Кислородный конус для узв своими руками
Оксигенатор(кислородный конус) в нашем мини-УЗВ. Из чего собирали, где брали детали. Цены. Призводительность .
Друзья! в этом ролике я расскажу как собрал систему насыщения узв кислородом и обеззараживания, про бесплатное .
В видео показан процесс создания концентратора кислорода своими руками.Сила вакуума способна сломать трубу.
В этом видео, инженер Антон Пельчер, который занимается строительством рыбоводных ферм более 10 лет расскажет .
Этот фильтр, выполненный на раме из оцинкованных профилей, совмещает в себе механическую очистку воды и .
Насыщение Воды кислородом и оксигенация в УЗВ. Каждый рыбовод для разведения рыбы в УЗВ должен знать как .
Привет всем раководам.Мы возобновили строительство УЗВ для австралийского рака (аккр)своими руками.Этот ролик .
Начало испытаний безнапорного оксигенатора, результаты поражают. От чего зависит насыщение воды кислородом?
Итоги шести месяцев работы, стоит ли оно тех денег? Часть 2 / УЗВ своими руками /Part 2 Results of six months of work, .
Это второе видео о том, как мы строили новое УЗВ для разведения осетра и форели своими руками. Наладка системы.
Потребность человечества в морепродуктах растёт вместе с населением, а ценные виды рыб находятся на пределе максимально возможного улова. Традиционное рыбоводство требует избытка водных ресурсов. Растущее загрязнение мирового океана сказывается на качестве даров моря. Всё это способствуют популярности УЗВ (установок замкнутого водоснабжения), позволяющих выращивать экологически чистую рыбу в небольшом количестве воды.
УЗВ, позволяющие выращивать экологически чистую рыбу, набирают все большую популярность
Принцип работы УЗВ
В качестве системы жизнеобеспечения водных организмов в рециркуляционных аквакультурах незаменимы установки замкнутого водоснабжения, позволяющие использовать ежедневно не менее 90% восстановленной после жизнедеятельности рыб воды.
Как правило, УЗВ предназначены для интенсивных аквакультур с высокой продуктивностью на единицу объёма воды.
Верхний предел плотности рыбы в УЗВ на основе атмосферного воздуха составляет около 50 грамм на литр воды. В установках с использованием жидкого кислорода этот показатель может быть выше. Содержание такого количества живой рыбы в столь ограниченном объёме воды требует качественного проектирования и исполнения УЗВ. Как правило, рыба умирает от перенаселения, потому что:
- задохнулась;
- отравилась азотистыми отходами собственной жизнедеятельности.
УЗВ предназначены для активных аквакультур
Соответственно, верно функционирующая система циркуляции должна достаточно аэрировать воду, добавляя в неё кислород, и, наоборот, выводить диоксид углерода и аммиак.
Последний рыба выделяет в качестве продукта катаболизма белка. Для того чтобы эти процессы производились эффективно, необходимо предварительно отделять твёрдые экскременты и остатки корма.
Таким образом, восстановление воды включает в себя три процесса:
- Удаление твёрдых отходов.
- Газовый обмен.
- Денитрификация.
Последние два могут проводиться одновременно или в любой последовательности. Восстановление воды невозможно эффективно провести в самом аквариуме. Жидкость необходимо изымать для очистки и возвращать обратно, перемещая её с помощью насосов.
Устройство УЗВ может отличаться деталями от указанного на схеме
Устройство УЗВ от изображённого на схеме может отличаться наличием дополнительных модулей: фильтров, насосов, обеззараживателей, блока регулировки кислотности, нагревателей, кислородного генератора, измельчителей, автоматики, отстойников и т. п. Крупные фермы наращиваются умножением однотипных блоков. Основные преимущества систем рециркуляционной аквакультуры перед искусственными прудами и водоёмами:
- не наносят ущерб окружающей среде;
- дают возможность полного управления производственными процессами;
- позволяют круглогодично выращивать рыбу;
- не зависят от природных факторов;
- помогают осуществлять полный контроль заболеваний;
- работают в зонах экстремальных климатических условий.
Проектирование замкнутых аквакультур
В действующей системе все компоненты должны работать слаженно, иначе её продуктивность будет ограничена производительностью самого слабого блока.
Например, нет смысла в мощном нитрификаторе, если за его работой не успевает модуль газообмена. Прогноз нагрузок на каждый узел — единственно верный способ проектирования компонентов.
Правильной точкой отсчёта будет количество рыбы, планируемое к выращиванию. Этот показатель поможет разобраться с необходимым объёмом пищи, что, в свою очередь, позволит рассчитать, сколько кислорода понадобится для метаболизма этого корма. Другие вычисления дадут мощность установки для аэрации и т. п. Косвенные и прямые расчёты продолжают до тех пор, пока не будет разработан проект системы, теоретически поддерживающий предполагаемую нагрузку без избыточных мощностей каждого из блоков.
Точкой отсчета в сборке УЗВ является планируемое количество рыбы
Непромышленные УЗВ для выращивания рыбы своими руками для домашних хозяйств могут проектироваться на основании иных начальных условий. Доступность материалов и наличие свободного места в этом случае важнее производительности. Компоненты для таких систем могут изготавливаться из самых различных материалов, но должны быть обязательно инертными и не вступать в реакцию с водой. Оцинкованные и медные трубы для инсталляции в этом случае непригодны, так как могут быть токсичны по отношению к обитателям системы. Установка замкнутого водоснабжения для выращивания рыбы, исполненная из пластиковых ёмкостей, труб и фитингов — идеальный вариант.
Стеклопластиковые или полиэтиленовые резервуары химически нейтральны, легко чистятся и стерилизуются. Круглые ёмкости обладают преимуществом в сравнении с квадратными. Оно заключается в способности таких сосудов к самоочистке: если воду напорно подавать в радиальный аквариум под углом, то установится круговое движение.
Слив, организованный в центре, позволяет отходам и остаткам корма самостоятельно уходить в отверстие.
Простейшая самодельная установка
Из элементов, доступных в любом строительном магазине, и с помощью инструментов домашнего мастера можно за несколько часов изготовить мини-УЗВ своими руками. Чертёж установки из недорогих компонентов:
УЗВ можно собрать из недорогих материалов своими руками
Основа системы — две бочки, желательно предназначенные для пищевых целей. Одна из них служит аквариумом для рыбы, из нижней части которого при помощи насоса вода перемещается в пластиковое ведро, вмонтированное в верхнюю часть второй бочки. Оно является ёмкостью для механического фильтра, отделяющего остатки корма и твёрдые фекалии. Механически очищенная жидкость через стояк попадает на дно биофильтра для переработки азотистых отходов, а затем снова попадает в аквариум по возвратной трубе.
Подбор сантехнических компонентов зависит от максимальной мощности насоса, производительность которого можно регулировать шаровым краном на перегонном трубопроводе.
Подбор элементов УЗВ зависит от технических условий помещения
Механические фильтры можно сделать из хозяйственных губок или мебельного поролона. В качестве денитрификатора лучше использовать специальную плавающую биозагрузку для УЗВ. Воздушный компрессор низкого давления, нагнетающий воздух на дно аквариума, послужит аэратором.
Технические и биологические основы рециркуляционных аквакультур хорошо изучены. Накопленный опыт позволяет проектировать и изготавливать УЗВ любой сложности и масштабов. Единственный ограничивающий фактор, препятствующий бурному развитию замкнутых систем рыбоводства — экономика. Рыба из УЗВ дороже пойманной в открытом водоёме. Самые успешные рециркуляционные аквакультуры производят дорогие морепродукты для нишевых рынков или расположены в экстремальных климатических зонах. Эта технология пока не позволяет накормить весь мир, но её вклад в улучшение экологии водных бассейнов трудно переоценить.
Оксигенатор(кислородный конус) в нашем мини-УЗВ. Из чего собирали, где брали детали. Цены. Призводительность .
Друзья! в этом ролике я расскажу как собрал систему насыщения узв кислородом и обеззараживания, про бесплатное .
В видео показан процесс создания концентратора кислорода своими руками.Сила вакуума способна сломать трубу.
В этом видео, инженер Антон Пельчер, который занимается строительством рыбоводных ферм более 10 лет расскажет .
Этот фильтр, выполненный на раме из оцинкованных профилей, совмещает в себе механическую очистку воды и .
Насыщение Воды кислородом и оксигенация в УЗВ. Каждый рыбовод для разведения рыбы в УЗВ должен знать как .
Это второе видео о том, как мы строили новое УЗВ для разведения осетра и форели своими руками. Наладка системы.
. на установке замкнутого водоснабжения УЗВ для выращивания клариевых сомов узв, узв своими руками, рыбоводство, .
Привет всем раководам.Мы возобновили строительство УЗВ для австралийского рака (аккр)своими руками.Этот ролик .
Бюджетная сборка распылителя воздуха, аэратора для УЗВ или Пруда своими руками Обман Какая мощность .
Мини УЗВ своими руками без механического фильтра., в данном видео я хочу показать и рассказать как я собирал мини .
В первую очередь повторюсь: мы говорим не о больших рыбоводческих хозяйствах, а о мини УЗВ, которые вы пытаетесь .
Стоимость материалов и инструментов для УЗВ. Делаем бассейны для УЗВ своими руками. Опыт использования фена для .
Привет всем раководам и не только.Мы завершили строительство нашего УЗВ для аккр.Это был первый запуск.Показую .
Добрый день , друзья ,подписчики и случайные зрители канала!! Сегодня доделал ещё один блок очистки воды и буду в .
По многочисленным просьбам сняли видео про устройство наших авто кормушек. Все очень просто смотрите.
Установка замкнутого водоснабжения своими руками Итоги, сколько нужно денег на старт! Setting of the reserved .
Домашнее и мелкомасштабное разведение рыбы - многообещающий способ удовлетворить потребность растущего .
Разбираем лампу после года непрерывного использования. Осматриваем и анализируем. Особое внимание уделяем .
Как обещали сняли видео обзор про барабанный фильтр. Его можно сделать самому, все просто и не дорого. Телефон: 8 .
Из элементов, доступных в любом строительном магазине, и с помощью инструментов домашнего мастера можно за несколько часов изготовить мини-УЗВ своими руками. Чертёж установки из недорогих компонентов:
УЗВ можно собрать из недорогих материалов своими руками
Основа системы — две бочки, желательно предназначенные для пищевых целей. Одна из них служит аквариумом для рыбы, из нижней части которого при помощи насоса вода перемещается в пластиковое ведро, вмонтированное в верхнюю часть второй бочки. Оно является ёмкостью для механического фильтра, отделяющего остатки корма и твёрдые фекалии. Механически очищенная жидкость через стояк попадает на дно биофильтра для переработки азотистых отходов, а затем снова попадает в аквариум по возвратной трубе.
Подбор элементов УЗВ зависит от технических условий помещения
Механические фильтры можно сделать из хозяйственных губок или мебельного поролона. В качестве денитрификатора лучше использовать специальную плавающую биозагрузку для УЗВ. Воздушный компрессор низкого давления, нагнетающий воздух на дно аквариума, послужит аэратором.
Технические и биологические основы рециркуляционных аквакультур хорошо изучены. Накопленный опыт позволяет проектировать и изготавливать УЗВ любой сложности и масштабов. Единственный ограничивающий фактор, препятствующий бурному развитию замкнутых систем рыбоводства — экономика. Рыба из УЗВ дороже пойманной в открытом водоёме. Самые успешные рециркуляционные аквакультуры производят дорогие морепродукты для нишевых рынков или расположены в экстремальных климатических зонах. Эта технология пока не позволяет накормить весь мир, но её вклад в улучшение экологии водных бассейнов трудно переоценить.
(Visited 233 times, 1 visits today)
На рынок компания представила два проекта УЗВ
1. Водообмен — 4275 м3/час; объем — 2850 м3; максимальная биомасса — 142500 кг; максимальная норма кормления — 3000 кг/день; площадь хозяйства — 200 м2, включая углубленные конусы для оксигенации; объем вносимой свежей воды — 300 литров/кг корма.
Узлы водоподготовки УЗВ первого типа. Конусы для оксигенации углублены в землю.
2. Водообмен — 2400 м3/час; объем — 1400 м3; максимальная биомасса — 70000 кг; максимальная норма кормления — 2000 кг/день; площадь хозяйства — 250 м2; объем вносимой свежей воды — 300 литров/кг корма.
В Норвегии Kruger Kaldnes установила систему второго типа. При выращивании 45-60 кг/м3 биомассы (смолт лосося) и количестве вносимого корма — 900 кг/л вода имеет следующие показатели:
CO2 на выходе из емкостей культивирования — 12-13 мг/лNH3/NH4 — 0,6 мг/лNO2 —
Серия бассейнов для культивирования в УЗВ компании Kruger Kaldnes (проект для Саннефьорд, Норвегии).
Принципиальная схема петли рециркуляции и водоподготовки УЗВ от компании Kruger Kaldnes.
Вода из бассейнов с рыбой под действием силы тяжести устремляется в узлы очистки.По трубопроводу вода поступает в барабанный фильтр. Диаметр микросита варьирует от 10 до 60 мкм. Из механического фильтра загрязнения вымываются для последующей обработки.
После механической очистки вода следует в биофильтр с псевдоожиженным слоем. В качестве наполнителя используются полиэтиленовые, так называемые, биочипы AnoxKaldnes MBBR. Постоянное перемешивание наполнителя осуществляется с помощью распылителей воздуха.
MiniChipTM прототип (1500 м2/м3) (1); BiofilmChipTM M (1200 м2/м3) (2); K1 (3) и K3 (4) (оба 500 м2/м3) от шведской компании AnoxKaldnes. Второй экземпляр используется в биологических фильтрах немецкой УЗВ.
Вода последовательно проходит два биологических фильтра. Из второго реактора под действием сил тяжести она попадает в камеру для дегазации. Углекислый газ проходит вверх против движения воды и потока нагнетаемого воздуха. Давление в камере регулируется дополнительным компрессором, который создает противоточную газовую фазу.
Помпа обеспечивает возврат воды в конусы для оксигенации, а затем в емкости культивирования.
Проект УЗВ второго типа, реализованный в Норвегии. 1. Подвод воды от бассейнов к барабанным фильтрам. Место входа труб располагается чуть выше конусов для оксигенации, не показано); 2. Барабанный фильтр. Микросито ополаскивается от загрязнений; 3. загрязнения от фильтра поступают в дренаж и удаляются; 4-5. Барабанные фильтры наполовину погружены в емкость первого биофильтра так, что очищенная вода подвергается биологической фильтрации; 6. Наполнитель биочипы AnoxKaldnes MBBR перемешиваются аэратором; 7. из второго биологического фильтра вода проходит колонки для дегазации, слева колонки находятся два кулера для выветривания углекислого газа (создают противоток воздуха воде); 9-10. Насыщение воды кислородом и возвращение в бассейны с рыбой.
Баланс осаждаемых частиц
Эффективность бассейна с двойной дренажной системы в отношении концентрации твердых частиц при их прохождении через донный дренаж можно проиллюстрировать следующим уравнением баланса:
in> + TSS> = out1 • TSSout1> + out2 • TSSout2>, где Q – скорость водного потока (м3/сутки); Qout1 – скорость водного потока, покидающего донный дренаж (м3/сутки); TSSin – концентрация твердых частиц в бассейне (кг/м3); TSSout1 – концентрация твердых частиц, покидающих боковой дренаж (кг/м3); TSSout2 – концентрация твердых частиц, покидающих донный дренаж (кг/м3) и PTSS – уровень образования твердых частиц (кг/сутки).
PTSS = aTSS • rfeed • ρfish • Vtank, где ρfish – плотность рыб в емкости культивирования (кг/м3); Vtank – объем бассейна (м3); rfeed – частота кормления (кг корма/(кг рыбы*сутки)), aTSS — количество образующихся твердых частиц (кгTSS/кг корма).
Доля удаляемых через центральный дренаж твердых частиц (frem) может быть определена по следующему уравнению (1).Преобразуя уравнение, можно следующим образом рассчитать TSSout2 (2):
Использование двойной дренажной системы существенно повышает концентрацию твердых частиц, удаляемых посредством слабого потока через донный дренаж. Концентрация этих частиц может в 10 раз превышать концентрацию частиц в составе основного потока воды, покидающего дренаж. Например, в бассейнах с двойной дренажной системе, в которых выращивалась тиляпия (Timmons, 1997), центральный дренаж удалял до 100% твердых частиц (при использовании 2-3% всего потока воды). В том же исследовании концентрация частиц, проходящих через боковой дренаж (взвешенные в толще воды) составляла 6,4 мг/л (стандартное отклонение 3,6). В этой работе рыбе ежедневно давали 80 кг/сутки корма, объем бассейна составлял 53 м3, поток через центральный дренаж – 110 л/мин, а общий водный обмен через биофильтр – 3,6-5.5 м3/мин. Все захваченные в донный дренаж частицы затем фильтруются механическим сетчатым фильтром, либо отстойником (осушается ежедневно, объем 3 м3).
Re Сколько по минимуму будет стоить УЗВ
From: Василий
Comments
Построить своими руками можно все, если есть схемы и планы! Только это однозначно скажется на надежности всей системы. Надо быть к этому готовым!
Я рекомендую покупать только профессиональное оборудование для аквакультуры. Но если нет денег, а построить все же хочется, то можно брать другое.
Установка состоит из:
Если покупать в Германии для осетровника 20 тонн, то:
Мальковый цех — 4.000 €.Производственный цех — 6.000 €
2. Трубопроводы. В России выпускается много вариантов пластиковых труб.
Если покупать Европейский генератор, то он с воздушными фильтрами, высушивателем воздуха, с двумя ресиверами и компрессором (на 20 тонный осетровник) будет стоить: 32.000 €.
Конусный оксигенаторы (на 20 тонный осетровник) будут стоить примерно 4.000 €.
4. Механический фильтр. Лучше конечно купить микросетчатый, барабанный фильтр, но можно построить полочный отстойник или фильтровать через плавающие полиэтиленовые гранулы (сырье для ПЭТ бутылок), тогда будет стоить не дорого. Но удобнее работать с барабанным, самопромывающимся, микросетчатым фильтром.
Если брать в ЕС для осетровника 20 тонн, то
Мальковый цех — 7.000 €.Производственный цех — 10.000 €
Еще, хорошо бы усилить микросетчатый фильтр гидроциклоном, тогда меньше потребуется воды для обратной промывки.
6. Защита от аварий. Это лучше все купить в Европе. Датчики давления, скорости жидкости, содержания кислорода в воде и сигнализаторы уровня воды. Дизель-электрогенератор с авто запуском.
Сколько будет стоить такая самодельная УЗВ, трудно сказать, надо считать основываясь на местный рынок рабочей силы и доступных материалов. Но в разы она будет стоить точно! Надо иметь план, схему УЗВ.
Поэтому УЗВ лучше поделить на независимые модули, чтобы избежать потери всего урожая и быть готовым переселить рыбу из аварийного блока в другой рабочий, до исправления неполадок. Иметь трезвых, страдающих бессонницей операторов!
Читайте также: