Какой объем в памяти компьютера занимает сообщение
Единицей измерения количества информации является бит – это наименьшаяединица.
1 Кб (килобайт) = 1024 байта= 2 10 байтов
1 Мб (мегабайт) = 1024 Кб = 2 10 Кб
1 Гб (гигабайт) = 1024 Мб = 2 10 Мб
1 Тб (терабайт) =1024 Гб = 2 10 Гб
Формулы, которые используются при решении типовых задач:
Информационный вес символа алфавита и мощность алфавита связаны между собой соотношением: N = 2 i .
i – информационный вес одного символа.
Основная литература:
- Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.
Дополнительная литература:
- Босова Л. Л. Информатика: 7–9 классы. Методическое пособие. // Босова Л. Л., Босова А. Ю., Анатольев А. В., Аквилянов Н.А. – М.: БИНОМ, 2019. – 512 с.
- Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 1. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
- Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 2. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
- Гейн А. Г. Информатика: 7 класс. // Гейн А. Г., Юнерман Н. А., Гейн А.А. – М.: Просвещение, 2012. – 198 с.
Теоретический материал для самостоятельного изучения.
Что же такое символ в компьютере? Символом в компьютере является любая буква, цифра, знак препинания, специальный символ и прочее, что можно ввести с помощью клавиатуры. Но компьютер не понимает человеческий язык, он каждый символ кодирует. Вся информация в компьютере представляется в виде нулей и единичек. И вот эти нули и единички называются битом.
Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется один бит.
Алфавит любого понятного нам языка можно заменить двоичным алфавитом. При этом мощность исходного алфавита связана с разрядностью двоичного кода соотношением: N = 2 i .
Эту формулу можно применять для вычисления информационного веса одного символа любого произвольного алфавита.
Рассмотрим пример:
Алфавит древнего племени содержит 16 символов. Определите информационный вес одного символа этого алфавита.
Составим краткую запись условия задачи и решим её:
16 = 2 i , 2 4 = 2 i , т. е. i = 4
Ответ: i = 4 бита.
Информационный вес одного символа этого алфавита составляет 4 бита.
Математически это произведение записывается так: I = К · i.
32 = 2 i , 2 5 = 2 i , т.о. i = 5,
I = 180 · 5 = 900 бит.
Ответ: I = 900 бит.
I = 23 · 8 = 184 бита.
Как и в математике, в информатике тоже есть кратные единицы измерения информации. Так, величина равная восьми битам, называется байтом.
Бит и байт – это мелкие единицы измерения. На практике для измерения информационных объёмов используют более крупные единицы: килобайт, мегабайт, гигабайт и другие.
1 Кб (килобайт) = 1024 байта= 2 10 байтов
1 Мб (мегабайт) = 1024 Кб = 2 10 Кб
1 Гб (гигабайт) = 1024 Мб = 2 10 Мб
1 Тб (терабайт) =1024 Гб = 2 10 Гб
Материал для углубленного изучения темы.
Как текстовая информация выглядит в памяти компьютера.
Набирая текст на клавиатуре, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111. Теперь возникает вопрос, какой именно восьмизначный двоичный код поставить в соответствие каждому символу?
Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код ‑ просто порядковый номер символа в двоичной системе счисления.
Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.Таблица для кодировки – это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для разных типов компьютеров используются различные таблицы кодировки.
Таблица ASCII (или Аски), стала международным стандартом для персональных компьютеров. Она имеет две части.
В этой таблице латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений. Это правило соблюдается и в других таблицах кодировки и называется принципом последовательного кодирования алфавитов. Благодаря этому понятие «алфавитный порядок» сохраняется и в машинном представлении символьной информации. Для русского алфавита принцип последовательного кодирования соблюдается не всегда.
Запишем, например, внутреннее представление слова «file». В памяти компьютера оно займет 4 байта со следующим содержанием:
01100110 01101001 01101100 01100101.
А теперь попробуем решить обратную задачу. Какое слово записано следующим двоичным кодом:
01100100 01101001 01110011 01101011?
В таблице 2 приведен один из вариантов второй половины кодовой таблицы АSСII, который называется альтернативной кодировкой. Видно, что в ней для букв русского алфавита соблюдается принцип последовательного кодирования.
Вывод: все тексты вводятся в память компьютера с помощью клавиатуры. На клавишах написаны привычные для нас буквы, цифры, знаки препинания и другие символы. В оперативную память они попадают в форме двоичного кода.
Из памяти же компьютера текст может быть выведен на экран или на печать в символьной форме.
Разбор решения заданий тренировочного модуля
Информационный вес символа алфавита и мощность алфавита связаны между собой соотношением: N = 2 i .
Информация (лат. informatio — разъяснение, изложение, набор сведений) — базовое понятие в информатике, которому нельзя дать строгого определения, а можно только пояснить:
- информация — это новые факты, новые знания;
- информация — это сведения об объектах и явлениях окружающей среды, которые повышают уровень осведомленности человека;
- информация — это сведения об объектах и явлениях окружающей среды, которые уменьшают степень неопределенности знаний об этих объектах или явлениях при принятии определенных решений.
Основными социально значимыми свойствами информации являются:
- полезность;
- доступность (понятность);
- актуальность;
- полнота;
- достоверность;
- адекватность.
Информационный процесс — это процесс сбора (приема), передачи (обмена), хранения, обработки (преобразования) информации.
Единицы измерения количества информации
Наименьшей единицей информации является бит (англ. binary digit (bit) — двоичная единица информации).
Бит — это количество информации, необходимое для однозначного определения одного из двух равновероятных событий.
Например, один бит информации получает человек, когда он узнает, опаздывает с прибытием нужный ему поезд или нет, был ночью мороз или нет, присутствует на лекции студент или нет и т. д.
В информатике принято рассматривать последовательности длиной 8 битов . Такая последовательность называется байтом .
Производные единицы измерения количества информации:
1 байт = 8 битов
1 килобайт (Кб) = 1024 байта = 2 10 байтов
1 мегабайт (Мб) = 1024 килобайта = 2 20 байтов
1 гигабайт (Гб) = 1024 мегабайта = 2 30 байтов
1 терабайт (Тб) = 1024 гигабайта = 2 40 байтов
В 1 бит можно записать один двоичный символ.
1 байт = 8 бит
В кодировке ASCII в один байт можно записать один 256 символьный код
В кодировке UNICODE один 256 символьный код занимает в памяти два байта
1 килобайт = 1024 байт
1 мегабайт = 1024 килобайт
1 гигабайт = 1024 мегабайт
1 терабайт = 1024 гигабайт
Например: двоичный текст 01010111 занимает в памяти 8 бит
Этот же текст в кодировке ASCII занимает 8 байт или 64 бита
Этот же текст в кодировке UNICODE занимает 16 байт или 128 бит.
Не забывайте, что пробелы надо тоже считать за символы поскольку они также набираются на клавиатуре и хранятся в памяти.
Мощность алфавита - это количество символов в алфавите или неопределенность из формулы Хартли.
Информационный вес одного символа - это значение i из формулы Хартли.
Отсюда можно сделать вывод, что не существует алфавита, состоящего из одного символа, поскольку тогда информационный вес этого символа был бы равен 0.
Чтобы перевести биты в байты надо число бит поделить на 8.
Например: 32 бита - это 4 байта.
Чтобы перевести байты в килобайты надо число байтов поделить на 1024.
Например: в 2048 байтах будет 2 килобайта. И так далее по следующим единицам измерения.
Чтобы перевести байты в биты надо число байт умножить на 8.
Например: в 3 байтах будет 24 бита.
Чтобы перевести килобайты в байты надо число килобайт умножить на 1024.
Например: в 3 килобайтах будет 3072 байта и соответственно 24576 бит. И так далее.
Мощность алфавита - 128. Это неопределенность. Значит один символ занимает в памяти 7 бит, тогда 5 символов занимают в памяти 35 бит.
Объем текстового файла
Кодирование информации в ПК заключается в том, что каждому символу ставится в соответствие уникальный двоичный код. Таким образом, человек различает символы по их начертаниям, а компьютер — по их кодам.
КОИ-8: 1 символ - 1 байт = 8 бит
UNICODE : 1 символ - 2 байта = 16 бит
ЗАДАЧА 3. Определить информационный объем книги (в Мбайтах) подготовленной на компьютере, состоящей из 150 страниц (каждая страница содержит 40 строк, 60 символов в каждой строке).
1) Подсчитаем количество символов в книге 40 * 60 * 150 = 360 000
2) Информационный объем книги составит 360 000 * 1 байт = 360 байт
3) Переведем в заданные единицы 360 000 байт / 1024 = 351,5625 Кбайт / 1024 = 0,34332275 Мбайт
Длина фразы составляет примерно 40 символов. Следователь но, ее объем можно приблизительно оценить в 40 х 2 = 80 байт. Такого варианта ответа нет, попробуем перевести результат в би ты: 80 байт х 8 = 640 бит. Наиболее близкое значение из пред ложенных — 592 бита. Заметим, что разница между 640 и 592 составляет всего 48/16 = 3 символа в заданной кодировке и его можно считать несущественным по сравнению с длиной строки.
З амечание: Подсчетом символов в строке можно убедиться, что их ровно 37 (включая точку и пробелы), поэтому оценка 592 бита = 74 байта, что соответствует ровно 37 символам в двухбайтовой кодировке, является точной.
Алфавит – это набор букв, символов препинания, цифр, пробел и т.п.
Полное число символов в алфавите называют мощностью алфавита
ЗАДАЧА 4. Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите мощностью 16 символов. Второй текст в алфавите мощностью 256 символов. Во сколько раз количество информации во втором тексте больше, чем в первом?
РЕШЕНИЕ: Если первый текст составлен в алфавите мощностью (К) 16 символов, то количество информации, которое несет 1 символ (1) в этом тексте, можно определить из соотношения: N = 2', таким образом, из 16 = 2' получим 1 = 4 бита. Мощность второго алфавита - 256 символов, из 256 = 2' получим 1 = 8 бит. Т.к. оба текста содержат одинаковое количество символов, количество информации во втором тексте больше, чем в первом, в 2 раза.
Скорость передачи информации
Скорость передачи данных по каналам связи ограничена пропускной способностью канала. Пропускная способность канала связи изменяется как и скорость передачи данных в бит/сек (или кратностью этой величины Кбит/с, Мбит/с, байт/с, Кбайт/с, Мбайт/с).
Для вычислении объема информации V переданной по каналу связи с пропускной способностью а за время t используют формулу:
ЗАДАЧА 1. Через ADSL - соединение файл размером 1000 Кбайт передавался 32 с. Сколько секунд потребуется для передачи файла размером 625 Кбайт.
РЕШЕНИЕ: Найдем скорость ADSL соединения: 1000 Кбайт / 32 с. = 8000 Кбит / 32 с. = 250 Кбит/с.
Найдем время для передачи файла объемом 625 Кбайт: 625 Кбайт / 250 Кбит/с = 5000 Кбит / 250 Кбит/с. = 20 секунд.
При решении задач на определении скорости и времени передачи данных возникает трудность с большими числами (пример 3 Мб/с = 25 165 824 бит/с), поэтому проще работать со степенями двойки (пример 3 Мб/с = 3 * 2 10 * 2 10 * 2 3 = 3 * 2 23 бита/с).
ЗАДАЧА 2 . Скорость передачи данных через ADSL─соединение равна 512 000 бит/c. Передача файла через это соединение заняла 1 минуту. Определить размер файла в килобайтах.
РЕШЕНИЕ: Время передачи файла: 1 мин = 60 с = 4 * 15 с = 2 2 * 15 с
Скорость передачи файла: 512000 бит/c = 512 * 1000 бит/с = 2 9 * 125 * 8 бит/с (1 байт = 8 бит)
2 9 * 125 байт/с = 2 9 * 125 бит/с / 2 10 = 125 / 2 Кб/с
Чтобы найти время объем файла, нужно умножить время передачи на скорость передачи:
Код ОГЭ по информатике: 2.1.3. Оценка количественных параметров информационных объектов. Объем памяти, необходимый для хранения объектов
Оценка количества информации
Впервые объективный подход к измерению количества информации был предложен американским инженером Р. Хартли в 1928 г. Позже, в 1948 г., этот подход обобщил создатель общей теории информации К. Шеннон.
По приведенной выше формуле можно рассчитать, какое количество информации I несет каждый из знаков этой системы. Если в алфавите знаковой системы N знаков, то каждый знак несет количество информации: I = log2 N
Текстовая информация состоит из букв, цифр, знаков препинания, различных специальных символов. Для кодирования текстовой информации используют различные коды. Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки. Существуют различные таблицы кодировок текстовой информации.
Распространенная таблица кодировки ASCII (читается «аски», American Standard Code for Information Interchange — стандартный американский код для обмена информацией) использует 1 байт для кодов информации. Если код каждого символа занимает 1 байт (8 бит), то с помощью такой кодировки можно закодировать 2 8 = 256 символов.
Таблица ASCII состоит из двух частей. Первая, базовая часть, является международным стандартом и содержит значения кодов от 0 до 127 (для цифр, операций, латинского алфавита, знаков препинания). Вторая, национальная часть, содержит коды от 128 до 255 для символов национального алфавита, т. е. в национальных кодировках одному и тому же коду соответствуют различные символы.
В настоящее время существует несколько различных кодировок второй части таблицы для кириллицы — КОИ8–Р, KOI8–U, Windows, MS–DOS, Macintosh, ISO. Наиболее распространенной является таблица кодировки Windows–1251. Из–за разнообразия таблиц кодировки могут возникать проблемы при переносе русского текста между компьютерами или различными программами.
Поскольку объем в 1 байт явно мал для кодирования разнообразных и многочисленных символов мировых алфавитов, была разработана система кодирования Unicode. В ней для кодирования символа отводится 2 байта (16 бит). Это означает, что система позволяет закодировать 2 16 = 65 536 символов. Полная спецификация стандарта Unicode включает в себя все существующие, вымершие и искусственно созданные алфавиты мира, а также множество математических, музыкальных, химических и прочих символов.
Количество графической информации
Растровое графическое изображение состоит из отдельных точек — пикселей, образующих строки и столбцы.
Основные свойства пикселя — его расположение и цвет. Значения этих свойств кодируются и сохраняются в видеопамяти компьютера.
Качество изображения зависит от пространственного разрешения и глубины цвета.
Разрешение — величина, определяющая количество точек (пикселей) на единицу площади.
Глубина цвета — объем памяти (в битах), используемой для хранения и представления цвета при кодировании одного пикселя растровой графики или видеоизображения.
Для графических изображений могут использоваться различные палитры — наборы цветов. Количество цветов N в палитре и количество информации I, необходимое для кодирования цвета каждой точки, связаны соотношением: N = 2 I
Чтобы определить информационный объем видеоизображения, необходимо умножить количество информации одного пикселя на количество пикселей в изображении: I = Iпикселя • X • Y, где Х — количество точек изображения по горизонтали, Y — количество точек изображения по вертикали.
Существует несколько цветовых моделей для количественного описания цвета. В основе модели RGB (сокращение от англ. Red, Green, Blue) лежат три основных цвета: красный, зеленый и синий. Все другие цвета создаются с помощью смешения их оттенков. Например, при смешивании красного и зеленого цветов получим желтый, красного и синего — пурпурный, зеленого и синего — бирюзовый. Если смешать все три основные цвета максимальной яркости, получим белый цвет.
Если один цвет имеет 4 оттенка, то общее количество цветов в модели RGB будет составлять 4 • 4 • 4 = 64. При 256 оттенках для каждого цвета общее количество возможных цветов будет равно 256 • 256 • 256 = 16 777 216 ≈ 16,7 млн.
В современных компьютерах для представления цвета обычно используются от 2–х до 4–х байт. Два байта (16 бит) позволяют различать 2 16 , то есть 65 536 цветов и оттенков. Такой режим представления изображений называется High Color. Четыре байта (32 бита) обеспечивают цветную гамму в 2 32 , то есть 4 294 967 296 цветов и оттенков (приблизительно 4,3 миллиарда). Такой режим называется True Color.
В графических редакторах применяются и другие цветовые модели. Например, модель CMYK — она основана на цветах, получающихся при отражении белого света от предмета: бирюзовом (англ. Cyan), пурпурном (англ. Magenta), желтом (англ. Yellow). Эта модель применяется в полиграфии, где чаще всего употребляется черный цвет (ключевой, англ. Key).
Измерение объемов звуковой информации
Звук является непрерывным сигналом. Для использования звука в компьютере его преобразуют в цифровой сигнал. Это преобразование называется дискретизацией: для кодирования звука производят его измерение с определенной частотой (несколько раз в секунду). частота дискретизации и точность представления измеренных значений определяют качество представления звука в компьютере. Чем выше частота дискретизации и чем больше количество разных значений, которыми можно характеризовать сигнал, тем выше качество отображения звука.
В современных компьютерах обычно применяется частота дискретизации в 22 кГц или 44,1 кГц (1 кГц — это тысяча измерений за 1 секунду), а для представления значения сигнала выделяются 2 байта (16 бит), что позволяет различать 2 16 , то есть 65 536 значений.
Читайте также: