Какой принцип положен в основу архитектуры современных компьютеров
Архитектура компьютера, организация внутренней и внешней памяти, магистраль, принципы работы и конфигурация компьютера
Для того чтобы понимать возможности и ограничения, существующие при работе с компьютерами, и уметь автоматизировать информационные процессы, недостаточно знать, из каких функциональных устройств состоит компьютер. Необходимо иметь представление о структуре компьютера и понимать принципы организации работы компьютера. Говоря другими словами, необходимо иметь представление об архитектуре компьютера.
Архитектура компьютера — структура и принципы организации работы компьютера, рассматриваемые без особенностей их технической реализации.
Все информационные процессы в компьютере осуществляются автоматически под управлением программ, созданных программистами. Программы состоят из команд. Процессор выполняет последовательность команд, обрабатывает данные и управляет всеми устройствами компьютера автоматически.
Вся информация в компьютере (данные и программы) хранится, обрабатывается и передается с использованием двоичного кода. Иначе говоря, информация в компьютере кодируется последовательностью нулей и единиц.
Адрес ячейки (адрес байта) — порядковый номер ячейки (байта) внутренней памяти компьютера.
Адрес ячейки памяти, как и вся информация в компьютере, представлен с использованием двоичного кода. Количество ячеек (байтов) памяти, а значит, емкость внутренней памяти зависит от количества двоичных разрядов, используемых для кодирования адреса ячейки (байта). Например, если для кодирования адреса ячейки использовано 8 двоичных разрядов (8 битов), то можно закодировать 256 адресов ячеек (28 = 256). А поскольку каждая ячейка содержит 1 байт информации, то информационная емкость всех ячеек памяти, имеющих адреса, составит 256 байтов, нумеруемых с 0 по 255 (табл. 21).
Носители внешней памяти компьютера размечаются (форматируются) на секторы. Каждому сектору присваивается свой порядковый номер, который называется адресом сектора. Информационная емкость одного сектора, как правило, составляет 512 байтов. Поскольку информационная емкость одного сектора довольно мала, то соседние секторы могут быть объединены в кластеры. В зависимости от параметров разметки носителя один кластер может содержать 1, 2, 4, 8, 16, 32, 64 соседних секторов. Обращение к кластеру происходит по адресу — порядковому номеру кластера.
Данные и программы хранятся в памяти компьютера единообразно с использованием двоичного кода. Причем в одних и тех же ячейках или секторах памяти в разное время могут храниться как данные, так и программы. Учитывая это, говорят, что память компьютера однородна.
Взаимодействие всех устройств компьютера осуществляется через общий канал связи — магистраль, которую также называют системной шиной. По магистрали передаются команды и обрабатываемые данные, адреса ячеек памяти, где хранятся данные или команды, управляющие сигналы, координирующие работу устройств компьютера. Через магистраль процессор управляет и высокоскоростными (регистры процессора, оперативная память, кэш-память) и низкоскоростными (внешняя память, устройства ввода и вывода) устройствами компьютера. Взаимодействие с низкоскоростными устройствами, как правило, требует преобразования сигналов (например, из аналогового сигнала в цифровой сигнал) и выполнения определенных операций. Для того чтобы процессор не ждал, пока низкоскоростные устройства выполнят его команды, используются контроллеры, которые управляют работой таких устройств. Контроллеры частично выполняют функцию процессора, и в этом случае говорят уже не о процессоре, а о центральном процессоре и контроллерах.
Магистраль компьютера (системная шина компьютера) — совокупность проводников, связывающих центральный процессор и внутреннюю память с устройствами управления внешней памятью, устройствами ввода и вывода для передачи адресов ячеек памяти, данных, программ и служебных сигналов.
Основной характеристикой магистрали является ее разрядность, которая определяется количеством одновременно передаваемых битов информации. Разрядность магистрали напрямую связана с количеством двоичных разрядов, отводимых для кодирования адреса ячейки памяти, а значит, и с емкостью внутренней памяти компьютера. Разрядность магистрали должна быть согласована с разрядностью процессора.
Компьютер собирается из отдельных блоков (модулей) аналогично тому, как собирается игрушечный дом из кубиков детского конструктора. В компьютере можно заменять и добавлять блоки при условии их совместимости. Это не только не нарушит работу компьютера, но и, возможно, повысит его производительность или увеличит количество выполняемых им функций.
Таким образом, можно выделить следующие основные принципы, которые лежат в основе архитектуры как ранее разработанных, так и большинства современных компьютеров.
Принцип программного управления компьютером — компьютер автоматически управляется командами программы, которые понятны процессору.
Принцип двоичного представления данных и команд в компьютере — вся обрабатываемая информация (данные и команды программы) представляется с использованием двоичного кода, а значит, единообразно представляется в виде последовательности нулей и единиц.
Принцип адресности памяти компьютера — внутренняя память состоит из ячеек, каждая из которых имеет свой адрес, аналогично внешняя память состоит из секторов, каждый из которых также имеет свой адрес.
Принцип однородности памяти компьютера — обрабатываемые данные и исполняемые программы могут храниться в одной и той же памяти компьютера.
Принцип магистрально-модульного устройства компьютера — все устройства компьютера взаимодействуют через магистраль (системную шину), каждое устройство конструктивно выполнено в виде отдельного блока (модуля), который легко подключается или заменяется.
Принцип открытой архитектуры компьютера — каждый физически неисправный или устаревший по характеристикам блок можно заменить на новый блок без внесения изменений в конструкцию компьютера.
Говорят, что компьютеры, построенные с учетом этих принципов, имеют магистрально-модульную архитектуру (рис. 20).
Все устройства компьютера взаимодействуют через магистраль. Непосредственно к магистрали подсоединяются центральный процессор и основная память компьютера. Остальные устройства подключены к магистрали через контроллеры. Центральный процессор управляет всеми устройствами с помощью команд.
Устройства компьютера могут быть изготовлены как в виде отдельных элементов (например, мышь, клавиатура, видеоадаптер), так и конструктивно объединены в единый блок (например, жесткий диск состоит из самого носителя, накопителя на жестком ди ске и контроллера жесткого диска). Подсоединяя к магистрали наборы разных модулей, можно собирать компьютеры, различные по возможностям, характеристикам и составу устройств. Иначе говоря, можно получать компьютеры разной конфигурации.
Рис. 20. Магистрально-модульная архитектура компьютера
Конфигурация компьютера — совокупность взаимосвязанных устройств, составляющих компьютеры, и их основные технические характеристики.
Приведем пример конфигурации современного персонального компьютера: 32-разрядный центральный процессор с тактовой частотой 3,3 ГГц, оперативная память объемом 1 Гбайт с частотой работы 800 МГц, жесткий диск объемом 320 Гбайтов со скоростью вращения 7200 оборотов в минуту, кэш-память объемом 16 Мбайтов, видеопамять объемом 512 Мбайтов, накопитель DVD ± RW.
Для организации взаимодействия компьютеров в сети каждому компьютеру присваивается уникальный адрес. Так, например, в сетях Интернет и Интранет он называется IP-адрес (Ай Пи адрес). Поскольку IP-адрес состоит из 32 двоичных разрядов, то, используя их, можно закодировать адреса нескольких миллиардов компьютеров. Подключение компьютера к сети обеспечивается устройством ввода-вывода (сетевой картой), которое, с одной стороны, взаимодействует через контроллер с магистралью этого компьютера, а с другой — с компьютерной сетью.
Развитие архитектуры компьютера происходит в нескольких направлениях. Среди них основными являются параллельное выполнение нескольких операций и одновременное использование нескольких процессоров (многопроцессорных систем) в компьютере. Это позволит повысить быстродействие компьютеров и сделать работу человека более эффективной.
Архитектурой современного компьютера является схематическое изображение его структуры строения с указанием принципов работы комплектующих, входящих в его состав.
Понятие архитектуры компьютера
Архитектура компьютера - это ряд неких правил производства электронной системы вычисления, а также базовые способности и отличительные черты ее технологий.Архитектурой персонального компьютера обычно пользуются в качестве инструмента для отработки стандартов. Другими словами, компьютерную систему по такому стандарту реально воплотить на основе сформированных схематических решений и технологий.
Под термином «архитектура компьютера» также понимают методологию сборки компьютеров и их составляющих. Таким образом, архитектура, разработанная определённой компанией, является её интеллектуальной собственностью и может быть применена только ею, являясь инструментом её конкурентоспособности. Но, невзирая на это, различными брендами используется общая концепция, объединяющая основные базовые характеристики разных моделей компьютеров, что делает их комплектующие универсальными.
Применение единой архитектуры персональных компьютеров дает возможность фирмам по производству компьютеров тесно взаимодействовать друг с другом для создания и совершенствования различных компонентов и используемых технологий. Совмещение разных концепций в одно архитектурное решение дает возможность распространяться определенным моделям персональных компьютеров на рынке, позволяет различным компаниям спроектировать пакеты программ, которые в любом случае подойдут для персонального компьютера.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
Классический вариант архитектуры компьютера
Первоначальный состав архитектуры компьютера был предложен ученым Нейманом, который был известным математиком. Он изложил основные принципы конструирования персональных компьютеров, учитывая их логическую структуру. Эта методология, которую предложил Нейман, взята за основу классической архитектуры персонального компьютера. В его состав должны входить следующие основные элементы:
- логико-арифметический блок;
- управленческий блок;
- блок устройства внешней памяти;
- блок оперативной памяти;
- блок ввода-вывода данных.
В соответствии с этой структурой, должен быть соблюден определенный порядок работы элементов компьютера. Изначально производится загрузка информации в память компьютера из программы, что выполняется. Для ввода данных используются внешние устройства компьютера. После этого блок управления переносит эти данные из блока памяти в блок обработки информации. Обработка происходит с помощью различных элементов компьютера.
Современный вариант архитектуры компьютера
Архитектура современного компьютера, хоть и отличается от классического, но основана на его базе. Определяющей отличительной чертой современного персонального компьютера является наличие у него центрального процессора, который по сути есть соединением блока управления и логико-арифметического блога в единую систему.
Ранее такое соединение было практически невозможным из-за массивного размера микросхем. На сегодняшний день развитие позволило повысить степень интеграции микросхем. Стало возможным ранее невозможное, то есть помещение широкого набора функций в небольшую по размеру деталь. Архитектурой сегодняшнего персонального компьютера также предусматривается использование контроллеров. Необходимость их использования вызвана тем, что роль процессора, как основного устройства, что выполняет функцию обмена информацией с внешними устройствами, изменилась. Функция ввода-вывода информации была убрана из процессора, благодаря новым микросхемам. Была произведена разработка различных каналов обмена информацией, а также наборов микросхем, получивших позже название контроллеров.
Не нашли что искали?
Просто напиши и мы поможем
Архитектура IBM
Архитектура персонального компьютера, спроектированная фирмой IBM, по сути являет собой мировой стандарт. Главная её отличительная особенность - это открытая структура. Другими словами, персональные компьютеры, в соответствии с этим стандартом, перестали быть окончательными завершенными брендовыми продуктами.
IBM - это фирма, которая является одной из первых на рынке производства компьютеров, кто выработал общепризнанную архитектуру.Но она не монополист при этом, то есть фирмы и компании, производящие компьютеры и их составляющие элементы, сами определяют состав сборки персональных компьютеров. В то же время, всегда остается возможным осовременить свой персональный компьютер, заменив комплектующие на более продвинутые. Реализация технологии открытой архитектуры современных компьютеров стала возможной благодаря быстрым темпам прогресса.
Программное обеспечение и его структура в компьютерах на базе архитектуры IBM
Основной особенностью, по которой можно определить, что персональный компьютер относятся к платформе IBM, есть его возможность работать на различных операционных системах. Это является возможным за счет открытой структуры данной архитектуры. В компьютерах с архитектурой IBM используются операционные системы Linux, Windows в различных конфигурациях, а также, помимо того, разные операционные системы, совместимые с аппаратным оснащением персонального компьютера с такой архитектурой.
Платформа IBM позволяет устанавливать не только программы от известных брендов, но и программы малоизвестных составителей, и при этом система не требует согласования этих программ с производителями аппаратных компонентов.На платформе IBM используется стандартная система ввода-вывода данных, именуемая BIOS, которая входит состав всех персональных компьютеров. Её задачей является обеспечение исполнения основных операций персональных компьютеров, вне зависимости от типа операционной системы, установленной на них. Этот момент также является свойством открытости архитектуры на платформе IBM, авторы системы BIOS являются толерантными к производителям других операционных систем и продуктов. Само явление выпуска системы BIOS в составе различных брендов является свойством открытости платформы IBM.
В основу архитектуры современных персональных компьютеров положен магистрально модульный принцип. Этот принцип предусматривает построение компьютера из функциональных блоков, взаимодействующих посредствам общего канала –шины. В сочетании с открытой архитектурой это позволяет собирать машину нужной конфигурации.
Магистраль включает в себя 3многоразрядные шины: шину данных, шину адреса и шину управления.
Базовая конфигурация ПК - минимальный комплект аппаратный средств, достаточный для начала работы с компьютером. В настоящее время для настольных ПК базовой считается конфигурация, в которую входит четыре устройства:
Системный блок – основной блок компьютерной системы. В нем располагаются устройства, считающиеся внутренними. Устройства, подключающиеся к системному блоку снаружи, считаются внешними.
В системный блок входит процессор, оперативная память, накопители на жестких и гибких магнитных дисках, на оптический дисках и некоторые другие устройства.
Схема устройств компьютера представлена на рисунке:
Ниже приведён перечень устройств офисного ПК:
I. Центральный процессор и чипсет.
II. Внутренняя память:
1) схема BIOS;
2) ОЗУ основная (оперативная) память RAM;
3) КМОП-, или CMOS-память.
III. Внешняя память:
1) накопитель на жестком магнитном диске (НЖМД), винчестер, HDD:
· стационарный (в системном блоке или в корпусе ноутбука);
· мобильный, подключаемый к USB-порту;
2) привод оптических дисков типа CD, DVD, Blu-rayDisc в разновидностях:
· ROM – «только для чтения»;
· R – с однократной записью;
· RW, RAM – перезаписываемые;
3) флэш-диск (англ. вариант – USB flash drive);
4) кардридер для обмена информацией с флэш-картами нескольких форматов;
5) накопитель на магнито-оптическом (МО) диске повышенной надежности хранения благодаря воздействию двух физических процессов при записи информации;
6) накопитель на гибком магнитном диске, дисковод флоппи-дисков, дискет, FDD (в настоящее время не устанавливается на выпускаемых ПК);
7) накопитель на магнитной ленте, стример.
IV. Устройства ввода:
1) клавиатура, keyboard (проводная или беспроводная);
2) координатное устройство, манипулятор типа мышь;:
· мышь лазерная (проводная или беспроводная);
· шаровой манипулятор трекбол;
· координатная сенсорная панель тачпад (для ноутбуков);
3) графический планшет, дигитайзер со стилусом (пером);
4) устройство оптического ввода с бумаги, плёнок - сканер:
5) сенсорный экран, управляемый пальцем или стилусом (указочкой), типа:
· на поверхностно-акустических волнах (вандалостойкие);
6) звуковая карта (в режиме «оцифровки» звука с микрофона и от др. источников) (англ., Sound Card - SD);
7) вэб-камера;
8) цифровые датчики
V. Устройства вывода:
1) видеосистема из двух частей:
· видеоадаптер, или видеокарта;
· монитор (устар., дисплей) в разновидностях на основе:
- ЭЛТ (электронно-лучевой трубки, англ., Cathode Ray Tube - CRT);
- жидкокристаллической (ЖК) панели (англ., LCD);
- электролюминесценции (англ., Organic Light Emitted Diode - OLED);
2) принтер следующих основных типов:
· матричный (точнее, игольчато-ударный);
3) плоттер, или графопостроитель:
4) звуковая карта (в режиме синтеза звука с выводом на акустические колонки);
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока "Архитектура персонального компьютера"
На этом уроке мы с вами познакомимся с магистрально-модульным принципом построения компьютера, узнаем, что относится к основным логическим узлам компьютера, рассмотрим, какие устройства находятся на материнской плате, и многое другое.
Компьютер – это многофункциональное электронное устройство, предназначенное для накопления, обработки и передачи информации.
К основным логическим узлам компьютера относятся центральный процессор, основная память, внешняя память, периферийные устройства.
Персональные компьютеры начали появляться благодаря развитию микропроцессоров в 1980-х годах.
Архитектура персонального компьютера – это логическая организация, структура и ресурсы, то есть средства вычислительной системы, которые могут быть выделены процессу обработки данных на определённый интервал времени.
В основе архитектуры современных персональных компьютеров лежит магистрально-модульный принцип. Давайте рассмотрим рисунок.
Итак, перед вами изображена архитектура персонального компьютера. На ней изображены функциональные блоки персонального компьютера, к которым относятся устройства ввода/вывода, внешние запоминающие устройства, центральный процессор, память и видеопамять. Все эти блоки соединены между собой информационной магистралью, которая называется системной шиной. Она состоит из трёх частей: шина данных, шина адреса, шина управления. Шина данных используется для передачи данных к функциональным блокам. Шина адреса предназначена для передачи адресов устройств, которым передаются данные. И последняя, шина управления используется для передачи управляющих сигналов, которые синхронизируют работу разных устройств. То есть через шину передаются все данные от одного устройства к другому.
Также на рисунке у нас есть такие элементы, как контроллеры. Контроллеры – это периферийные устройства, которые управляют внешними устройствами. Передача всех данных осуществляется через шину.
Также мы можем видеть на рисунке сплошные и пунктирные стрелки. Сплошными стрелками изображены направления потоков информации, а пунктирными – направление управляющих сигналов.
В этой архитектуре существует такое значительное достоинство, как принцип открытой архитектуры. То есть мы можем подключать к компьютеру новые устройства или заменять старые на более современные. Для каждого типа и модели устройства используется свой контроллер.
Например, если мы подключим компьютерную мышь через USB-порт, то она определится у нас на компьютере только после установки в операционную систему специальной программы для управления этим устройством. Такие программы называются драйверами устройств.
Таким образом, можно сформулировать следующее определение: открытая архитектура персонального компьютера – это архитектура, предусматривающая модульное построение компьютера с возможностью добавления и замены отдельных устройств.
Это то, что касается принципов обмена информацией между устройствами.
Материнская плата – это сложная многослойная печатная плата, являющаяся основой построения вычислительной системы.
Изначально дополнительные устройства (например, внутренний модем, сетевой адаптер беспроводной связи Wi-fi, звуковая плата и так далее) подключались к материнской плате с помощью слотов расширения и разъёмов.
В наше время такая необходимость отпала, так как большинство дополнительных устройств уже встроены в современные материнские (системные) платы.
Основными (несъёмными) частями материнской платы являются разъём процессора, разъёмы оперативной памяти, микросхемы чипсета, загрузочное ПЗУ, контроллеры шин и их слоты расширения, контроллеры и интерфейсы периферийных устройств.
Важнейшей частью материнской платы является чипсет. Чипсет – это набор микросхем, который связывает память, процессор, видеоадаптер, устройства ввода/вывода и другие элементы персонального компьютера, для выполнения совместных функций.
В современных компьютерах находятся две основные большие микросхемы чипсета: контроллер-концентратор памяти (северный мост) и контроллер-концентратор ввода/вывода (южный мост).
Давайте рассмотрим схему архитектуры персонального компьютера.
Северный мост отвечает за работу процессора с оперативной памятью и видеосистемой. От его параметров (тип, частота, пропускная способность) зависят параметры подключённых к нему устройств: системной шины, оперативной памяти, видеоадаптера. Северный мост подключается напрямую к центральному процессору через системную шину.
Южный мост обеспечивает работу с внешними устройствами и обычно подключается к центральному процессору через северный мост при помощи внутренней шины.
Все устройства компьютера соединены между собой шинами различных видов.
Быстродействие процессора, оперативной памяти и периферийных устройств существенно различаются. Быстродействие устройства, в свою очередь, зависит от тактовой частоты обработки данных, которая обычно измеряется в мегагерцах, и разрядности. Разрядность – это количество битов данных, обрабатываемых за один такт. Такт – это промежуток времени между подачами электрических импульсов, которые синхронизируют работу устройств компьютера.
Пропускная способность шины – это скорость передачи данных между устройствами, которые она соединяет. А исходя из вышесказанного, можно сделать вывод, что скорость передачи данных различных шин будет также отличаться. Рассмотрим формулу для вычисления пропускной способности шины (измеряется в битах в секунду). Она равна произведению разрядности шины и частоты шины. Разрядность измеряется в битах, частота – в герцах, в свою очередь, 1 герц равен 1 такту в секунду.
Например, для быстрой работы компьютера пропускная способность шины оперативной памяти должна совпадать с пропускной способностью шины процессора.
Как говорилось ранее, Северный мост связан с процессором системной шиной. Например, если разрядность системной шины составляет 64 бита, а частота – 1066 МГц, то пропускная способность будет равна:
Перейдём к частоте процессора. Тактовая частота процессора показывает, сколько процессор может произвести вычислений в единицу времени. Из этого следует вывод, что чем больше частота, тем больше операций в единицу времени может выполнить процессор. Тактовая частота современных процессоров составляет от 1 до 4 ГГц. Рассмотрим формулу. Тактовая частота равна произведению внешней или базовой частоты на определённый коэффициент. Коэффициент зависит от характеристик процессора. Например, процессор Intel Core i7 920 использует частоту шины 133 МГц и множитель 20. Значит, тактовая частота будет равна:
133 · 20 = 2660 МГц.
Шина памяти соединяет оперативную память и северный мост, и, соответственно, служит для передачи данных между этими устройствами.
Частота шины памяти может быть больше частоты системной шины.
Следующая шина, которую мы рассмотрим, – PCI Express. Она соединяет видеоплату с северным мостом.
Так как в наше время очень быстро развивается компьютерная графика, то потребность в скорости передачи данных от видеоплаты к оперативной памяти и процессору возрастает. Наибольшее распространение получила шина PCI Express – это ускоренная шина взаимодействия периферийных устройств. Её пропускная способность может достигать до 32 гигабайт в секунду.
К самой же видеоплате с помощью аналогового разъёма VGA (графический адаптер) или цифрового разъёма DVI (цифровой видеоинтерфейс) подключается монитор или проектор.
Жёсткие диски, CD-дисководы, DVD-дисководы подключаются к южному мосту при помощи шины SATA – это последовательная шина подключения накопителей.
Скорость передачи данных по ней может достигать 300 Мбайт в секунду.
Для подключения периферийный устройств (принтера, клавиатуры, сканера и других), которые имеют USB-выход, к южному мосту используется шина USB – это универсальная последовательная шина.
Её пропускная способность достигает 60 Мегабайт в секунду. При помощи шины USB к компьютеру можно одновременно подключить до 127 периферийных устройств.
При увеличении производительности процессора происходит увеличение производительности самого компьютера.
Увеличение производительности процессора происходит за счёт увеличения частоты. Но, как говорится, всему есть свой предел. При увеличении частоты процессора происходит также увеличение тепловыделения, которое не может быть не ограниченным. Выделение процессором теплоты Q пропорционально потребляемой мощности P, которая, в свою очередь, пропорциональна квадрату частоты.
Поэтому для того, чтобы увеличить производительность процессора, начали увеличивать количество ядер процессора (арифметических логических устройств).
В 2005 году был создан первый двухъядерный микропроцессор. Это сделали практически одновременно две фирмы – Intel и AMD. Такая архитектура позволяет производить на персональном компьютере параллельную обработку данных, что существенно увеличивает его производительность. Можно сказать, что в архитектуре находятся 2 центральных процессора, работа которых согласована между собой, и они объединены между собой, например, контроллером. За счёт этого поток данных идёт не к одному центральному процессору, а разделяется на два. И увеличивается быстродействие компьютера.
В настоящее время количество ядер в микропроцессорах достигает 8.
А сейчас пришло время подвести итоги урока.
Сегодня мы с вами познакомились с магистрально-модульным принципом построения компьютера. Рассмотрели, какие устройства находятся на материнской плате. А также подробно ознакомились с архитектурой персонального компьютера.
Читайте также: