Коэффициент усиления тв антенны что это
Определение и формула коэффициента усиления антенны
Можно определение коэффициента усиления представить несколько иначе: Коэффициент усиления антенны — это относительная величина, отражающая эффективность рассматриваемой антенны в сравнении с полуволновым диполем (изотропным излучателем).
Чаще всего обозначением для коэффициента усиления служит буква G.
Коэффициент усиления антенны показывает, какова способность антенны концентрировать сигнал в определенном направлении. Антенны предназначены не для усиления, а для концентрации сигнала в избранном направлении. Коэффициент усиления антенны является количественной характеристикой возможности антенны сконцентрировать мощность электромагнитного излучения в узком пучке, при учете потерь на конструктивных элементах антенны и близких к ней объектах.
Коэффициент усиления антенны связан с коэффициентом направленного действия (D) и КПД антенны (
) соотношением:
Так же говорят, что коэффициент усиления антенны отражает, во сколько раз следует увеличить мощность на входе антенны, если заменить рассматриваемую антенну идеальной ненаправленной антенной и при этом плотность потока мощности электромагнитной волны, которую излучает антенна измениться в точке, где проводится наблюдение, не должно. Считают, что КПД ненаправленной антенны равен одному.
Из двух антенн, обладающих одинаковыми коэффициентами усиления и сходными конструкциями, меньшие размеры будет иметь та антенна, которая назначается для приема волн меньшей длины.
Введение коэффициента усиления антенны, как самостоятельного параметра связано с тем, что эту величину можно измерить при помощи метода сравнения. При этом используется эталонная антенна с известным коэффициентом усиления.
Диаграмма направленности
Направленность антенны показывает, как изменяется коэффициент усиления антенны в зависимости от направления. Для изображения направленности применяют специальные графики, которые называют диаграммами направленности. Направленность связана с конструкцией антенны. Диаграммы направленности рассматривают для горизонтальных и вертикальных плоскостей.
Единицы измерения коэффициента усиления антенны
Коэффициент усиления антенны может быть безразмерным или может быть выражен в децибелах. При этом:
Коэффициент усиления антенны по отношению к диполю, обычно представлен в дБ, а в отношении к изотропному излучателю в дБи. Например, если G=5 дБи, то в отношении к диполю G=5-2,14=2,86дБ.
Примеры решения задач
Задание | Каков коэффициент усиления антенны, если ее КПД равен 0,5 при коэффициенте направленного действия 13 дБ? |
Решение | В качестве основы для решения задачи используем формулу для коэффициента усиления: |
Примем во внимание, что коэффициент направленного действия задан в дБ:
Вычислим коэффициент усиления:
По определению коэффициента усиления антенны:
мВт
Коэффициент усиления антенны – это тот самый момент, который может поставить в тупик даже самых продвинутых инженеров, специалистов в области радиочастотных технологий. Даже в законодательстве указано, что «Эффективная излучаемая мощность не превышает…», что опирается на мощность, подводимую ко входу антенны, помноженную на коэффициент усиления антенны. Считается, что в момент проявления коэффициента усиления антенна сама внутри себя магическим образом создает некую энергию. К несчастью, это не так. Если вы посмотрите на антенну, то увидите, что основной материал, из которого она сделана это золото, серебро, медь – эти материалы подходят лучше всего, затем идет алюминий. Сами по себе эти материалы не могут создавать энергию внутри себя.
Прежде чем начать что-то объяснять, сначала необходимо дать определение некоторым терминам, для более доходчивого объяснения, что же такое коэффициент усиления антенны.
децибел (дБ): единица измерения затуханий, служит для выражения коэффициента усиления. Коэффициент усиления имеет положительное значение, затухание – отрицательное, вычисляется по формуле:
10* log ( P на выходе/ P на входе)
Коэффициент усиления антенны: относительное увеличение излучения в пиковый момент, величина которого, выраженная в дБ, выше эталонного, в этом случае штатная антенна, антенна диполь в половину длины волны (как в случае с двухполюсными антеннами), которой измеряются все прочие антенны. Используемое обозначение известно как 0дБд (0 децибел относительно диполя). Таким образом, антенна с эффективной излучаемой мощностью в два раза выше входной мощности будет иметь коэффициент усиления 10* log (2/1) = 3дБд
На что стоит обратить внимание: Есть второе обозначение, которое характеризует коэффициент усиления антенны, но используется для того, чтобы просто придать характеристикам антенны более высокие цифры, чем есть на самом деле. Это обозначение – дБи, оно характеризует коэффициент усиления антенны относительно воображаемого изотропного излучателя – антенны, которая равномерно излучает сферические волны, распространяемые по всем направлениям. Это увеличивает коэффициент усиления антенны на 2,14 дБ, что является коэффициентом усиления антенны диполь относительно изотропного излучателя. Но это еще не начало . Об этом более подробно рассказывается в разделе "Как обмануть коэффициент усиления антенны"
Диаграмма направленности: графическое представление зависимости интенсивности излучения от угла направления антенны от перпендикуляра. Обычно график имеет круглый вид, интенсивность обозначена расстоянием от центра относительно соответствующего угла.
Все диаграммы направленности, которые показаны на этой странице, составлены для антенн с вертикально установленными элементами антенны, вид дан со стороны (т.е. под прямым углом к антенне), как показано на изображении рядом.
Угол излучения: Существует общепринятое мнение, что ширина диаграммы направленности антенны – это угол между двумя точками (в той же плоскости) между которыми излучение происходит в «половину мощности», т.е. на 3дБ меньше максимального излучения. Другие цифры, кроме 3дБ, не позволят улучшить репутацию антенны, поскольку в этом случае возникнет ощущение, что антенна имеет более широкую/узкую ширину диаграммы направленности антенны, а серьезный инженер не стал бы доверять такой конструкции.
Зона уверенного приема: Такая физико-геологическая зона, в которой принимается сигнал, обычно описывается как расстояние по радиусу от места, где расположена антенна.
Для начала давайте сначала возьмем в качестве эталона антенну диполь в половину длины волны и «поместим» ее свободно в пространстве (т.е. не будем учитывать все, что находится рядом, например крепление и т.п., которые могли бы влиять на антенну). Диаграмма направленности такой антенны обычно называется «пончик», она проиллюстрирована ниже на рисунке.
Поскольку материал не может создавать мощность, то единственной альтернативой является концентрация бесполезно израсходованной энергии, например той, которая идет в направление неба, и направление ее по нужному направлению в горизонтальной плоскости. Результат виден на соседнем рисунке. Форма излучения изменилась таким образом, что та энергия, которая расходилась в стороны, теперь сконцентрирована для усиления средней половины. В результате мощность излучаемой энергии удваивается в требуемом направлении, коэффициент усиления – 3дБ.
Такая концентрация энергии может быть усилена еще более, от 6дБ (в 4 раза) до 9 дБ (в 8 раз). Диаграммы видны на рисунках ниже.
Теперь ясно, для того чтобы у антенны появился коэффициент усиления, нужно всего лишь сконцентрировать ее излучение (т.е. изменить «пончик» на диаграмме до формы тонкой «лепешки»), сделав, таким образом, излучение более интенсивным вдоль горизонтальной плоскости. Антенны с излучением по всем направлениям и коэффициентом усиления выше 9дБ непрактичны в с илу того, что концентрация энергии напрямую связана с длиной (с длинах волны) антенны. Однако, есть еще один метод концентрации излучения, который позволяет направить излучение только в одном направлении.
Если рефлектор помещен рядом с антенной диполь, то вся энергия, которая бы направлялась в направлении рефлектора, теперь отражается назад в направлении антенны диполь. Таким образом, вся энергия теперь сконцентрирована только в одной полусфере, в результате излучаемая энергия удваивается в данном направлении, коэффициент усиления – 3дБ.
Дальнейшая концентрация энергии, может быть получена с помощью использования «директоров (направителей)» и, опять же, делая угол все меньше и меньше, фокусируя всю энергию в одном направлении. Таким образом достигается более высокий коэффициент усиления. Обычно достигается коэффициент усиления в 20 дБ. Эффективный угол такой антенны мал (обычно ± 10 градусов)
В случае с антеннами с направленным излучением, нужно знать еще одну величину.
Коэффициент обратного излучения антенны: Активный вибратор большинства антенн с направленным излучением – антенна диполь с диаграммой направленности в виде классического «пончика», который перпендикулярен ее оси. Задача, как было описано ранее, заключается в том, чтобы этот «пончик» преобразовать в узкий луч по направлению от антенны. Рефлектор чаще всего представляет собой обыкновенный один или несколько стержней. Даже в случае, если рефлектор - это пучок стрежней, то он не будет отражать всю энергию, т.к. она будет проходить через щели! Часть энергии будет направлена назад (или, в случае приема, будет обходить рефлектор и перехватываться антенной диполь). Запомните, в свободном пространстве антенна диполь чувствительна как по своему направлению, так и сзади, диаграмма ее направленности естественно стремиться по свое форме к «пончику».
Даже сплошной кусок металла в качестве рефлектора не сможет полностью изолировать от заднего излучения по причине дифракции. Досадно, но самые кончики металла станут причиной того, что сигнал будет поворачиваться на углах рефлектора в обратном направлении (или, в случае приема, от задней части по направлению к антенне диполь).
Коэффициент такого обратного излучения антенны определяется относительно переднего (требуемого) направления антенны и обычно выражается в дБ.
В заключение:
Антенны вовсе не производят сами собой неким магическим образом энергию, они всего лишь концентрируют излучаемую радиочастотную энергию в узком направлении таким образом, что возникает ощущение, будто из антенны в требуемое направление выходит больше мощности.
Насколько видно из вышеописанного, коэффициент усиления также является «потерей». Чем выше коэффициент усиления антенны, тем менее угол ее полезного использования. От внимания многих ускользает тот факт, что энергия была «украдена» у прочих направлений, а затем навязана излучению в требуемом направлении.
Это напрямую влияет на выбор антенны для конкретных целей. Выбор правильной антенны описан в разделе "Выбор правильной антенны" . .
Когда нужна телевизионная антенна.
В большинстве городов «рога» антенны над телевизором (как и шаманские действия по её настройке) давно стали достоянием истории – кабельное телевидение практически полностью вытеснило эфирное вещание. Но вот в загородные дома и, особенно, в дачные поселки цивилизация проникла еще не повсюду, а телевизор посмотреть хочется. Да и городов, еще не попавших в паутину кабельного ТВ, на карте России хватает. И здесь телевизионные антенны все еще актуальны.
Но условия приема телевизионного сигнала везде разные – с одного места башню телецентра можно разглядеть невооруженным глазом, с другого – до нее десятки километров. Антенны во всех этих случаях потребуются разные. И, чтобы покупка не разочаровала, следует выяснить условия приема в месте установки антенны, определиться с её характеристиками и только после этого идти в магазин.
Как выяснить условия приема? Хорошо, если телецентр и его передающую вышку видно из окна – тогда вопрос отпадает. А если до телецентра несколько десятков километров – как тогда определить, в каком направлении и как далеко находится ближайшая вышка ретранслятора? Это можно сделать с помощью интерактивной карты цифрового эфирного телевещания на сайте российской телевизионной радиовещательной сети. Следует только выбрать на карте свой регион и приблизить его до нужного масштаба. На карте отмечены как действующие, так и строящиеся вышки. Кроме того, можно просто щелкнуть указателем мыши в нужную точку на карте и в отдельном окне будет выведены расстояние и направление до ближайших вышек – как действующих, так и строящихся.
Характеристики телевизионных антенн.
Размещениебывает комнатным и наружным.
Комнатные, как следует из названия, устанавливаются внутри помещения, как правило, в непосредственной близости к телевизору. Несомненным достоинством комнатных антенн является простота их установки – фактически, большинство комнатных антенн достаточно просто подсоединить к телевизору и на этом установка антенны заканчивается. Настраивать комнатные антенны тоже намного проще в силу того, что качество «картинки» можно отслеживать самостоятельно непосредственно в процессе настройки. Недостатком комнатной антенны является то, что, по сравнению с аналогичной по характеристикам наружной антенной, комнатная гарантированно обеспечит худшее качество «картинки». Фактически, надеяться на хороший прием с комнатной антенны можно только там, где уровень телевизионного сигнала достаточно высокий. Это местность в непосредственной близости к телевышке (3-15 км от неё, в зависимости от мощности передатчика) и точки, находящиеся с этой вышкой в условиях прямой видимости.
Если вы не уверены, что ваш телевизор находится в зоне уверенного приема, но, по каким-то причинам не можете установить наружную антенну, покупайте комнатную антенну с активным усилением и старайтесь обращать её в сторону ближайшей телевышки, в идеале, через окно, направленное в соответствующую сторону.
Наружные антенны имеют больше шансов принять слабый сигнал от далекой телевышки. Для установки в загородном доме или на даче, в удаленной от телевышки местности, следует выбирать именно наружную антенну. Установка таких антенн потребует некоторых усилий и для её настройки потребуется помощник, но все затраты с лихвой окупятся качеством «картинки», которое ни одна комнатная антенна не будет в состоянии обеспечить. При установке наружной антенны не забывайте о важности правильной высоты установки антенны – часто качество сигнала можно значительно улучшить, подняв антенну выше на метр-полтора.
Усилитель ТВ-сигнала может быть необходим, если антенна не размещается в месте уверенного приема. Это может быть при:
- большой удаленности телевизора от передающей антенны телецентра или от ТВ-ретранслятора;
- наличии на линии между телевышкой и телевизором высотных зданий и сооружений;
- наличии на линии между телевышкой и телевизором производственных площадок, электроподстанций и других объектов, излучающих электромагнитные помехи;
- расположении телевизора в низине или за складками местности, препятствующими распространению электромагнитных волн.
Усиление может быть пассивным (внешнее питание отсутствует) – тогда антенна усиливает сигнал только за счет своей конструкции. При отсутствии внешнего питания возможности антенны по усилению сигнала ограничены, но это не всегда является недостатком – активный усилитель привносит в сигнал собственные шумы, которые могут заметно повлиять на качество «картинки». Поэтому выбирать антенну с активным усилением следует только в том случае, если пассивного усиления сигнала недостаточно для получения качественной "картинки".
Активное усиление предусматривает наличие в комплекте антенны отдельного электронного устройства – усилителя ТВ-сигнала. Такое устройство требует внешнего питания – от собственного блока питания или от иного источника (все большее распространение получают модели, подключаемые к порту USB, благо USB сегодня оснащается большинство современных телевизоров). Для мест, сильно удаленных от телевышки, покупка антенны с активным усилителем может оказаться единственным способом получения хоть какого-то изображения на экране. Но и в местах уверенного приема покупка активной антенны может быть оправданной – если планируется подключение к антенне нескольких телевизоров или длина кабеля от антенны до телевизора велика – 10 метров и более.
Как было указано выше, любой активный усилитель привносит в сигнал собственные шумы, возникающие при работе полупроводниковых элементов. К сожалению, соотношение сигнал/шум для антенного усилителя производителем антенны указывается очень редко, поэтому выбирать активную антенну, ориентируясь на этот параметр, получится вряд ли. Поэтому, чтобы избежать покупки антенны с усилителем на низкокачественных компонентах, следует ориентироваться на известных проверенных изготовителей и воздерживаться от покупки самых дешевых моделей.
Усиление сигнала определяет способность антенны усиливать слабый сигнал. Усиление измеряется в децибелах - чем выше уровень усиления, тем более слабый сигнал антенна сможет усилить.
Усиление каждой антенны образуется из собственного (пассивного) и активного, полученное с помощью усилителя. Если собственное усиление антенны мало (причиной могут быть простая конструкция или некачественная сборка), то наличие в комплекте мощного усилителя делу не поможет – да, сигнал на выходе будет сильный, но зашумленный. Поэтому не стоит гнаться за максимальными величинами коэффициента усиления – конструкция и размещение антенны имеют не меньшую важность. Кроме того, производители часто идут на хитрости и даже на прямой обман, указывая на упаковке коэффициент усиления не соответствующий действительности.
Обе эти антенны имеют заявленную мощность усиления 35 дБ
Не стоит рассчитывать, что дешевая антенна с заявленным усилением 35 дБ даст тот же эффект, что и дорогостоящая наружная антенна сложной конструкции, с коэффициентом усиления те же 35 дБ.
Так же следует иметь в виду, что зоне уверенного приема сигнала чрезмерное усиление может навредить. Поэтому, если вы приобретаете антенну с усилением выше среднего (от 10-15 дБ), выбирайте модели с регулировкой коэффициента усиления. Иначе, в случае переусиления сигнала, телевизор может вообще отказаться что-либо показывать.
Прием сигнала антенной может производиться как на любой частоте вещания, так и только в одном-двух диапазонах.
Прием в FM-диапазоне применительно к антенне означает, что она может быть использована для приема и прослушивания через телевизор радиостанций, работающих в этом диапазоне (88-108 Мгц).
Для передачи телевизионного сигнала используются метровые (VHF) и дециметровые (UHF) волны. Вещание аналогового эфирного телевидения производится по обоим диапазонам: 1-12 каналы по диапазону VHF (47-160 МГц), 21-60 каналы по диапазону UHF (470 -862 МГц). Таким образом, для приема аналоговых каналов необходимо, чтобы антенна работала в обоих диапазонах. Другое дело, что в России с 2018 года запланировано прекращение вещания аналогового телевидения. Цифровое телевидение стандарта DVB-T2 останется на территории России единственным видом эфирного телевидения, а вещание его производится в дециметровом диапазоне (UHF). Поэтому не стоит гнаться за поддержкой диапазона VHF – скорее всего, надобность в поддержке этого диапазона в ближайшее время исчезнет. И уж точно следует отказаться от покупки антенны, поддерживающей только этот диапазон.
"Не верь глазам своим"
Отдельно следует отметить так называемую «поддержку DVB-T2». Применительно к антенне эта фраза особого смысла не имеет – если антенна работает в диапазоне UHF, то принимать цифровой сигнал DVB-T2 она будет. Если же антенна в этом диапазоне не работает, то поддержки DVB-T2 не будет, что бы ни было написано на коробке. И уж совершенно точно антенна «с поддержкой DVB-T2» не способна обеспечить воспроизведение цифрового телевидения на старом телевизоре, не имеющем тюнера DVB-T2. Если ваш телевизор не обеспечивает прием цифрового телевидения, кроме антенны вам потребуется приставка для цифрового телевидения.
Варианты выбора.
Если ваш телевизор расположен в непосредственной близости от телевышки, и вы уверены в мощности имеющегося ТВ-сигнала, выбирайте простую пассивную комнатную антенну по цене от 240 до 1150 рублей.
Если уровень ТВ-сигнала в месте расположение телевизора невысок, но у вас нет возможности установить наружную антенну, выбирайте комнатную антенну с усилителем. Такая будет стоить 300-3000 рублей, но не стоит выбирать модели из нижнего ценового диапазона – низкокачественный усилитель может навредить больше, чем его отсутствие.
Если вы собираетесь подключить к антенне несколько телевизоров или длина антенного кабеля получается слишком большой, вам потребуется антенна с активным усилителем. Они стоят 400-3000 рублей, но покупать самые дешевые опять же не стоит. Кроме того, нелишне будет обратить внимание на конструкцию антенны – хорошо, если собственное усиление антенны будет достаточно большим.
Если ваш телевизор расположен на большом удалении от ближайшей вышки или в неблагоприятном для приема ТВ-сигнала месте, вам потребуется наружная антенна. Такие можно приобрести по цене от 670 до 2300 рублей.
Радиосвязь, сотовая связь, телевидение, беспроводной Wi-Fi и 3G интернет осуществляются при приёме и передаче радиоволн антеннами. Радиоволна - это электромагнитное излучение. Любая радиоволна характеризуется тремя основными параметрами: длиной волны, амплитудой и скоростью распространения. Свет и радиоволны распространяются с огромной скоростью: 300 тысяч километров в секунду (то есть луч света долетит от Земли до Луны меньше, чем за две секунды). Длина волны - это расстояние между двумя любыми её гребнями. Амплитуда - это "высота", на которую поднимается этот гребень. Чем больше амплитуда световой волны, тем ярче этот свет (иными словами, тем выше интенсивность волны). Зная длину волны и скорость её распространения, всегда можно вычислить частоту волны (это число гребней, образовавшихся за одну секунду). Частота измеряется в Герцах.
У радиоволны есть ещё одна характеристика: поляризация, но о ней расскажем позднее.
Любой видел радиоволны, и не раз. Ведь свет - это тоже радиоизлучение, но с очень малой длиной волны (соответственно очень высокой частотой), в тысячу раз меньше миллиметра. Чтобы понять, как распространяются радиоволны, достаточно провести аналогию с распространением света.
- свет распространяется прямолинейно;
- если на пути луча света поставить большую преграду, то образуется тень;
- если на пути луча света поставить преграды, которые меньше длины волны или сравнимы с ней, то свет, претерпев некоторые изменения, пройдёт дальше;
- стекло ослабляет яркость света, иногда очень сильно;
- если на пути солнечного света поставить увеличительное стекло, то в его фокусе получится яркая ослепительная точка, которая может зажечь дерево.
Радиоволны имеют большую длину волны, чем свет, но от этого законы их распространения не меняются. В технике используются радиоволны различных частот (длин волн):
- телевидение: 50-600 МГц (6-0,5 м)
- мобильная связь GSM900: 900 МГц (33 см);
- мобильная связь GSM1800: 1800 МГц (17 см);
- 3G интернет: 2000 МГц (15 см);
- Wi-Fi: 2450 МГц (12 см) и 5750 МГц (5 см).
Радиоволны распространяются прямолинейно, так же как и свет.
Если на пути радиоволн, представленных в таблице, поставить преграду размером порядка одного метра, то волна не ослабнет. Здесь можно провести аналогию с волнами на море: большая волна не ослабнет из-за находящегося в воде человека, а большой корабль не даст волнам пройти.
Если же на пути радиоволны будет большое препятствие, например, многоэтажный дом, то оно значительно уменьшит сигнал, вплоть до полного его ослабления.
Оконное стекло также ослабляет радиоволны.
Спутниковая тарелка действует подобно увеличительному стеклу: собирает сигнал с большой площади и концентрирует в одной точке. И наоборот, сигнал исходит из одной точки, а тарелка собирает его и преобразует в узкий направленный пучок.
Радиоволна, попадая на антенну, вызывает в ней электромагнитные колебания, и по проводящим частям антенны начинает течь электрический ток. Этот ток опускается по кабелю в приемное устройство, где из него извлекается информация (звук, изображения, данные, . ). И наоборот, если подать на антенну электрический ток определенной частоты, то антенна будет излучать в пространство радиоволны этой же частоты.
Любая антенна будет одинаково хорошо работать как на приём, так и на передачу сигнала в пределах своего рабочего диапазона частот. Поэтому для простоты в дальнейшем мы будем говорить только про приём или только про передачу.
Коэффициент усиления антенны характеризует способность антенны концентрировать сигнал в каком-либо определённом направлении. Приведём аналогию: представим, что в тёмной комнате у вас горит слабая 1 Вт лампочка. Вы сможете увидеть лишь контуры предметов в этой комнате, а дальние углы останутся тёмными. Теперь у вас в руках есть ещё небольшое зеркало. Оно отражает часть света от лампочки, и одна половина комнаты освещена в два раза лучше, но другая половина скрыта в тени от зеркальца. В третьем случае поместим эту лампочку в отражатель от фонарика: получится пятно яркого света размером с ладонь. При помощи этого фонаря вы сможете осветить самый дальний угол комнаты. Но ничего, кроме этого пятна света вы не увидите. Таким образом, во всех случаях лампочка оставалась одна и та же. Мы использовали различные отражатели, меняя концентрацию светового луча в определённом направлении.
Абсолютно так же это происходит и у антенн. На самом деле антенны не усиливают, а концентрируют сигнал в одном или нескольких направлениях, и термин "коэффициент усиления" не должен вводить вас в заблуждение.
Коэффициент усиления измеряется в децибелах (дБ). Это логарифмическая величина и введена она для упрощения математических расчетов. Коэффициент усиления сравнивает мощность изотропного излучателя (одинокой лампочки без зеркал в примере) и мощность данной антенны. Для перевода отношения мощностей в децибелы необходимо воспользоваться следующей таблицей.
Усиление, разы | 10000 | 100 | 10 | 4 | 2 | 1,26 | 1 | 0,79 | 0,5 | 0,25 | 0,1 | 0,01 | 0,0001 |
Усиление, дБ | 40 | 20 | 10 | 6 | 3 | 1 | 0 | -1 | -3 | -6 | -10 | -20 | -40 |
Например, если одна антенна имеет Ку=10 дБ, вторая имеет Ку=13 дБ, то вторая антенна мощнее первой в два раза.
Из двух антенн с одинаковым коэффициентом усиления и сходной конструкции меньшие размеры будет иметь антенна, предназначенная для приёма волн меньшей длины волны. Например, WiFi антенна усилением 20 дБ на частоту 5500 МГц имеет размер 18х18 см, а антенна усилением тоже 20 дБ, но на частоту 1800МГц, имеет размеры 60х60 см.
Поляризация радиоволны — это явление направленного колебания векторов напряженности электрического или магнитного полей. Поляризация может быть линейной (в направлении, перпендикулярном направлению распространения волны), круговой (правой либо левой, в зависимости от направления вращения вектора индукции) или эллиптической (промежуточный случай между круговой и линейной поляризациями). В наземной связи в основном используется только линейная поляризация.
Поляризации волны соответствует грубая аналогия с волнами, бегущими по верёвке. Если жёстко закрепить один конец верёвки, а другой её конец начать перемещать в вертикальном направлении, то по верёвке побегут вертикальные волны - говорят, что они вертикально поляризованы. Если конец верёвки перемещать в горизонтальном направлении, то по верёвке побегут горизонтально поляризованные волны.
Любая антенна с линейной поляризацией из всего спектра падающих на неё волн примет только те волны, поляризация которых совпадает с поляризацией антенны. На каждую антенну на заводе наносят направление её поляризации (обычно это стрелочка). При монтаже антенну можно установить так, чтобы стрелочка была расположена либо вертикально, либо горизонтально. Соответственно, антенна будет принимать либо вертикально, либо горизонтально поляризованные волны. Поэтому выбор поляризации - очень важный момент при построении беспроводной сети. Неправильно установленная по поляризации антенна примет сигнал, но с очень значительными ослаблениями, иногда неприемлемыми для качественной связи.
- Статьи
- Редакционные статьи
Аннотация
Перед тем как перейти к рассмотрению конструкции и работы разного типа антенн, рассмотрим одну из важнейших характеристик антенны – диаграмму направленности и те параметры, которые из нее напрямую вытекают.
Рекомендую, также, ознакомиться с предыдущей статьёй - Ликбез: основы теории по антеннам.
Введение
Антенна, вне зависимости от конструкции, обладает свойством обратимости (может работать как на прием, так и на излучение). Часто в радиорелейных трактах одна и та же антенна может быть подключена одновременно к приемнику и передатчику. Это позволяет излучать и принимать сигнал в одном направлении на разных частотах.
Почти все параметры приемной антенны соответствуют параметрам передающей антенны, но иногда имеют несколько другой физический смысл.
Несмотря на то, что приемная и передающая антенны обладают принципом двойственности, в конструктивном отношении они могут существенно отличаться. Связано это с тем, что передающая антенна должна пропускать через себя значительные мощности для передачи электромагнитного сигнала на большие (максимально возможные) расстояния. Если же антенна работает на прием, то она взаимодействует с полями очень малой напряженности. Вид токопередающей конструкции антенны часто определяет ее конечные габариты.
Пожалуй, основная характеристика любой антенны это диаграмма направленности. Из нее вытекает множество вспомогательных параметров и такие важные энергетические характеристики как коэффициент усиления и коэффициент направленного действия.
Диаграмма направленности
Диаграмма направленности (ДН) – это зависимость напряженности поля, создаваемого антенной на достаточно большом расстоянии, от углов наблюдения в пространстве. В объеме диаграмма направленной антенны может выглядеть так, как показано на рисунке 1.
Рисунок 1
То, что изображено на рисунке выше также еще называют пространственной диаграммной направленностью, которая является поверхностью объема и может иметь несколько максимумов. Главный максимум, выделенный на рисунке красным цветом, называется главным лепестком диаграммы и соответствует направлению главного излучения (или приема). Соответственно первые минимальные или (реже) нулевые значения напряженности поля вокруг главного лепестка определяют его границу. Все остальные максимальные значения поля называются боковыми лепестками.
На практике встречаются различные антенны, которые могут иметь несколько направлений максимального излучения, или не иметь боковых лепестков вовсе.
Для удобства изображения (и технического применения) ДН их принято рассматривать в двух перпендикулярных плоскостях. Как правило, это плоскости электрического вектора E и магнитного вектора H (которые друг другу в большинстве сред перпендикулярны), рисунок 2.
Рисунок 2
В некоторых случаях ДН рассматривают в вертикальной и горизонтальной плоскостях по отношению к плоскости Земли. Плоские диаграммы изображают полярной или декартовой (прямоугольной) системами координат. В полярных координатах диаграмма более наглядна, и при наложении ее на карту можно получить представление о зоне действия антенны радиостанции, рисунок 3.
Рисунок 3
Представление диаграммы направленности в прямоугольной системе координат более удобно для инженерных расчетов, такое построение чаще применяется для исследования самой структуры диаграммы. Для этого диаграммы строят нормированными, с главным максимумом, приведенным к единице. На рисунке ниже приводится типичная нормированная диаграмма направленности зеркальной антенны.
Рисунок 4
В том случае, когда интенсивность бокового излучения довольно небольшая и в линейном масштабе измерение бокового излучения затруднительно, применяют логарифмический масштаб. Как известно децибелы маленькие значения делают большими, а большие – маленькими, поэтому та же самая диаграмма в логарифмическом масштабе выглядит так, как показано ниже:
Рисунок 5
Из одной только диаграммы направленности можно вытащить довольно большое количество важных для практики характеристик. Исследуем подробнее диаграмму, изображенную выше.
Один из наиболее важных параметров – это ширина главного лепестка по нулевому излучению θ0 и ширина главного лепестка по уровню половинной мощности θ0,5. Половина мощности соответствует уровню 3 дБ, или уровню 0,707 по напряженности поля.
Рисунок 6
Из рисунка 6 видно, что ширина главного лепестка по нулевому излучению составляет θ0 = 5,18 град, а ширина по уровню половины мощности θ0,5 = 2,15 град.
Также диаграммы оценивают по интенсивности бокового и обратного излучения (мощности боковых и задних лепестков), отсюда вытекает еще два важных параметры антенны – это коэффициент защитного действия, и уровень боковых лепестков.
Коэффициент защитного действия – это отношение напряженности поля, излученного антенной в главном направлении к напряженности поля, излученного в противоположном направлении. Если рассматривают ориентацию главного лепестка диаграммы в направлении на 180 градусов, то обратного – на 0 градусов. Возможны и любые другие направления излучения. Найдем коэффициент защитного действия рассматриваемой диаграммы. Для наглядности изобразим ее в полярной системе координат (рисунок 7):
Рисунок 7
На диаграмме маркерами m1,m2 изображены уровни излучения в обратном и прямом направлениях соответственно. Коэффициент защитного действия определяется как:
- в относительных единицах. То же самое значение в дБ:
Уровень боковых лепестков (УБЛ) принято указывать в дБ, показывая тем самым, насколько уровень бокового излучения слаб по сравнению с уровнем главного лепестка, рисунок 8.
Рисунок 8
УБЛ в районе -18 дБ считается довольно хорошим показателем для высоконаправленной антенны. На рисунке изображены уровни первых боковых лепестков. Аналогично можно указывать также уровни всех последующих, но практической ценности их значение имеет мало, а представляет скорее академический интерес. Дело в том, что первые боковые лепестки находятся как правило "ближе всех остальных" к максимуму диаграммы направленности и могут оказывать помехи. Например, если сопровождение объекта происходит на уровне главного лепестка диаграммы -3дБ, а уровень первого бокового лепестка близок к этому значению (например -5:7 дБ), то велика вероятность начать цеплять объект боковым излучением со всеми вытекающими отсюда последствиями (неправильное позиционирование, потеря объекта и др.). Низкий УБЛ необходим не только для радиолокации, но и для области связи, ведь наличие паразитного излучения это всегда дополнительные помехи.
Коэффициент направленного действия и коэффициент усиления
Это два немаловажных параметра любой антенной системы, которые напрямую вытекают из определения диаграммы направленности. КНД и КУ часто путают между собой. Перейдем к их рассмотрению.
Коэффициент направленного действия
Коэффициент направленного действия (КНД) – это отношение квадрата напряженности поля, созданного в главном направлении (Е0 2 ), к среднему значению квадрата напряженности поля по всем направлениям (Еср 2 ). Как понятно из определения, КНД характеризует направленные свойства антенны. КНД не учитывает потери, так как определяется по излучаемой мощности. Из сказанного выше можно указать формулу для расчета КНД:
Если антенна работает на прием, то КНД показывает, во сколько раз улучшится отношение сигнал/шум по мощности, при замене направленной антенны ненаправленной, если помехи приходят равномерно со всех направлений.
Для передающей антенны КНД показывает, во сколько раз нужно уменьшить мощность излучения, если ненаправленную антенну заменить направленной, при сохранении одинаковых напряженностей поля в главном направлении.
КНД абсолютно ненаправленной антенны, очевидно, равно единице. Физически пространственная диаграмма направленности такой антенны выглядит в виде идеальной сферы:
Рисунок 9
Такая антенна одинаково хорошо излучает во всех направлениях, но на практике нереализуема. Поэтому это своего рода математическая абстракция.
Коэффициент усиления
Как уже было сказано выше, КНД не учитывает потери в антенне. Параметр, который характеризует направленные свойства антенны и учитывает потери в ней, называется коэффициентом усиления.
Коэффициент усиления (КУ) G – это отношение квадрата напряженности поля, созданного антенной в главном направлении (Е0 2 ), к среднему значению квадрата напряженности поля (Еоэ 2 ), созданного эталонной антенной, при равенстве подводимых к антеннам мощностей. Также отметим, что при определении КУ учитываются КПД эталонной и измеряемой антенны.
Понятие эталонной антенны очень важно в понимании коэффициента усиления, и в разных частотных диапазонах используют разные типы эталонных антенн. В диапазоне длинных/средних волн за эталон принят вертикальный несимметричный вибратор длиной четверть волны (рисунок 10).
Рисунок 10
Для такого эталонного вибратора Dэ=3,28, поэтому коэффициент усиления длинноволновой/средневолновой антенны определяется через КНД так: G=D * ŋ/3,28 , где ŋ – КПД антенны.
В диапазоне коротких волн в качестве эталонной антенны принимают симметричный полуволновый вибратор, для которого D э=1,64, тогда КУ:
В диапазоне СВЧ (а это почти все современные Wi-Fi, LTE и др. антенны) за эталонный излучатель принят изотропный излучатель, дающий Dэ=1, и имеющий пространственную диаграмму, изображенную на рисунке 9.
Коэффициент усиления является определяющим параметром передающих антенн, так как показывает, во сколько раз необходимо уменьшить мощность, подводимую к направленной антенне, по сравнению с эталонной, чтобы напряженность поля в главном направлении осталась неизменной.
КНД и КУ в основном выражают в децибелах: 10lgD, 10lgG.
Заключение
Таким образом, мы рассмотрели некоторые полевые характеристики антенны, вытекающие из диаграммы направленности и энергетические характеристики (КНД и КУ). Коэффициент усиления антенны всегда меньше коэффициента направленного действия, так как КУ учитывает потери в антенне. Потери могут возникать из-за отражения мощности обратно в линию питания облучателя, затекания токов за стенки (например, рупора), затенение диаграммы конструктивными частями антенны и др. В реальных антенных системах разница между КНД и КУ может составлять 1.5-2 дБ.
Читайте также: