Какое свойство определяет уникальный адрес сетевой карты который ей дается при ее производстве
Узлы IP-сети имеют уникальные физические и логические адреса . Физический устанавливается изготовителем аппаратных средств, например МАС- адрес сетевой карты NIC , который "прошивается" в ПЗУ . Логический адрес устанавливается пользователем (администратором) или назначается динамически протоколом DHCP из диапазона выделенных адресов. Логические адреса узлов в IP-сетях версии IPv4, используемой в настоящее время, содержат 32 двоичных разряда, т. е. 4 байта. Каждый из 4 байт адреса в технической документации отображается десятичным числом, а байты разделяются точкой, например, 172.100.220.14. Часть этого адреса (старшие разряды) является номером сети, а другая часть (младшие разряды) – номером узла в сети. Таким образом, IP-адреса являются иерархическими, в отличие от плоских МАС-адресов. В соответствии с тем, какая часть адреса относится к номеру сети, а какая – к номеру узла, адреса делятся на классы. Для уникальной адресации узлов используются три класса адресов.
В адресе класса А старший байт задает адрес сети , а три младших байта – адрес узла ( host ).
В адресе класса В два старших байта задают адрес сети , а два младших байта – адрес узла ( host ).
В адресе класса С три старших байта задают адрес сети , а младший байт – адрес узла.
Существует также многоадресный (multicast) класс D и резервный класс E. Дополнительная информация по классам и адресам приведена в таблице 7.1.
Номер узла ( адрес host ) не может состоять только из одних единиц или нулей. Если в поле адреса узла все нули, это значит, что задается номер ( адрес ) сети или подсети. Если же в этом поле все двоичные разряды равны единице, то это означает широковещательный ( broadcast ) адрес , предназначенный всем узлам сети, в которой находится узел, сформировавший данный пакет, т.е. источник передаваемой информации. Этим объясняется уменьшение максимального числа узлов в сети на 2 (см. таблицу 7.1). Таким образом, максимальное число узлов в сети класса С будет равно 2 8 - 2 = 254.
Старший разряд адреса класса А всегда равен 0, поэтому адреса сетей могут находиться в диапазоне от 1 до 127. Однако адрес 127.0.0.1 предназначен для самотестирования, по этому адресу узел обращается к самому себе, проверяя, установлен ли протокол TCP /IP на этом хосте. Поэтому адрес сети 127.0.0.0 не входит в состав адресов таблицы 7.1.
С целью сокращения количества адресов, которыми оперирует маршрутизатор , в его таблице маршрутизации задаются адреса сетей , а не узлов. В то же время в адресной части пакета задаются адреса узлов (см. рис. 6.7). Поэтому маршрутизатор , получив пакет, должен из адреса назначения получить адрес сети . Эту операцию маршрутизатор реализует путем логического умножения сетевого адреса узла на маску. Число разрядов маски равно числу разрядов IP-адреса. Непрерывная последовательность единиц в старших разрядах маски задает число разрядов адреса, относящихся к номеру сети. Младшие разряды маски, равные нулю, соответствуют разрядам адреса узла в сети. При логическом умножении адреса узла на маску получается адрес сети. Например, при умножении IP-адреса 192.100.12.67 на стандартную маску класса С, равную 255.255.255.0, получается следующий результат:
т. е. получен номер сети 192.100.12.0.
Аналогичная запись предыдущего адреса с соответствующей маской класса С может также иметь следующий вид: 192.100.12.67/24, означающий, что маска содержит единицы в 24 старших разрядах. При этом 24 старших разряда будут одинаковы для всех узлов сети, т.е. образуют общую часть адреса, называемую префиксом. Именно префикс имеет обозначение /24.
Стандартная маска адреса класса В имеет 16 единиц в старших разрядах и 16 нулей в младших. Поэтому если адрес узла будет равен 172.16.37.103/16, адрес сети будет равен 172.16.0.0. Маска адреса класса А имеет 8 единиц в старших разрядах и 24 нуля в младших. Поэтому, например, адресу узла 10.116.37.103/8 соответствует адрес сети 10.0.0.0.
Разбиение адресов на классы жестко задает максимальное количество узлов в сети. Этому соответствуют протоколы маршрутизации типа Classful, которые требуют, чтобы использовалась единая (стандартная) маска сети . Например, в сети с адресом 192.168.187.0 может использоваться стандартная маска 255.255.255.0, а в сети 172.16.0.0 используется стандартная маска 255.255.0.0.
7.2. Формирование подсетей
В ряде случаев для удобства управления администратор может самостоятельно формировать подсети внутри выделенного ему адресного пространства . Например, администратору выделен адрес сети 198.11.163.0 класса С, и ему необходимо создать 10 компьютерных подсетей по 14 узлов. Для адресации 10 подсетей потребуется 4 разряда адреса. Таким образом, маска должна иметь единицы в 28 старших двоичных разрядах и 4 нуля в младших – 11111111.11111111.11111111.11110000, т. е. маска будет 255.255.255.240. В этом случае максимально может быть задано 16 подсетей по 14 узлов в каждой (таблица 7.2). Из 16 подсетей администратор использует 10, а оставшиеся 6 использоваться не будут.
Следовательно, если задан адрес 198.11.163.83 с маской 255.255.255.240, то после логического умножения адреса на маску будет получен адрес подсети:
т. е. подсеть 198.11.163.80 сети 198.11.163.0, а номер узла равен 3 (0011).
С помощью маски 255.255.255.224 в адресном пространстве 198.11.163.0/24 можно сформировать 8 подсетей по 30 узлов в каждой, а с помощью маски 255.255.255.248 можно задать 32 подсети по 6 узлов. Используя маски разной длины для создания подсетей, администратор может формировать подсети разного размера в пределах одной автономной системы. Таким образом, маски переменной длины (Variable-Length Subnet Mask – VLSM) позволяют создавать подсети разного размера, гибко задавая границы между полем адреса сети и полем адреса узла. VLSM дают возможность задействовать больше чем одну маску подсети в пределах выделенного адресного пространства сети.
Например, для формирования сетей по 30 узлов в каждой требуется 27 разрядов маски, содержащих единицы, а для создания сети, соединяющей пару маршрутизаторов (" точка-точка "), требуется всего два адреса, т.е. маска должна иметь 30 единиц. Поэтому часть адресного пространства может быть использована для создания сетей по 30 узлов, а незанятые адреса – для формирования пары адресов для связей " точка-точка ".
При использовании маски в 30 двоичных разрядов два младших разряда адреса позволяют сформировать 4 адреса, из которых первый нужен для адресации сети, второй и третий – для адресации узлов, а четвертый – в качестве широковещательного адреса .
В примере ( рис. 7.1, таблица 7.3), адресное пространство 192.168.100.0/27 использовано для создания 8 подсетей по 32 адреса в каждой, т. е. маска имеет единицы в 27 старших двоичных разрядах.
Рис. 7.1. Пример использования масок переменной длины
Одна из последних подсетей ( подсеть 6) разделена на субподсети. При этом используется маска , содержащая не 27 единиц, а 30 единиц в старших разрядах. Таким образом, за счет применения VLSM может быть сформировано 7 подсетей с числом узлов до 30 и восемь субподсетей с числом узлов 2. Каждая из субподсетей имеет диапазон адресов, используемых для связей " точка-точка ". В распределенной составной сети ( рис. 7.1) – четыре локальных сети (192.168.100.0/27, 192.168.100.32/27, 192.168.100.64/27, 192.168.100.96/27) и три сети " точка-точка ".
Таким образом, маски переменной длины VLSM позволяют создавать подсети разного размера. Например, сеть 198.11.163.0/24 может быть разбита на десять подсетей: две подсети по 62 узла в каждой, две подсети по 30 узлов, 2 подсети по 14 узлов и 4 подсети по 6 узлов в каждой (таблица 7.4). Соответственно, маски будут иметь размер: 26 – для первых двух подсетей, 27 – для третьей и четвертой подсетей, 28 – для пятой и шестой, 29 – для четырех последних подсетей. Естественно, что могут быть реализованы и другие варианты деления сети на подсети и субподсети.
Важно помнить, что только неиспользованные подсети могут далее делиться на субподсети. Если какой-то адрес подсети уже задействован, то подсеть на субподсети далее делиться не может.
На рис. 7.2 представлен еще один пример формирования пяти подсетей с маской длиной 26 единиц из адреса 172.16.32.0/23:
- 172.16.32.0/26 – 10101100.00010000.00100000.00000000;
- 172.16.32.64/26 – 10101100.00010000.00100000.01000000;
- 172.16.32.128/26 – 10101100.00010000.00100000.10000000;
- 172.16.32.192/26 – 10101100.00010000.00100000.11000000;
- 172.16.33.0/26 – 10101100.00010000.00100001.00000000;
Одну из подсетей, например 172.16.33.0/26, далее подразделили на субподсети с маской длиной 30 разрядов.
Не все протоколы маршрутизации поддерживают VLSM, например, первая версия протокола RIPv1 не поддерживает маскирование подсетей переменной длины. Маскирование переменной длины VLSM поддерживают протоколы Open Shortest Path First ( OSPF ), Integrated IS-IS , Enhanced Interior Gateway Routing Protocol ( EIGRP ), протокол второй версии RIP v2, а также статическая маршрутизация .
При проектировании сетей может быть поставлена и обратная задача, когда несколько отдельных адресов необходимо объединить в один общий ( агрегированный ) адрес . Выше было отмечено, что общую часть адреса, представленную старшими разрядами, называют префиксом. В ряде случаев это сокращает число записей в таблице маршрутизации . Например, сети
могут быть агрегированы (объединены) так, чтобы маршрутизаторы использовали только один маршрут для объединенной ( агрегированной ) сети 172.16.14.0/23, поскольку 23 разряда адреса обеих сетей одинаковы.
Тип маршрутизации, применяющий агрегированные адреса, получил название бесклассовой междоменной маршрутизации (Classless Interdomain Routing – CIDR ) на основе префикса. Агрегирование маршрутов уменьшает нагрузку на маршрутизаторы.
Ниже рассмотрен следующий пример агрегирования адресов. Группа из четырех подсетей:
может быть представлена суммарным (агрегированным) адресом
поскольку 22 разряда адреса у них одинаковы.
Аналогично группа из других четырех подсетей:
может быть представлена агрегированным адресом
поскольку 22 разряда адреса у них также одинаковы.
Третья группа подсетей:
может быть представлена агрегированным адресом
поскольку у них одинаковы 22 разряда адреса.
Агрегирование приведенных выше адресов иллюстрирует рис. 7.3. Вместо адресов четырех подсетей в таблице маршрутизации каждого из маршрутизаторов А, В, С используется адрес только одного (агрегированного) маршрута с префиксом в 22 двоичных разряда. Адреса четырех указанных подсетей имеют общую часть – префикс, который используется как единый совокупный адрес . В маршрутизаторе D можно сформировать агрегированный адрес всех трех групп подсетей. Он будет иметь адрес 192.168.16.0/20, т. е. маска ( префикс ) содержит 20 единиц в старших разрядах, поскольку все представленные на рис. 7.3 адреса имеют двадцать одинаковых старших двоичных разрядов адреса.
Таким образом, итоговый суммарный маршрут трех групп подсетей ( рис. 7.3) содержит префикс на 20 бит , общий для всех адресов в указанной сети – 192.168.16.0/20 – 11000000.10101000.00010000.00000000. Двадцать старших разрядов адреса (11000000.10101000.0001) используются как единый адрес организации, которая подключается к сети Интернет через маршрутизатор D.
Чтобы функционировала маршрутизация на основе префикса, адреса должны быть назначены иерархическим способом. Маршрутизатор должен знать номера всех присоединенных к нему подсетей и не должен сообщать другим маршрутизаторам о каждой подсети, если он может послать один совокупный маршрут ( aggregate routes). Маршрутизатор , который задействует совокупные маршруты, реже обращается к таблице маршрутизации.
Маршрутизация на основе префикса и масок переменной длины возможна, если маршрутизаторы сети используют бесклассовый (classless) протокол маршрутизации , например OSPF или EIGRP . Бесклассовые протоколы маршрутизации передают в обновлениях маршрутизации ( routing updates) 32-разрядные IP-адреса и соответствующие маски.
Не так давно я написал свою первую статью на Хабр. В моей статье была одна неприятная шероховатость, которую моментально обнаружили, понимающие в сетевом администрировании, пользователи. Шероховатость заключается в том, что я указал неверные IP адреса в лабораторной работе. Сделал это я умышленно, так как посчитал что неопытному пользователю будет легче понять тему VLAN на более простом примере IP, но, как было, совершенно справедливо, замечено пользователями, нельзя выкладывать материал с ключевой ошибкой.
Для начала, стоит сказать о том, что такое IP адрес.
Максимальным возможным числом в любом октете будет 255 (так как в двоичной системе это 8 единиц), а минимальным – 0.
Далее давайте разберёмся с тем, что называется классом IP (именно в этом моменте в лабораторной работе была неточность).
IP-адреса делятся на 5 классов (A, B, C, D, E). A, B и C — это классы коммерческой адресации. D – для многоадресных рассылок, а класс E – для экспериментов.
Класс А: 1.0.0.0 — 126.0.0.0, маска 255.0.0.0
Класс В: 128.0.0.0 — 191.255.0.0, маска 255.255.0.0
Класс С: 192.0.0.0 — 223.255.255.0, маска 255.255.255.0
Класс D: 224.0.0.0 — 239.255.255.255, маска 255.255.255.255
Класс Е: 240.0.0.0 — 247.255.255.255, маска 255.255.255.255
Теперь о «цвете» IP. IP бывают белые и серые (или публичные и частные). Публичным IP адресом называется IP адрес, который используется для выхода в Интернет. Адреса, используемые в локальных сетях, относят к частным. Частные IP не маршрутизируются в Интернете.
Публичные адреса назначаются публичным веб-серверам для того, чтобы человек смог попасть на этот сервер, вне зависимости от его местоположения, то есть через Интернет. Например, игровые сервера являются публичными, как и сервера Хабра и многих других веб-ресурсов.
Большое отличие частных и публичных IP адресов заключается в том, что используя частный IP адрес мы можем назначить компьютеру любой номер (главное, чтобы не было совпадающих номеров), а с публичными адресами всё не так просто. Выдача публичных адресов контролируется различными организациями.
Допустим, Вы молодой сетевой инженер и хотите дать доступ к своему серверу всем пользователям Интернета. Для этого Вам нужно получить публичный IP адрес. Чтобы его получить Вы обращаетесь к своему интернет провайдеру, и он выдаёт Вам публичный IP адрес, но из рукава он его взять не может, поэтому он обращается к локальному Интернет регистратору (LIR – Local Internet Registry), который выдаёт пачку IP адресов Вашему провайдеру, а провайдер из этой пачки выдаёт Вам один адрес. Локальный Интернет регистратор не может выдать пачку адресов из неоткуда, поэтому он обращается к региональному Интернет регистратору (RIR – Regional Internet Registry). В свою очередь региональный Интернет регистратор обращается к международной некоммерческой организации IANA (Internet Assigned Numbers Authority). Контролирует действие организации IANA компания ICANN (Internet Corporation for Assigned Names and Numbers). Такой сложный процесс необходим для того, чтобы не было путаницы в публичных IP адресах.
Поскольку мы занимаемся созданием локальных вычислительных сетей (LAN — Local Area Network), мы будем пользоваться именно частными IP адресами. Для работы с ними необходимо понимать какие адреса частные, а какие нет. В таблице ниже приведены частные IP адреса, которыми мы и будем пользоваться при построении сетей.
Из вышесказанного делаем вывод, что пользоваться при создании локальной сеть следует адресами из диапазона в таблице. При использовании любых других адресов сетей, как например, 20.*.*.* или 30.*.*.* (для примера взял именно эти адреса, так как они использовались в лабе), будут большие проблемы с настройкой реальной сети.
Из таблицы частных IP адресов вы можете увидеть третий столбец, в котором написана маска подсети. Маска подсети — битовая маска, определяющая, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети.
У всех IP адресов есть две части сеть и узел.
Сеть – это та часть IP, которая не меняется во всей сети и все адреса устройств начинаются именно с номера сети.
Узел – это изменяющаяся часть IP. Каждое устройство имеет свой уникальный адрес в сети, он называется узлом.
Маску принято записывать двумя способами: префиксным и десятичным. Например, маска частной подсети A выглядит в десятичной записи как 255.0.0.0, но не всегда удобно пользоваться десятичной записью при составлении схемы сети. Легче записать маску как префикс, то есть /8.
Так как маска формируется добавлением слева единицы с первого октета и никак иначе, но для распознания маски нам достаточно знать количество выставленных единиц.
Таблица масок подсети
Высчитаем сколько устройств (в IP адресах — узлов) может быть в сети, где у одного компьютера адрес 172.16.13.98 /24.
172.16.13.0 – адрес сети
172.16.13.1 – адрес первого устройства в сети
172.16.13.254 – адрес последнего устройства в сети
172.16.13.255 – широковещательный IP адрес
172.16.14.0 – адрес следующей сети
Итого 254 устройства в сети
Теперь вычислим сколько устройств может быть в сети, где у одного компьютера адрес 172.16.13.98 /16.
172.16.0.0 – адрес сети
172.16.0.1 – адрес первого устройства в сети
172.16.255.254 – адрес последнего устройства в сети
172.16.255.255 – широковещательный IP адрес
172.17.0.0 – адрес следующей сети
Итого 65534 устройства в сети
В первом случае у нас получилось 254 устройства, во втором 65534, а мы заменили только номер маски.
Посмотреть различные варианты работы с масками вы можете в любом калькуляторе IP. Я рекомендую этот.
До того, как была придумана технология масок подсетей (VLSM – Variable Langhe Subnet Mask), использовались классовые сети, о которых мы говорили ранее.
Теперь стоит сказать о таких IP адресах, которые задействованы под определённые нужды.
Адрес 127.0.0.0 – 127.255.255.255 (loopback – петля на себя). Данная сеть нужна для диагностики.
169.254.0.0 – 169.254.255.255 (APIPA – Automatic Private IP Addressing). Механизм «придумывания» IP адреса. Служба APIPA генерирует IP адреса для начала работы с сетью.
Теперь, когда я объяснил тему IP, становиться ясно почему сеть, представленная в лабе, не будет работать без проблем. Этого стоит избежать, поэтому исправьте ошибки исходя из информации в этой статье.
Для передачи данных в локальных и глобальных сетях устройство-отправитель должно знать адрес устройства-получателя. Поэтому каждый сетевой компьютер имеет уникальный адрес, и не один, а целых три адреса: физический или аппаратный (MAC-адрес); сетевой (IP-адрес); символьный (обычное имя компьютера или полное доменное имя).
Физический адрес компьютера
Физический (аппаратный) адрес компьютера зависит от технологии, с помощью которой построена сеть. В сетях Ethernet это MAC-адрес сетевого адаптера. MAC-адрес жестко “зашивается” в сетевую карту ее производителем и обычно записывается в виде 12 шестнадцатеричных цифр (например, 00-03-BC-12-5D-4E).
Это гарантированно уникальный адрес: первые шесть символов идентифицируют фирму-производителя, которая следит, чтобы остальные шесть символов не повторялись на производственном конвейере. MAC-адрес выбирает производитель сетевого оборудования из выделенного для него по лицензии адресного пространства. Когда у машины заменяется сетевой адаптер, то меняется и ее MAC-адрес.
Узнать MAC-адрес сетевой карты вашего компьютера можно следующим образом:
1. Зайдите в “Пуск” – “Выполнить” – введите с клавиатуры команду cmd – “ОК”.
2. Введите команду ipconfig /all и нажмите клавишу Enter.
Данная команда позволяет получить полную информацию обо всех сетевых картах ПК. Поэтому найдите в этом окошке строку Физический адрес – в ней будет обозначен MAC-адрес вашей сетевой карты. В моем случае это выглядит так:
Сетевой адрес компьютера
Сетевой адрес, или IP-адрес используется в сетях TCP/IP при обмене данными на сетевом уровне. IP расшифровывается как Internet Protocol – протокол интернета. IP-адрес компьютера имеет длину 32 бита и состоит из четырех частей, именуемых октетами. Каждый октет может принимать значения от 0 до 255 (например, 90.188.125.200). Октеты отделяются друг от друга точками.
IP-адрес компьютера, например 192.168.1.10, состоит из двух частей – номера сети (иногда называемого идентификатором сети) и номера сетевого компьютера (идентификатора хоста). Номер сети должен быть одинаковым для всех компьютеров сети и в нашем примере номер сети будет равен 192.168.1. Номер компьютера должен быть уникален в данной сети, и компьютер в нашем примере имеет номер 10.
IP-адреса компьютеров в разных сетях могут иметь одинаковые номера. Например, компьютеры с IP-адресами 192.168.1.10 и 192.168.15.10 хоть и имеют одинаковые номера (10), но принадлежат к разным сетям (1 и 15). Поскольку адреса сетей различны, то компьютеры не могут быть спутаны друг с другом.
Чтобы отделить номер сети от номера компьютера, применяется маска подсети. Чисто внешне маска подсети представляет собой такой же набор из четырех октетов, разделенных между собой точками. Но, как правило, большинство цифр в ней – это 255 и 0.
255 указывает на биты, предназначенные для адреса сети, в остальных местах (которым соответствует значение 0) должен располагаться адрес компьютера. Чем меньше значение маски, тем больше компьютеров объединено в данную подсеть. Маска сети присваивается компьютеру одновременно с IP-адресом. Чтобы было понятно, приведем простой пример: сеть 192.168.0.0 с маской 255.255.255.0 может содержать в себе компьютеры с адресами от 192.168.0.1 до 192.168.0.254. А сеть 192.168.0.0 с маской 255.255.255.128 допускает адреса от 192.168.0.1 до 192.168.0.127.
Сети с большим количеством компьютеров обычно делят на части, называемые подсетями. Деление на подсети применяется для обеспечения повышенной безопасности и разграничения доступа к ресурсам различных подсетей. Компьютеры разных подсетей не смогут передавать пакеты друг другу без специального устройства – маршрутизатора, а, следовательно, никто не сможет проникнуть в защищенную таким образом подсеть. Чтобы создать подсети, часть места в IP-адресе, отведенном для номера хоста, отдают под номера подсети.
Рассмотрим пример, когда у нас в локальной сети 50 компьютеров и требуется настроить их так, чтобы 20 компьютеров могли “общаться” между собой, но не смогли передавать и принимать данные от остальных 10 компьютеров, которые также должны общаться только между собой. Решение этой задачи довольно простое – делим нашу сеть на две подсети . В первой подсети “раздаем” компьютерам (их у нас 20) номера из диапазона 192.168.1.1 – 192.168.1.20, а во второй подсети для оставшихся 10 компьютеров раздаем номера из диапазона 192.168.2.1 – 192.168.2.10.
Если ваш компьютер подключен к локальной сети или интернет, вы можете узнать его IP-адрес и маску подсети уже знакомым нам способом:
1. Зайдите в “Пуск” – “Выполнить” – наберите cmd и нажмите “ОК”.
2. В открывшемся окне введите команду ipconfig /all и нажмите клавишу Enter.
IP-адрес компьютера и маску подсети вы увидите в соответствующих строках:Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Интернет (Network Information Center – NIC), если сеть должна работать как составная часть Интернет. Обычно интернет-провайдеры получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами. Это внешние IP-адреса (доступные из интернета), например 90.188.125.200.
Для локальных сетей зарезервированы внутренние IP-адреса (к ним нельзя получить доступ через интернет без специального ПО) из диапазонов:
- 192.168.0.1 – 192.168.254.254
- 10.0.0.1 – 10.254.254.254
- 172.16.0.1 – 172.31.254.254
Из этих диапазонов вы, как системный администратор, и будете назначать адреса компьютерам в вашей локальной сети. Если вы “жестко” зафиксируете IP-адрес в настройках компьютера, то такой адрес будет называться статическим – это постоянный, неизменяемый IP-адрес ПК.
Существует и другой тип IP-адресов – динамические, которые изменяются при каждом входе компьютера в сеть. За управление процессом распределения динамических адресов отвечает служба DHCP. О ней я расскажу вам в одной из следующих статей.
Имя сетевого компьютера
Помимо физического и сетевого адресов компьютер может также иметь символьный адрес – имя компьютера . Имя компьютера – это более удобное и понятное для человека обозначение компьютера в сети. Различают NetBIOS имена и полные доменные имена компьютеров.
Имена NetBIOS используются в одноранговых локальных сетях, в которых компьютеры организованы в рабочие группы. NetBIOS – протокол для взаимодействия программ через компьютерную сеть. Протокол NetBIOS распознает обычные буквенные имена компьютеров и отвечает за передачу данных между ними. Проводник Windows для просмотра локальной сети предоставляет папку Сетевое окружение, автоматически отображающей имена NetBIOS компьютеров вашей локальной сети.
Имя NetBIOS может содержать не более 15 символов и должно быть на английском языке.
IP-адрес – это уникальный адрес, идентифицирующий устройство в интернете или локальной сети. IP означает «Интернет-протокол» – набор правил, регулирующих формат данных, отправляемых через интернет или локальную сеть.
По сути, IP-адрес – это идентификатор, позволяющий передавать информацию между устройствами в сети: он содержит информацию о местоположении устройства и обеспечивает его доступность для связи. IP-адреса позволяют различать компьютеры, маршрутизаторы и веб-сайты в интернете и являются важным компонентом работы интернета.
Что такое IP-адрес?
IP-адрес – это строка чисел, разделенных точками. IP-адреса представляют собой набор из четырех чисел, например, 192.158.1.38. Каждое число в этом наборе принадлежит интервалу от 0 до 255. Таким образом, полный диапазон IP-адресации – это адреса от 0.0.0.0 до 255.255.255.255.
IP-адреса не случайны. Они рассчитываются математически и распределяются Администрацией адресного пространства Интернета (Internet Assigned Numbers Authority, IANA), подразделением Корпорации по присвоению имен и номеров в Интернете (Internet Corporation for Assigned Names and Numbers, ICANN). ICANN – это некоммерческая организация, основанная в США в 1998 году с целью поддержки безопасности интернета и обеспечения его доступности для всех пользователей. Каждый раз, когда кто-либо регистрирует домен в интернете, он пользуется услугами регистратора доменных имен, который платит ICANN небольшой сбор за регистрацию домена.
Как работают IP-адреса
Понимание того, как работают IP-адреса, поможет разораться, почему определенное устройство не подключается так, как ожидалось, и устранить неполадки в работе сети.
Интернет-протокол работает так же, как и любой другой язык: передает информацию с использованием установленных правил. Устройства обнаруживают другие подключенные устройства и обмениваются с ними информацией, используя этот протокол. Проще говоря, все компьютеры, где бы они не находились, могут общаться друг с другом.
Использование IP-адресов обычно происходит незаметно. Процесс работает следующим образом:
- Устройство подключается к интернету не напрямую: сначала оно подключается к сети, подключенной к интернету, а сеть, в свою очередь, предоставляет устройству доступ к интернету.
- Если вы находитесь дома, скорее всего, этой сетью является сеть вашего интернет-провайдера. В офисе это будет сеть вашей компании.
- IP-адрес назначается устройству вашим интернет-провайдером.
- Ваша интернет-активность проходит через интернет-провайдера, а он перенаправляет вам ответы на запросы, используя ваш IP-адрес. Поскольку провайдер предоставляет доступ в Интернет, его роль заключается в назначении IP-адрес вашему устройству.
- Однако ваш IP-адрес может измениться, например, при включение или выключение модема или маршрутизатора. Можно также связаться с интернет-провайдером, чтобы он изменил IP-адрес.
- Если вы находитесь вне дома, например, путешествуете, и берете с собой устройство, домашний IP-адрес не закрепляется за устройством. Это связано с тем, что устройство будет использовать другую сеть (Wi-Fi в отеле, аэропорту, кафе) для доступа в интернет и другой временный IP-адрес, назначенный интернет-провайдером в отеле, аэропорту или кафе.
Как следует из этого процесса, существуют различные типы IP-адресов, которые будут описаны ниже.
Типы IP-адресов
Существуют разные категории IP-адресов, и в каждой категории имеются разные типы.
Клиентские IP-адреса
У каждого человека или компании с тарифным планом на получение интернет-услуг есть два типа IP-адресов: частный и общедоступный. Термины частный и общедоступный относятся к сетевому расположению: частный IP-адрес используется внутри сети, а общедоступный – за пределами сети.
Частные IP-адреса
Каждое устройство, которое подключается к вашей интернет-сети, имеет частный IP-адрес. Это могут быть компьютеры, смартфоны, планшеты, а также любые устройства с поддержкой Bluetooth, такие как динамики, принтеры, смарт-телевизоры. С развитием интернета вещей растет и количество частных IP-адресов в домашней сети. Маршрутизатору необходимо идентифицировать каждое из этих устройств, а многие устройства также должны идентифицировать друг друга. Поэтому маршрутизатор генерирует частные IP-адреса, которые являются уникальными идентификаторами каждого устройства и позволяют различать их в сети.
Общедоступные IP-адреса
Общедоступный IP-адрес – это основной адрес, связанный со всей сетью. Каждое подключенное устройство имеет собственный IP-адрес, но они также включены в состав основного IP-адреса сети. Как было описано выше, общедоступный IP-адрес предоставляется маршрутизатору интернет-провайдером. Обычно у интернет-провайдеров есть большой пул IP-адресов, которые они присваивают клиентам. Общедоступный IP-адрес – это адрес, который устройства за пределами интернет-сети будут использовать для распознавания этой сети.
Общедоступные IP-адреса
Общедоступные IP-адреса бывают двух видов: динамические и статические.
Динамические IP-адреса
Динамические IP-адреса меняются автоматически и регулярно. Интернет-провайдеры покупают большой пул IP-адресов и автоматически присваивают их своим клиентам. Периодически они меняют присвоенные IP-адреса и помещают старые IP-адреса обратно в пул для использования другими клиентами. Обоснованием этого подхода служит экономия средств провайдера. Автоматизация регулярного изменения IP-адресов позволяет им не выполнять никаких действий для восстановления IP-адреса клиента, например, если он переезжает. Также имеются преимущества с точки зрения безопасности, поскольку изменение IP-адреса затрудняет взлом сетевого интерфейса злоумышленниками.
Статические IP-адреса
В отличие от динамических IP-адресов, статические IP- адреса остаются неизменными. После того, как сеть назначает IP-адрес, он остается неизменным. Большинству частных лиц и организаций не нужны статические IP-адреса, но для организаций, планирующих размещать собственные серверы, наличие статического IP-адреса крайне важно. Это связано с тем, что статический IP-адрес гарантирует, что привязанные к нему веб-сайты и адреса электронной почты будут иметь постоянные IP-адреса. Это очень важно, если требуется, чтобы другие устройства могли находить их в интернете.
В результате возникла классификация по типам IP-адресов веб-сайтов.
Два типа IP-адресов веб-сайтов
Для владельцев веб-сайтов, использующих пакет веб-хостинга (что характерно для большинства веб-сайтов), а не собственный сервер, существует два типа IP-адресов веб-сайтов: общие и выделенные.
Общие IP-адреса
Веб-сайты, использующие общие хостинговые планы от провайдеров веб-хостинга, обычно являются одним из многих веб-сайтов, размещенных на одном сервере. Это, как правило, веб-сайты физических лиц или компаний малого и среднего бизнеса, с ограниченным объемом трафика, количеством страниц и т. д. Такие веб-сайты имеют общие IP-адреса.
Выделенные IP-адреса
В некоторых тарифных планах веб-хостинга есть возможность приобрести выделенный IP-адрес (или адреса). Это может упростить получение SSL-сертификата и позволяет использовать собственный FTP-сервер (сервер протокола передачи файлов). Кроме того, это упрощает организацию общего доступа и передачу файлов в рамках организации и позволяет использовать анонимный FTP-доступ. Выделенный IP-адрес также позволяет получить доступ к веб-сайту, используя только IP-адрес, а не доменное имя. Это полезно, если требуется создать и протестировать его перед регистрацией домена.
Как выполняется поиск IP-адресов
Самый простой способ выяснить общедоступный IP-адрес маршрутизатора – выполнить поиск в Google по словам «What is my IP address?» (Какой у меня IP-адрес?). Ответ отобразится в Google вверху страницы.
Как правило, этим способом можно узнать только приблизительное местоположение провайдера, а не фактическое местоположение устройства. При использовании этого способа необходимо также выйти из VPN. Чтобы узнать фактический адрес местоположения устройства по общедоступному IP-адресу, обычно требуется предоставить интернет-провайдеру ордер на обыск.
Выяснение частного IP-адреса зависит от платформы:
Windows:
- Используйте командную строку.
- В строке поиска Windows укажите cmd (без кавычек).
- В появившемся окне введите ipconfig (без кавычек), чтобы отобразилась информация об IP-адресе.
Mac:
- Перейдите в Системные настройки.
- Выберите сеть, и отобразится требуемая информация.
iPhone:
- Перейдите в настройки.
- Выберите Wi-Fi и щелкните значок «i» в кружочке рядом с названием используемой сети. IP-адрес отобразится на закладке DHCP.
Чтобы проверить IP-адреса других устройств в сети, перейдите к маршрутизатору. Способ доступа к маршрутизатору зависит от его бренда и используемого программного обеспечения. Как правило, для доступа необходимо иметь возможность ввести IP-адрес шлюза маршрутизатора в веб-браузере, находясь в той же сети. Оттуда нужно перейти к пункту «Подключенные устройства», где отобразится список всех устройств, подключенных к сети в настоящее время или подключавшихся недавно, включая их IP-адреса.
Угрозы безопасности IP-адресов
Киберпреступники могут использовать различные методы получения IP-адреса. Двумя наиболее распространенными способами являются социальная инженерия и преследование в интернете.
Социальная инженерия
Интернет-преследование
Злоумышленники могут отследить ваш IP-адрес, просто наблюдая за вашей онлайн-активностью. Любые действия в интернете могут раскрыть ваш IP-адрес, от игры в видеоигры до комментариев на веб-сайтах и форумах.
Если преследователь из Facebook использует фишинговую атаку по установке шпионских программ против людей с вашим именем, он сможет подтвердить вашу личность по IP-адресу вашей системы.
Если киберпреступники знают ваш IP-адрес, они смогут атаковать вас или даже выдать себя за вас. Важно знать о таких рисках и способах борьбы с ними. Эти риски включают:
Загрузка нелегального контента с вашего IP-адреса
Известно, что злоумышленники используют взломанные IP-адреса для загрузки нелегального контента и других материалов, и при этом хотят избежать отслеживания такой загрузки. Например, используя идентификатор вашего IP-адреса, злоумышленники могут загружать пиратские фильмы, музыку и видео, что является нарушением условий использования услуг провайдера, и, что гораздо более серьезно, контент, связанный с терроризмом или детской порнографией. Это может означать, что по чужой вине вы можете привлечь внимание правоохранительных органов.
Отслеживание местоположения
Если злоумышленники знают ваш IP-адрес, они могут использовать технологию геолокации для определения вашего региона, города и страны. Им достаточно лишь немного покопаться в социальных сетях, чтобы идентифицировать ваш дом. Затем они могут устроить ограбление, когда выяснят, что вас нет дома.
Прямая атака на вашу сеть
Злоумышленники могут нацелиться напрямую на вашу сеть, применив различные типы атак. Одна из самых популярных – DDoS-атака (атака, вызывающая распределенный отказ в обслуживании). При этом типе кибератаки злоумышленники используют ранее зараженные машины для генерации большого количества запросов к целевой системе или серверу. Это создает слишком большую нагрузку на серверы и приводит к нарушению работы служб. По сути, при этом отключается интернет. Такая атака обычно нацелена на компании и сервисы видеоигр, но может также применяться и против отдельных лиц, хотя это гораздо менее распространено. Онлайн-геймеры подвергаются особенно высокому риску, поскольку их экран виден при трансляции (и на нем можно обнаружить IP-адрес).
Взлом устройства
Для подключения к интернету используются порты и IP-адрес. Для каждого IP-адреса существуют тысячи портов, и злоумышленник, знающий ваш IP-адрес, может их проверить и попытаться установить соединение. Например, он может завладеть вашим телефоном и украсть вашу информацию. Если злоумышленник получит доступ к вашему устройству, он может установить на него вредоносные программы.
Как защитить и скрыть свой IP-адрес
Скрытие IP-адреса – это способ защитить персональные данные и свою личность в интернете. Два основных способа скрыть IP-адрес:
Прокси-сервер – это промежуточный сервер, через который перенаправляется трафик.
- Интернет-серверы, которые вы посещаете, видят только IP-адрес этого прокси-сервера, а не ваш IP-адрес.
- Когда эти серверы передают вам ответную информацию, она направляется на прокси-сервер, который затем направляет ее вам.
Недостатком прокси-серверов является то, что некоторые службы могут следить за вами, поэтому важно использовать только доверенные прокси-серверы. В зависимости от используемого прокси-сервера, в браузер может добавляться реклама.
VPN является лучшим решением.
- Когда вы подключаете компьютер, смартфон или планшет к VPN, устройство работает так, будто оно находится в той же локальной сети, что и VPN.
- Весь сетевой трафик передается через безопасное соединение с VPN.
- Компьютер работает так, будто он находится в сети, обеспечивая безопасный доступ к ресурсам локальной сети, даже если вы находитесь в другой стране.
- Вы также можете использовать интернет, как если бы вы находились в местоположении VPN. Это позволяет безопасно использовать общедоступный Wi-Fi и получить доступ к веб-сайтам с географической блокировкой.
Когда нужно использовать VPN
При использовании VPN ваш IP-адрес будет скрыт, а трафик перенаправляется через отдельный сервер, что обеспечивает безопасность работы в сети. Ситуации, когда целесообразно использовать VPN:
При использовании общедоступной сети Wi-Fi
При использовании общедоступной сети Wi-Fi, даже если она защищена паролем, рекомендуется использовать VPN. Если злоумышленники находится в той же сети Wi-Fi, они могут с легкостью отслеживать ваши данные. Базовая система безопасности, используемая в обычной общедоступной сети Wi-Fi, не обеспечивает надежной защиты от других пользователей в этой сети.
В путешествии
При поездке в другую страну, например, в Китай, VPN обеспечивает доступ к недоступным в этой стране сервисам, например, к заблокированному в Китае Facebook.
VPN позволяет использовать оплаченные видеосервисы, доступные в вашей стране, но недоступные в других странах из-за проблем с международным доступом. Использование VPN позволяет использовать сервисы, как если бы вы были дома. Путешественники также могут найти более дешевые авиабилеты при использовании VPN, поскольку цены для разных стран могут отличаться.
При удаленной работе
Это особенно актуально во время эпидемии COVID, когда многие работают удаленно. Часто работодатели требуют использования VPN для удаленного доступа к сервисам компании из соображений безопасности. При подключении к серверу вашего офиса, VPN предоставляет вам доступ к внутренним сетям и ресурсам компании, когда вы не в офисе. Такое же подключение возможно к вашей домашней сети, если вы не дома.
Когда хочется конфиденциальности
Использование VPN полезно, даже если вы находитесь дома и пользуетесь интернетом в повседневных целях. При каждом входе на веб-сайт, сервер, к которому вы подключаетесь, регистрирует ваш IP-адрес и связывает его с другими данными о вас, которые есть на сайте: привычкам просмотра, переходам, времени, затрачиваемом на просмотр конкретных страниц. Эти данные затем могут быть проданы рекламным компаниям и использоваться для подбора персонализированной рекламы, поэтому реклама в интернете иногда кажется такой подозрительно личной. IP-адрес также можно использовать для отслеживания местоположения, даже если вы отключили сервис геолокации. Использование VPN не позволяет оставлять следы в сети.
Не забывайте и о мобильных устройствах. У них тоже есть IP-адреса и, вероятно, они используются в большем количестве мест, чем домашний компьютер, включая общие точки доступа Wi-Fi. Рекомендуется использовать VPN на мобильном устройстве при подключении к сети, которая не является полностью доверенной.
Другие способы защиты конфиденциальности
Использование уникальных паролей
Пароль устройства – единственная преграда, ограничивающая доступ к вашему устройству. Некоторые предпочитают использовать установленные по умолчанию пароли устройств, что делает их уязвимыми для атак. Как и для всех учетных записей, для устройства следует использовать уникальный и надежный пароль, который нелегко расшифровать. Надежный пароль состоит из букв верхнего и нижнего регистра, цифр и специальных символов. Он помогает защитить устройство от взлома IP-адреса.
Внимательность к фишинговым письмам и вредоносному контенту
Большая часть вредоносных программ и программ для отслеживания устройств устанавливается с использованием фишинговых писем. При подключении к любому сайту, он получает доступ к IP-адресу и местоположению устройства, что делает устройство уязвимым для взлома. Будьте бдительны при открытии писем от неизвестных отправителей и не переходите по ссылкам, ведущим на неавторизованные сайты. Обращайте пристальное внимание на содержимое электронных писем, даже если они отправлены с известных сайтов и от легальных компаний.
Надежное регулярно обновляемое антивирусное решение
Установите комплексное антивирусное решение и поддерживайте его в актуальном состоянии. Например, Антивирусные программы «Лаборатории Касперского» обеспечивают защиту от вирусов для компьютеров и Android-устройств, защищают и хранят пароли и личные документы, шифруют данные, отправляемые и получаемые по сети, с помощью VPN.
Защита IP-адреса – важный аспект защиты вашей личности в интернете. Обеспечение безопасности с помощью описанных выше шагов – это способ обезопасить себя от самых разных кибератак.
Читайте также: