Кпе бабочка своими руками
Самодельные КПЕ из фольгированного стеклотекстолита
Переменные конденсаторы, они же конденсаторы переменное емкости или КПЕ, используется во множестве устройств. Они нужны в генераторах, фильтрах, антенных тюнерах, некоторых видах антенн, и много где еще. Обратим внимание на тот факт, что в любительской радиосвязи, к примеру, трансивер может с легкостью выдавать 25 Вт или 100 Вт, максимально же разрешенная мощность составляет 1000 Вт. Понятно, что общедоступные маленькие КПЕ тут совершенно не годятся, а нужных для таких мощностей КПЕ в магазине вы попросту не найдете.
Подходящие большие КПЕ из старой радиоаппаратуры можно приобрести на Авито и досках объявлений радиолюбителей. Но цены там зачастую не низкие, к конденсаторам редко указывается их емкость, не представляется возможным найти два или более одинаковых конденсатора, плюс есть риски и неудобства, сопряженные с покупкой с рук. А между тем, изготовить переменный конденсатор в домашних условиях не так уж и трудно.
Идею я подсмотрел в статье Build Your Own Transmitting Air Variable Capacitors 2003-го года за авторством David Hammack (N4DFP). В своей статье Дэвид использует медные листы, которых у меня не оказалось. Но я прикинул, что с тем же успехом подойдет и медь на одностороннем фольгированном текстолите, которого у меня как раз в избытке. Почему бы не попробовать?
Сразу покажу, что у меня в итоге получилось. Вид спереди:
Конденсатор имеет пять прямоугольных пластин размером 20 x 50 x 1 мм, зафиксированных двумя длинными болтами M3. Пластины разделены гайками. Еще четыре пластины в форме полукруга с радиусом 25 мм крепятся на одном болте M3. Этот болт можно вращать при помощи ручки от потенциометра, которую я приклеил к болту при помощи эпоксидного клея. Все это хозяйство держится на каркасе из двух прямоугольных кусков листового пластика размером 30 x 50 мм. Для соединения с подвижными пластинами я использовал толстый медный провод, изогнутый в форме петли. Провод плотно прилегает к вращающемуся болту и закреплен на каркасе конденсатора с помощью термоклея. Капля припоя, которую можно видеть на втором фото, служит для ограничения углов поворота ручки. Понятно, что все работало бы и без нее. Но мне хотелось, чтобы ручка имела какие-то крайние полажения, а не просто крутилась во все стороны.
Fun fact! Текстолит толщиной 1 мм можно резать обычными ножницами для бумаги. А стоящая у меня на столе катушка припоя очень удачно оказалась диаметром именно 25 мм — по ней и обводил.
Емкость такой поделки меняется от 13 до 53 пФ. Увеличивая площадь пластин или их количество, можно получить хоть 1000 пФ. Не думаю, что кому-то могут понадобится подстроечные конденсаторы большей емкости. Но такой конденсатор будет не очень удобен, как из-за больших размеров, так и того факта, что небольшой поворот ручки будет приводить к сильному изменению емкости.
Возможное решение заключается в том, чтобы использовать описанный выше конденсатор только для точной подстройки, а для грубой подстройки использовать конденсаторы фиксированной емкости. Последние можно соединять параллельно при помощи переключения тумблеров с двумя контактными группами.
Пример самодельного конденсатора фиксированной емкости:
Конденсатор состоит из шести пластин 25 x 50 мм. Пластины были склеены при помощи эпоксидного клея. Все четные пластины соединены между собой, и аналогично соединены все нечетные. Емкость конденсатора составляет 270 пФ. Практическая ценность таких конденсаторов, по-видимому, не очень высока, поскольку высоковольтные керамические конденсаторы фиксированной емкости легко доступны и стоят недорого. Тем не менее, давайте рассмотрим и их тоже, на случай, если когда-нибудь понадобится работать с очень высокими напряжениями.
Fun fact! Альтернативный способ изготовления конденсатора фиксированной емкости заключается в том, чтобы просто взять кусок коаксиального кабеля. Типичный кабель RG58 обладает погонной емкостью около 100 пФ на один метр.
Зависимость емкости конденсатора от числа пластин выглядит следующим образом:
Можно заметить, что емкость растет пропорционально количеству слоев диэлектрика с точностью до ошибки измерения, что соответствует теории. Используя первую строчку, ради интереса можно посчитать диэлектрическую проницаемость используемого текстолита:
Это сходится с ожидаемым значением от 4.4 до 4.7.
На StackExchange подсказывают, что чтобы пробить подобные конденсаторы, нужно по крайней мере 3 кВ на 1 мм расстояния между пластинами — это в предположении, что ток пойдет по воздуху. Для надежности, рекомендуется использовать в качестве максимального напряжения половину от этого значения. Напряжение пробоя можно увеличить, увеличивая расстояние между пластинами. Но, как видно из приведенной выше формулы, в этом случае пострадает емкость, и придется увеличивать площадь и/или количество пластин. Более практичное решение заключается в том, чтобы вытравить 3 мм меди по границе пластин. Тогда напряжение пробоя составит порядка 20 кВ — напряжение пробоя 1 мм текстолита или 7 мм воздуха.
Каково будет максимальное напряжение на конденсаторе зависит от цепи, в которой планируется его использовать. Это нужно каждый раз моделировать или считать. Но чтобы оно превысило безопасные 10-15 кВ, придется постараться. В этом случае всегда можно просто увеличить расстояние между пластинами и использовать более толстый текстолит.
Fun fact! Само собой разумеется, ничто не мешает делегировать изготовление компонентов конденсатора вашему любимому производителю печатных плат.
Как видите, все оказалось достаточно просто. Очевидные плюсы самодельных КПЕ — низкая стоимость и доступность. Можно сделать сколько угодно ровно таких конденсаторов, каких нужно. Что же до времени, которое потребуется на изготовление конденсатора, я думаю, оно сопоставимо со временем, которое вы потратите на поиск готового, а также на переговоры с его продавцом.
Итак, первым делом был найден лист алюминия. Найден он был в магазине типа сделай сам в виде листа от бочки йогурта (толщина 0,3-0,4 мм). Из листа ножницами были вырезаны заготовки по чертежам:
Чертежи в формате SVG можно скачать по ссылке.
Всего было вырезано 17 заготовок пластин статора, и 16 — ротора. Все пластины были выпрямлены, потом в нужных местах были просверлены отверстия 6 мм под винты. Рекомендую сверлить однотипные заготовки разом, зажав их в тиски. После сверловки заготовки были зачищены от краски и защитного слоя (лист для йогурта был окрашен рекламными надписями с одной и пищевым слоем с другой стороны). В итоге получилась такая кучка заготовок:
Из пластмассы были вырезаны боковые стенки конденсатора размером примерно 100х70 мм.
Для скрепления пластин я использовал болты М6 длиной 110 мм, гайки М6 толщиной 4,5 мм, и шайбы.
Крепление пластин схематически показано на рисунке (вид сбоку):
Первая пластина статора крепится через 3-4 шайбы (в зависимости от их толщины), чтобы обеспечить необходимый зазор между пластинами ротора и статора, и зажимается гайками. Первая пластина ротора зажимается гайками с двух сторон, при этом между боковой стенкой и крепежом обеспечивается небольшой зазор, чтобы болт с пластинами ротора свободно вращался в отверстии.
На противоположной боковой стенке конденсатора необходимо реализовать токоприёмник и пружинный элемент. Я объединил две функции в одну с помощью изогнутой пластины из того же алюминиевого листа и наклейки из пенистого пластика:
После сборки окончательно выпрямляем пластины и добиваемся одинакового расстояния между пластинами при любых положениях ротора.
В итоге получился конденсатор с диапазоном изменения ёмкости 7-330 пФ. Стоимость материалов составила менее 10 долларов.
Что представляет собой такой элемент, как конденсатор? Это небольшой радиоэлемент со средоточенной электрической емкостью, образующейся двумя или же большим числом электродов. В некоторых случаях этот элемент еще называют обкладкой. Эти маленькие детали разделяются такой вещью, как диэлектрик (специальная бумага, тонкий слой слюды, керамики и т. д.). Емкость этой детали будет зависеть от таких показателей, как размер (площадь) обкладок, расстояние между этими элементами, а также от свойств самого диэлектрика.
Общая информация
Очень важный факт. Конденсатор имеет одно свойство, которое проявляется в цепи переменного тока. Для такого контура эта деталь будет являться сопротивлением, величина которого будет зависеть от частоты. Если частота увеличивается, то сопротивление будет уменьшаться, и наоборот.
Существуют основные единицы измерения, при помощи которых можно определить принадлежность того или иного конденсатора. К ним относят Фарад, микроФарад и т. д. Обозначение на элементах этих единиц, соответственно, такое: Ф, мкФ.
Элементы с переменной емкостью
Конденсатор переменной емкости имеет в своем составе такие части, как секции пластин из металлического материала. Одна из этих секций может осуществлять плавное движение по отношению ко второй. Во время этого движения происходит так, что пластины подвижной части, то есть ротора, чаще всего вводятся в зазоры, имеющиеся между пластинами неподвижной части — статора. Благодаря этому движению происходит следующее. Площадь перекрытия одних пластин другими изменяется, в результате чего изменяется и емкость переменного конденсатора.
Диэлектриком в таких элементах чаще всего выступает воздух. Хотя стоит отметить, что, если говорить об аппаратуре с малыми габаритами, допустим, о транзисторных карманных приемниках, то в них чаще используются конденсаторы переменной емкости с твердым диэлектриком. В качестве этого элемента там используется износостойкое и высокочастотное сырье. Чаще всего это фторопласт или полиэтилен.
Параметры КПЕ
Основным параметром для таких деталей, который поможет определить возможность работы устройства в колебательном контуре, стала минимальная и максимальная емкость. Данный показатель чаще всего указывается рядом с самим конденсатором переменной емкости на схеме устройства.
Стоит отметить, что в таких устройствах, как радиоприемники и радиопередатчики, используется сразу несколько колебательных контуров. Для того чтобы настроить работу сразу нескольких частей, используют блоки конденсаторов. Один блок чаще всего состоит из двух, трех или более секций КПЕ.
Роторная часть для таких блоков обычно крепится на один общий вал для всех конденсаторов переменной емкости. Это делается для удобства, так как при вращении всего одного ротора появляется возможность изменения емкости сразу всех устройств, находящихся в этой секции.
Схемы КПЕ
Важно отметить, что на схеме каждый конденсатор, который входит в блок, отображается отдельно. Для того чтобы указать, что емкость переменного конденсатора из этого блока и остальных элементов может быть изменена при помощи всего одной ручки, управляющей всем блоком, те стрелки, который обозначают регулирование, должны быть соединены одной штриховой линией механической связи.
Стоит отметить, что есть некоторые разновидности таких КПЕ. Один из видов — это дифференциальные конденсаторы, которые нашли свое применение, к примеру, в плечах емкостных мостов. Особенностью этого вида будет то, что он имеет два ряда статорных пластин и один ряд роторных. Расположение групп пластин таково: когда одна группа выходит из зазора, вторая тут же занимает их место. В этот момент емкость конденсатора переменного тока дифференциального типа будет уменьшаться между пластинами первой группы статора и группой ротора. А вот между второй группой пластин статора и группой ротора этот показатель будет расти. Таким образом, суммарное значение будет все время оставаться неизменным.
Подстроечные КПЕ
Еще один вид КПЕ — это подстроечные конденсаторы. Их используют для того, чтобы задать начальную емкость колебательного контура, которая будет определять максимальную частоту его настройки. Емкость конденсатора в цепи переменного тока этого типа может быть изменена от нескольких единиц пикоФарадов до нескольких десятков пикоФарадов. В некоторых случаях может быть достигнута и большая емкость.
К таким типам КПЕ предъявляется основное требование, которое заключается в возможности плавно изменять показатель емкости. Также этот конденсатор должен обеспечивать надежную фиксацию ротора в заданном положении.
Конструкция КПК
Наиболее распространенным типом подстроечного конденсатора является керамический. Конструкция этого устройства следующая. Основание детали — керамический статор, а также подвижное основание, закрепленное на нем в форме диска — ротор. Обкладками в данном элементе служат тонкие слои серебра. Наносятся они при помощи вжигания. Вжигание осуществляется на статор, а также на наружную стенку ротора.
Для того чтобы изменить или определить емкость переменного конденсатора этого типа, необходимо вращать ротор. Если говорить о наиболее простой аппаратуре, то в ней чаще всего используется проволочный подстроечный конденсатор. Состоит данная деталь из отрезка медной проволоки диаметром 1-2 мм. Длина же этого элемента 15-20 мм. На проволоку очень плотно, виток к витку, наматывается изолированный провод диаметром 0,2-0,3 мм. Для того чтобы изменить емкость в данном устройстве, необходимо отматывать провод. Чтобы в это время не сползла обмотка с него, необходимо пропитать ее любым изоляционным составом.
Емкость сопротивления конденсатора в цепи переменного тока
Здесь важно отметить, что ток в цепи, в которой имеется конденсатор, может протекать лишь при условии, что будет изменяться приложенное напряжение. Также нужно понимать, что сила тока, который будет циркулировать в цепи, во время разряда и заряда этого элемента будет тем больше, чем больше емкость самого конденсатора, а также будет зависеть от скорости, с которой происходят изменения электродвижущей силы (ЭДС).
Еще одно свойство. Конденсатор с переменной емкостью, который включен в цепь именно с переменным током, будет являться для этой цепи сопротивлением. Другими словами, величина именно емкостного сопротивления будет тем меньше, чем больше будет значение самой емкости и чем выше будет частота действующего тока. Однако это утверждение справедливо лишь для цепи, в которой ток переменный. Емкость конденсатора равна бесконечности, то есть его сопротивление будет бесконечно, если разместить такой элемент в цепи с постоянным током.
Основные параметры для КПЕ
Существует несколько основных параметров для такого рода конденсаторов.
Один из основных — это закон изменения емкости. Данный закон определяет характер изменения емкости. Изменение этого параметра будет происходить в зависимости от угла поворота или же от линейного перемещения подвижной части пластин конденсатора по отношению к их неподвижным частям.
Еще одно из свойств — это температурная стабильность. Данный показатель напрямую зависит от конструкции самого конденсатора. Чаще всего данный показатель является положительным, а для конденсаторов с воздухом в качестве диэлектрика показатель не превышает (200:300) 10-61/град. Если говорить о конденсаторах с твердым диэлектриком, то у них это значение превышает данный показатель.
Для начинающих простая схема металлоискателя на двух катушках, основана на принципе срыва синхронизации этих самых генераторов. В интернетe есть много разных схем металлоискателей, но правильно настроить и отрегулировать собранную схему без осциллографа достаточно тяжело начинающему радиолюбителю. Мы предлагаем собрать простой металлоискатель своими руками с простыми настройками.
Характеристики металлоискателя
- монету размером с 5 копеек СССР обнаруживает до 15 см;
- металлическая крышка от банки – до 30 см;
- металлический канализационный люк — до 60 см.
- может работать в воде.
- одной зарядки аккумулятора хватает на 20 — 30 часов работы.
- потребляемый ток — 15 мА.
- Вес 500 грамм.
Подстраивается под соответствующий грунт и даже при хорошей герметизации катушек может работать в воде. По определенному звуку в наушниках можно определить тип металла.
Схема не критична к питанию, количеству витков и номиналам деталей.
Условие одно — левая и правая части схемы должны быть одинаковыми!
Помехи компенсируются, грунт не влияет. Чувствительность зависит не от схемы, а от самой физики измерений. Мы накапливаем сдвиг фазы.
Симметрично собранная схема работает сразу. Но посмотреть интересно.
При питании 4 V на катушках около 40 V — можно подать прямо на трубку .
Сигналы с генераторов подаем на пластины X и Y
Частоты совпадают
Вот они срывы.
В наушниках появились щелчки.
Генераторы не синхронизированы.
Детали собираем на любом непроводящем клею.
Если батарейка питания дохлая и садится, то и настройка будет уплывать. Хорошо аккумулятор от телефона подходит.
Для конструкции мы используем металлопластиковую водопроводную трубу. Штанга может быть разъемной, трубы диаметром 26 и 20 туго входят одна в другую. Конденсаторы с хорошей температурной стабильностью, слюдяные — это важно.
Катушки и схему покрыть масляным лаком. Между катушками 10 см. Катушки ставим на расстоянии 10 см и приклеиваем — двигать не надо
Список деталей:
- Транзистор — КТ315 (ВС182, ВС546, ВС547 и т.п.) — 2шт;
- Конденсатор — 1000 пф (1 нф или 102) — 2шт;
- Конденсатор — 10000 пф (10 нф или 103) — 2шт;
- Сопротивление — 100 кОм — 2шт;
- Обычные стереонаушники — 1 шт;
- Источник питания (от сотового телефона) — 3,7 В — 1 шт;
- Провод в лаковой изоляции ПЭВ, ПЭЛ, ПЭТВ и т.п. диаметром 0,4-0,7 мм.
Если у Вас нет всех необходимых деталей и платы,
Вы можете заказать их у нас
все необходимые детали с печатной платой.
Как мотать катушки?
Подробное объяснение изготовления катушки: 0 — ой виток — это начало катушки (припаивается к нижней по схеме дорожке (минус батареи). Далее мотаете катушку (например на кастрюле), как 10 витков сделали скручиваете петельку, зачищаете изоляцию и припаиваете к средней по схеме отводу, т.е. к эмиттеру транзистора (это будет отвод). Затем мотаете ещё 20 витков, отрезаете и конец провода припаиваете к соединению двух конденсаторов 1000 пф и 10000 пф (это конец катушки). Аналогично делается вторая катушка.
Настройка металлоискателя
Когда пищит — это хорошо! Но всё же не всегда (по разным причинам) удаётся сделать одинаковые генераторы, по этому необходимо один из них подстроить под частоту второго.
Грубая настройка последним витком катушек
Берем листок алюминия или консервную банку побольше. Подносим к катушкам поочередно. Над одной писк еще выше, над другой замолкает. На той катушке, где замолкает, отгибаем вовнутрь последний виток (или двигаем катушки, уменьшаем или увеличиваем расстояние между ними) , добиваемся самого тихого писка или пока сигнал не замолчит. Сверху каждой катушки обязательно следует приклеить трубочки с ферритом. Можно потом подстроить ферритовым стержнем до полной тишины.
Настройка ферритовым стержнем
Для этого берём трубочку и ферритовый стержень, крепим рядом с одной из катушек. Ферритовый стержень двигаете в трубочке пока не за синхронизируете генераторы. Ферритовый стержень с катушкой от старого радиоприёмника (можно лампового). Все провода смотать, оставить каркас с ферритовым стержнем.
Видео инструкция по настройке металлоискателя
Можно отрегулировать полосками алюминия, приклеив их к катушке внутри или снаружи. Для настройки кладем на обе катушки по полоске алюминия или просто консервные крышки и двигаем их, добиваясь самого низкого тона гудения.
Если в наушниках четко слышатся щелчки — это значит, что чувствительность прибора стоит на максимуме.
Другой вариант подстройки частоты — установка параллельно конденсатору 1000 пф конденсатора переменной ёмкости, например от старого радиоприёмника.
Монтаж металлоискателя
За неимением платы из фольгированного текстолита или гетинакса платы можно сделать из картона.
Кто из нас не мечтал взять с собой металлоискатель и пойти на старинные развалины искать предметы старины. Все это очень интересно и занимательно. Жалко только современные китайские металлоискатели стоят довольно дорого, несмотря на их небольшую чувствительность.
Самому сделать такой прибор можно в два счета. Для этого не понадобится дорогих микросхем или деталей. Всего 2 транзистора и еще несколько деталей, которых не составит труда найти.
Детали
Схема и принцип работы металлоискателя
Схема состоит из двух одинаковых генераторов потребляемых ток через динамическую головку. Они работают на одной частоте и взаимоисключающая пульсация в динамике не слышна.
Как только в катушке одного из генераторов появляется металл, частота генератора резко меняется, разность частот между генераторами воспроизводится в динамической головке в виде свиста. Схема была проверена десятилетиями.
Изготовление металлоискателя
Припаиваем катушку. Она содержит 30 витков провода 0,3 мм намотанного на диаметре 160 мм с отводом от 10-го витка (см. на схеме). Нужно сделать две таких катушки.
Испытание прибора
По очереди подносим медные и алюминиевые кусочки к одной из катушек. Все работает, в динамической головке раздается четкий писк.
Тоже самое происходит и с черными металлами. Приборе реагирует на любой металл без исключения.
Схема в настройке не нуждается и начинает работать сразу.
Если хотите настроить прибор на максимальную чувствительность, то вместо любого резистора впаяйте переменный с номиналом 150 кОм. Тогда им можно будет настроить четко границу срабатывания.
Смотрите видео
Несколько лет назад один дедушка продемонстрировал простейший металлоискатель на биениях, схема у него обычная как у всех биенщиков с той лишь разницей, что монета 5 копеек ссср определялась на расстоянии 22 см от катушки.
В какой-то момент времени мне захотелось повторить результат и заодно доработать схему. К сожалению мне не удалось достичь того результата как на видео, но на 15 см монету металлоискатель видит.
На момент публикации ветки металлоискатель полностью не собран - плата и катушки лежат на столе, но тем не менее работает уверенно, и частота не плывет.
Выкладываю схему и печатку. Печатка доработанная с усилителем - сам её еще не успел спаять
На столе лежит плата без усилителя, оный припаян на соплях.
В схеме пока не указал номиналы Р2 и Р4 на днях уточню.
Для справки : L1 работает на частоте 1.250 мгц L2 на частоте 130 кгц.
Дополнения к схеме: R2 750 ом, R4 1к8.
Катушку L2 мотал проводом 1,2 мм в пвх изоляции слоями по 5, затем 4, затем 3 витка. Где то ушло 12,5 метров провода. Поверх обмотал фольгой, приложил луженый провод и все это обмотал изолентой, луженый провод припаял к массовому проводу. Сделал отвод от 4 витка как по схеме.
Катушка L1 от малогабаритного радиоприемника на оправке с подстроесным ферритом 12мм. 30 витков проводом 0.2мм с отводом от 10-го витка.
Все конденсаторы кроме С4 и электролитов - пленочные.
конструкция 30 летней давности. Можно использовать разве как настольную лабораторную работу для понятия принципа работы. Если уж хочется чего то по проще то Малыш ФМ для баловства можно сделать.
На третью четверть 20-го века данный прибор может быть и соответствовал каким то предъявляемым требованиям, но в настоящее время имеются более лучшие, простые в изготовлении и стабильней в работе приборы.
melan,- nevrolight помешан на приборах с низковольтным питанием, вот его и тянет на экзотику. Питание в данном приборе низкое, согласен, но потребление в два раза больше, чем в том же "обсосанном" со всех сторон Пирате.
nevrolight, я прав или может быть в чем то ошибаюсь?
Это обычный металлоискатель на биениях, 9 или 10 гармоника.
Тот, кто только начинает заниматься радиоделом, эти именно оно, что нужно делать, несмотря на то , что его считают устаревший.
L1 и/или L2 не правильно указана частота. Например, 9 гармонике.
130*9=1170. 1250 -1170=80 кгц, Частота биения 80 кгц, ухо не слышит.
Конечно правы, но есть и кое-что еще.
1) Вчера считали - если акк 3.7в и емкость 3000мАч, то его хватит на 43 часа работы.
Тот же пират через преобразователь на мс34063 отъедает минимум 140 мА.
2) У пирата есть один неприятный момент - если он найдет железку - то тут 2 режима - либо звенит, либо молчит - расстояние до объекта сложно определить, так же как и размер железяки.
3) У биенщика есть дискрим, можно и монеты поискать. А чуйку можно и повысить, если поставить вч германиевые транзы..
4) Отсутствие преобразователя и микросхем в какой то степени удешевляет конструкцию.
L1 и/или L2 не правильно указана частота. Например, 9 гармонике.
130*9=1170. 1250 -1170=80 кгц, Частота биения 80 кгц, ухо не слышит.
Частоту я указал примерно, т.к. на осле она прыгает от 1.2 до 1.35 мгц.
По поводу ухо не слышит - чтобы не забивать канал усилителя вч наводками в схеме стоит дроссель на 150мкгн.
Конечно обычный. не считая того. что на поисковой катушке всего 12 витков и стоит электронный регулятор подстройки частоты
Я бы не стал тратить время на эту конструкцию.. Ничего, кроме потери нервов и веры в светлое будущее, от неё не получишь
Я бы не стал тратить время на эту конструкцию.. Ничего, кроме потери нервов и веры в светлое будущее, от неё не получишь unsure
А чего вдруг испугался? Схема отработана, работает стабильно, единственно нужно поискать подстроечник с ферритом от пч приемника и соединительный кабель из экранированного провода - с остальным проблем быть не должно.
А вообще ветка создана не для критики, а для доработки и улучшения девайса.
Как говорится дареному коню в зубы не смотрят
Чуйку, а заодно и уменьшить ток, если поставить полевые транзисторы. Вот, модель, на выходе малое напряжение биений (такая же , как и у биполярных), надо ставить усилитель. У полевиков гораздо ниже динамическая связь стока и истока, то взваимная синхронизация генераторов менее вероятна в десятки, если не сотни раз. Ток потребления не зависит от напряжения, т.к. на затворе 0в смещения.Хорошие транзисторы КП312 или их аналоги, холя и КП303 прекрасно будут работать. Ток потребления этой схеме равен сумме начальных токов полевиков, можно отобрать ток порядка 1 ма (даже можно меньше), то ток потребления будет 2 ма и не будет зависеть от напряжения. И учитывая большое сопротивление затвора, добротность контура, а значит и устойчивость работы на полевиках выше.
Вот, графики по генераторам. В точке В примерно в 13 раз больше.
Где то были кп303, а какое напряжение питания?
По сути генераторы что на полевиках. что на кт315 энергию не расходуют, - расходует унч. А чтобы унч не жрал - надо либо усложнять схему, либо переводить на 9 вольт и немного усложнять схему.
Читайте также: