируем меньшую из пластин изнутри бокса (вентилятором внутрь бокса) на шурупы или клёпки через герметик. Наклеиваем ТЭМы на смонтированную пластину и выводим провода. Вырезаем и выгибаем большую пластину так, чтобы она входила в монтажное отверстие, но при этом оставались бортики для фиксации к стенке бокса снаружи. Закрепляем на неё радиатор и второй вентилятор. Обильно смазываем термопастой ТЭМы и монтируем пластину к стенке бокса через герметик.
Внимание! Обязательно должен быть максимальный контакт площади ТЭМ и пластины!
Собираем электрическую цепь. Рекомендуем включить вентиляторы на постоянную максимальную мощность, а силу тока для ТЭМ — через регулятор. Это обеспечит эффективный съём температуры и перемешивание воздуха при работе в разных режимах (не на полную мощность).
Преимущества данной конструкции:
- бесшумная по сравнению с компрессорными холодильниками работа;
- отсутствие механизмов и движущихся частей, силы трения (нечему ломаться);
- не используются жидкие теплоносители (фреон);
- общая потребляемая мощность около 200 ватт;
- можно модернизировать конструкцию, варьировать производительность;
- доступность и ремонтопригодность отдельных агрегатов.
- возможно появление конденсата на пластинах дюралюминия;
- наружный блок управления;
- многие факторы и нюансы работы выявляются опытным путём при использовании;
- малая область применения.
Расчёт затрат на построение базовой охлаждающей системы холодильника и кондиционера:
Наименование | Ед. изм. | Кол-во | Цена ед./руб. | Ст-ть, руб. |
ТЭМ ТЕС1-12712 (40Х40), 106 ватт | шт. | 1 | 600 | 600 |
Вентилятор RQA 12025HSL 110VAC | шт. | 2 | 150 | 300 |
Дюралюминий 3 мм | шт. | 1 | 300 | 300 |
Блок питания постоянного тока | шт. | 1 | 300 | 300 |
Термостат ТАМ-133-1м | шт. | 1 | 250 | 250 |
Радиатор HS 036-100 | шт. | 1 | 220 | 220 |
Провода, термопаста, крепёж, припой | - | - | 300 | 300 |
Итого | 2270 |
В принципе, данная конструкция — готовый встраиваемый кондиционер, который можно установить в кабине автомобиля, трактора, в закрытом вольере или будке охраны. Следует лишь продумать конструктивную защиту от атмосферных осадков.
Запас мощности модуля ТЕС1–12712 довольно велик. Амплитуда температур на сторонах элемента может достигать 50 градусов. При температуре воздуха в помещении +27 °С и применении системы жидкостного охлаждения (радиатор + вентилятор), можно извлечь на выходе впечатляющие минус 25 °С! Это позволяет создавать бескомпрессорные и тихие морозильные камеры даже в домашних условиях.
Где ещё применяют термоэлектрические модули
Эффект Пельтье-Зеебека известен с 1840-х годов. Его активно используют и по сей день, благодаря устойчивости законов физики. Термоэлектрическому модулю всегда найдётся место там, где есть избыточная энергия или нужно быстро и бесшумно совершить теплообмен.
Основное применения теплоэлектрических модулей:
- Охлаждение микросхем. Вентиляторы, как основной теплообменник, уходят в прошлое. Им на смену идут компактные, бесшумные и практически вечные ТЭМ.
- Машиностроение. Даже самый современный ДВС выделяет отработавшие газы из камеры сгорания. Инженеры используют их высокую температуру для получения дополнительной энергии при помощи элементов Пельтье. Собранная энергия подаётся обратно в системы двигателя, но уже в виде постоянного тока, что позволяет экономить топливо.
- Бытовая техника. Всё, что описано выше плюс большинство бытовых приборов, работающих на охлаждение или подогрев (кроме компрессорных холодильников).
И маленький секрет напоследок. Наш модуль имеет почти чудесное свойство — обратимость. Это значит, что при перемене полярности постоянного тока на проводах модуля (с помощью переключателя) горячая и холодная поверхность меняются местами. Кулер превращается в нагреватель, холодильник в тепловую камеру (инкубатор), а кондиционер — в маломощный тепловентилятор. Для этого не придётся изменять схему устройства. Достаточно просто поменять полярность.
Этот принцип использован в устройстве под названием рекуператор. Он представляет собой бокс, состоящий из двух изолированных камер, которые сообщаются между собой при помощи вентиляторов. При помощи модулей Пельтье холодный воздух с улицы подогревается энергией, извлечённой из нагретого воздуха, который отводится из помещения. Приспособление позволяет экономить на отоплении дома.
Читайте также: