Каким образом текстовая информация представлена в памяти компьютера
Вы уже владеете одним языком, а быть может и несколькими. Знаете некоторые понятия из химии, физики, математики и других наук. А для того, чтобы понимать и использовать компьютерный язык нужно иметь знания о представлении информации в памяти компьютера. В этой статье поговорим о представлении текста, графики, звука в ПК и рассмотрим основные положения, касающиеся этой темы.
Введение
Для того чтобы было намного проще понять, как представляются файлы в компьютере приведем несколько примеров из жизни с которыми сталкивался каждый:
- Вы хотите перейти дорогу, но дойдя до перекрестка, вы останавливаетесь, потому что загорелся красный свет. После небольшого ожидания цвет светофора меняется на зеленый. Машины тормозят, а вы продолжайте свой путь.
- Вы сильно торопитесь, когда едете на работу или учебу. Участник дорожного движения, который едет спереди двигается на низкой скорости. Вы моргаете ему фарами, он уступает вам дорогу, и вы едете дальше.
А теперь переведем эти ситуации на язык информатики – в данных ситуациях светофор и фары передают код. Красный сигнал говорит нам о том, что нужно остановиться, а моргание фарами это “код” с помощью которого мы просим уступить дорогу. Быть может вы удивитесь, но в основу любого человеческого языка тоже положен код, только символы в нем называются алфавитом. Теперь рассмотрим это определение более подробно. Итак:
Код – набор обозначений, с помощью которого можно представить информацию.
Кодирование – процесс, при котором данные переводятся в код.
По мере развития информационной сферы учеными и разработчиками предлагались многие способы кодирования информации. Некоторые из них остались незамеченными, другими же мы пользуемся до сих пор. В качестве примера приведем азбуку Морзе, разработанную Самюэлем Морзе в 1849 году. Буквы и цифры определяются в ней тремя символами:
- Тире (длинный сигнал);
- Точка (короткий сигнал);
- Пауза или отсутствие сигнала.
Однако наибольшую популярность завоевал “двоичный код”, который предложил использовать Вильгельм Лейбниц в семнадцатом веке. Информация в нем определяется двумя символами – 0 и 1. Разработчикам данный метод кодирования сильно понравился из-за простоты его реализации. 0- это пропуск сигнала, а число 1- его наличие. Именно двоичное представление используется сегодня в ПК и в другой цифровой технике.
Это интересно Текстовый редактор 🔧 Редакторы текста в компьютереПредставление и устройство памяти персонального компьютера
Скорее всего, вы знаете, что внутренняя память компьютера состоит из двух частей – оперативной и основной:
Чтобы иметь представление, как работает внутренняя память компьютера, и как её использовать, нужно заглянуть внутрь системного блока. Здесь можно провести аналогию с тетрадным листом “в клеточку”. Каждая клетка содержит в себе одно из двух состояний – 0 или 1. Если в ячейке стоит 1, то это говорит о том, что данная ячейка внутренней памяти включена, если 0, то выключена. Этот способ представления информации называется цифровым кодированием.
Каждая ячейка внутренней памяти ПК хранит в себе единицу информации, которая называется битом. Составляя различные последовательности из битов, мы можем определить различную информацию. У цифрового кодирования много преимуществ – легко копировать и переносить материалы с одного носителя на другой. При создании дубликата копия полностью идентична оригиналу, что невозможно осуществить с данными, которые представлены в аналоговой форме. Из-за большого количества преимуществ в 80-х годах 20 века люди начали использовать способы представления текста, звука и фото с помощью цифр.
Представление графических типов информации в ПК
Сейчас существует два способа представления графических данных в машинном коде.
Растровый
Суть этого способа заключается в том, что графическое изображение делится на маленькие фрагменты, которые называются пиксели. Каждый пиксель содержит в себе информацию о своем цвете. Данный способ называется растровым кодированием.
Векторный
В отличие от растрового кодирования, в данном способе представление графики описывается с помощью векторов. Каждому вектору задают координаты начала и конца, толщину и цвет. Например, для отрисовки окружности надо будет задать координаты её центра и радиус, цвет заполнения (если он есть), а также цвет и толщину контура.
Текст и числа
Представление текстовой информации во внутренней памяти персонального компьютера осуществляется с помощью специальных таблиц. На данный момент, распространение получили стандарты ASCII и UTF-8
ASCII
Таблица была разработана и стандартизирована в 1963 в США. Она предназначалась для обмена данными по телетайпу. Однако сейчас, с её помощью, можно определить различные буквы, знаки и числа. Один знак в этой таблице кодируется восемью битами.
Стандарт был предложен в 1992 году. Её разработали Кен Томпсон и Роб Пайк. С помощью этой кодировки можно представить все знаки в мире. Обладает большой популярностью в интернете – большинство сервисов и сайтов используют именно это таблицу.
Для записи голоса используется микрофон и звуковая плата компьютера. Чтобы компьютер смог определить звуковую информацию – её необходимо перевести в цифровую. Для этого аналоговый сигнал поступает на аналого-цифровой преобразователь. Там он разбивается на маленькие временные кусочки, каждому из которых устанавливается величина интенсивности голоса.
В результате функция A(t) преобразуется в дискретную последовательность. Качество звуковой информации полученной на выходе определяется частотой дискретизации.
Частота дискретизации – количестве измерений уровней громкости за одну секунду. Чем больше это значение, тем лучше качество.
Видео
Заключение
Теперь вы знаете о представлении информации в памяти компьютера. Если разобраться в цифровом кодировании и устройстве внутренней памяти ПК, то вы сможете понять и другие, более серьезные разделы информатики, такие как программирование, IP-адресация и другие. Если у вас возникли вопросы по теме, то задавайте их в комментариях к статье.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока "Представление текста в компьютере"
· использование таблицы кодировок;
· информационный объём текста.
Компьютер может работать с пятью видами информации:
Одним из самых массовых приложений ЭВМ является работа с текстами.
Имея компьютер, можно создавать тексты, не тратя на это много времени и бумагу. Носителем текста становится память компьютера. Текст на внешних носителях сохраняется в виде файла.
Как вы уже знаете, вся информация, независимо от того, какая она графическая, видео или звуковая, представляется в компьютере с помощью чисел, это всего два символа двоичного кода, 0 и 1, которые легко перевести в сигналы.
Прежде всего, вспомним о байтовом принципе организации памяти компьютера.
Как вы помните, каждая клетка обозначает бит памяти. Восемь подряд идущих битов образуют байт памяти. Байты пронумерованы. Порядковый номер байта определяет его адрес в памяти компьютера. По этим адресам процессор обращается к данным, считывает их или записывает в память.
Схема представления текста в памяти компьютера очень проста. Каждая буква алфавита, цифра, знак препинания или любой другой символ необходимый для записи текста обозначается определённым двоичным кодом, длина которого фиксирована.
Например, в системах кодировки Windows – 1251 и KОИ-8 каждый символ заменяется на восьмиразрядное целое положительное двоичное число, оно хранится в одном байте памяти. Это число является порядковым номером символа в кодовой таблице.
Мы уже говорили о том, что разрядность ячейки памяти i и количество различных целых положительных чисел, которые можно записать в эту ячейку n связаны соотношением:
Восьмиразрядный двоичный код позволяет получить 256 различных кодовых комбинаций, то есть 2 8 = 256.
С помощью 256 кодовых комбинаций можно закодировать все символы двух алфавитов (английского и русского) и все остальные дополнительные символы, расположенные на клавиатуре компьютера — цифры и знаки арифметических операций, знаки препинания и скобки и так далее, а также ряд управляющих символов, без которых невозможно создание текстового документа (удаление предыдущего символа, переход на новую строку, пробел и другие).
Мощность алфавита равна 256 символов. Сколько Килобайт памяти потребуется для сохранения 160 страниц текста, содержащего в среднем 192 символа на каждой странице?
В современном мире около 6700 живых языков и около 25 алфавитов.
Он является результатом сотрудничества Международной организации по стандартизации (ISO) с ведущими производителями компьютеров и программного обеспечения.
Этот стандарт был предложен в 1991 году некоммерческой организацией «Консорциум Юникода». С помощью этого стандарта можно закодировать очень большое число символов из разных письменностей: в документах Unicode могут соседствовать китайские иероглифы, математические символы, буквы греческого алфавита, латиницы и кириллицы, при этом становится ненужным переключение кодовых страниц.
В Юникод каждый символ кодируется 16-битовым двоичным кодом, то есть два байта на символ. В данном случае можно закодировать 2 16 = 65536 различных символов.
Однако в последнее время объединение Unicode приступило к кодированию письменности мёртвых языков и в этом случае 16-битового кодирования уже недостаточно. Поэтому Unicode приступил к освоению новых кодов.
Текстовый документ, который хранится в памяти компьютера, состоит из кодов символьного алфавита, кодов управления форматами текста. Также текстовые процессоры, например, Microsoft Word позволяют включать и редактировать такие объекты как таблицы, оглавления, ссылки и гиперссылки, историю вносимых изменений и так далее. Все это также представляется в виде последовательности байтовых кодов.
В зависимости от разрядности используемой кодировки информационный вес символа текста, создаваемого на компьютере, может быть равен:
• 8 бит или 1 байт — если используется восьмиразрядная кодировка;
• 16 бит или 2 байта — если используется шестнадцатиразрядная кодировка.
Информационным объёмом фрагмента текста будем называть количество битов, байтов или производных единиц (килобайтов, мегабайтов и так далее), необходимых для записи этого фрагмента заранее оговорённым способом двоичного кодирования.
Информационный объем текста, набранного на компьютере с использованием кодировки UNICODE равен 4 Килобайта. Определить количество символов в тексте.
Как мы уже говорили бывают случаи, когда, работая с текстом, программа может запросить воспользоваться другой кодировкой, например, текст в восьмибитном коде Windows перекодировать в кодировку Unicode. Давайте выясним, что произойдёт с информационным объёмом текста.
Итак, рассмотрим такой пример.
Соответствие между изображениями и кодами символов устанавливается с помощью кодовых таблиц.
В зависимости от разрядности используемой кодировки информационный вес символа текста, создаваемого на компьютере, может быть равен:
• 16 бит (2 байта) — если используется 16-разрядная кодировка.
Информационный объём фрагмента текста — это количество битов, байтов и производных единиц, необходимых для записи фрагмента оговорённым способом кодирования.
Представление изображений.
Все известные форматы представления изображений (как неподвижных, так и движущихся) можно разделить на растровые и векторные. В векторном формате изображение разделяется на примитивы - прямые линии, многоугольники, окружности и сегменты окружностей, параметрические кривые, залитые определенным цветом или шаблоном, связные области, набранные определенным шрифтом отрывки текста и т. д. (см. рис.). Для пересекающихся примитивов задается порядок, в котором один из них перекрывает другой. Некоторые форматы, например, PostScript, позволяют задавать собственные примитивы, аналогично тому, как в языках программирования можно описывать подпрограммы. Такие форматы часто имеют переменные и условные операторы и представляют собой полнофункциональный (хотя и специализированный) язык программирования.
Рис. Двухмерное векторное изображение
Каждый примитив описывается своими геометрическими координатами. Точность описания в разных форматах различна, нередко используются числа с плавающей точкой двойной точности или с фиксированной точкой и точностью до 16-го двоичного знака.
Координаты примитивов бывают как двух-, так и трехмерными. Для трехмерных изображений, естественно, набор примитивов расширяется, в него включаются и различные поверхности - сферы, эллипсоиды и их сегменты, параметрические многообразия и др. (см. рис.).
Рис. Трехмерное векторное изображение
Рис. Растровое изображение
Наиболее широко используемые цветовые модели - это RGB (Red, Green, Blue - красный, зеленый, синий, соответствующие максимумам частотной характеристики светочувствительных пигментов человеческого глаза), CMY (Cyan, Magenta, Yellow - голубой, пурпурный, желтый, дополнительные к RGB) и CMYG - те же цвета, но с добавлением градаций серого. Цветовая модель RGB используется в цветных кинескопах и видеоадаптерах, CMYG - в цветной полиграфии.
В различных графических форматах используется разный способ хранения пикселов. Два основных подхода - хранить числа, соответствующие пикселам, одно за другим, или разбивать изображение на битовые плоскости - сначала хранятся младшие биты всех пикселов, потом - вторые и так далее. Обычно растровое изображение снабжается заголовком, в котором указано его разрешение, глубина пиксела и, нередко, используемая цветовая модель.
Представление звуковой информации.
- Метод FM (Frequency Modulation) основан та том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, а, следовательно, может быть описан числовыми параметрами, т.е. кодом. В природе звуковые сигналы имеют непрерывный спектр, т.е. являются аналоговыми. Их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальный устройства - аналогово-цифровые преобразователи (АЦП). Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). При таких преобразованиях неизбежны потери информации, связанные с методом кодирования, поэтому качество звукозаписи обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окрасом характерным для электронной музыки. В то же время данный метод копирования обеспечивает весьма компактный код, поэтому он нашёл применение ещё в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.
- Метод таблично волнового (Wave-Table) синтеза лучше соответствует современному уровню развития техники. В заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментах. В технике такие образцы называют сэмплами. Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые параметры среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звучания. Поскольку в качестве образцов исполняются реальные звуки, то его качество получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.
- цифровая запись, когда реальные звуковые волны преобразуются в цифровую информацию путем измерения звука тысячи раз в секунду;
- MIDI-запись, которая, вообще говоря, является не реальным звуком, а записью определенных команд-указаний (какие клавиши надо нажимать, например, на синтезаторе). MIDI-запись является электронным эквивалентом записи игры на фортепиано.
Таким образом, рассмотрев принципы хранения в ЭВМ различных видов информации, можно сделать важный вывод о том, что все они так или иначе преобразуются в числовую форму и кодируются набором нулей и единиц. Благодаря такой универсальности представления данных, если из памяти наудачу извлечь содержимое какой-нибудь ячейки, то принципиально невозможно определить, какая именно информация там закодирована: текст, число или картинка.
Представление видео.
В последнее время компьютер все чаще используется для работы с видеоинформацией. Простейшей, с позволения сказать, работой является просмотр кинофильмов и видеоклипов, а также (куда компьютерным пользователям без них!) многочисленные видеоигры. Более правомерно данным термином называть создание и редактирование такой информации с помощью компьютера.
Что представляет собой фильм с точки зрения информатики? Прежде всего, это сочетание звуковой и графической информации. Кроме того, для создания на экране эффекта движения используется технология быстрой смены статических картинок. Исследования показали, что если за одну секунду сменяется более 10-12 кадров, то человеческий глаз воспринимает изменения на них как непрерывные. В любительской киносъемке использовалась частота 16 кадров/сек., в профессиональной - 24.
Традиционный кадр на кинопленке "докомпьютерной" эпохи выглядел так, как показано на рис.1. Основную его часть, разумеется, занимает видеоизображение, а справа сбоку отчетливо видны колебания на звуковой дорожке. Имеющаяся по обоим краям пленки периодическая система отверстий (перфорация) служит для механической протяжки ленты в киноаппарате с помощью специального механизма.
Казалось бы, если проблемы кодирования статической графики и звука решены, то сохранить видеоизображение уже не составит труда. Но это только на первый взгляд, поскольку, как показывает разобранный выше пример, при использовании традиционных методов сохранения информации электронная версия фильма получится слишком большой. Достаточно очевидное усовершенствование состоит в том, чтобы первый кадр запомнить целиком (в литературе его принято называть ключевым), а в следующих сохранять лишь отличия от начального кадра (разностные кадры).
Принцип формирования разностного кадра поясняется рис.2, где продемонстрировано небольшое горизонтальное смещение прямоугольного объекта. Отчетливо видно, что при этом на всей площади кадра изменились всего 2 небольшие зоны: первая сзади объекта возвратилась к цвету фона, а на второй - перед ним, фон перекрасился в цвет объекта. Для разноцветных предметов произвольной формы эффект сохранится, хотя изобразить его будет заметно труднее.
Рис.2
Конечно, в фильме существует много ситуаций, связанных со сменой действия, когда первый кадр новой сцены настолько отличается от предыдущего, что его проще сделать ключевым, чем разностным. Может показаться, что в компьютерном фильме будет столько ключевых кадров, сколько новых ракурсов камеры. Тем не менее, их гораздо больше. Регулярное расположение подобных кадров в потоке позволяет пользователю оперативно начинать просмотр с любого места фильма: "если пользователь решил начать просмотр фильма с середины, вряд ли он захочет ждать, пока программа распаковки вычислит все разности с самого начала" Кроме того, указанная профилактическая мера позволяет эффективно восстановить изображение при любых сбоях или при "потере темпа" и пропуске отдельных кадров на медленных компьютерных системах.
Заметим, что в современных методах сохранения движущихся видеоизображений используются и другие типы кадров.
Существует множество различных форматов представления видеоданных. В среде Windows, например, уже более 10 лет (начиная с версии 3.1) применяется формат Video for Windows, базирующийся на универсальных файлах с расширением AVI (Audio Video Interleave - чередование аудио и видео). Суть AVI файлов состоит в хранении структур произвольных мультимедийных данных, каждая из которых имеет простой вид, изображенный на рис.3. Файл как таковой представляет собой единый блок, причем в него, как и в любой другой, могут быть вложены новые блоки. Заметим, что идентификатор блока определяет тип информации, которая хранится в блоке.
Рис.3
Внутри описанного выше своеобразного контейнера информации (блока) могут храниться абсолютно произвольные данные, в том числе, например, блоки, сжатые разными методами. Таким образом, все AVI-файлы только внешне выглядят одинаково, а внутри могут различаться очень существенно.
Еще более универсальным является мультимедийный формат Quick Time, первоначально возникший на компьютерах Apple. По сравнению с описанным выше, он позволяет хранить независимые фрагменты данных, причем даже не имеющие общей временной синхронизации, как этого требует AVI. В результате в одном файле может, например, храниться песня, текст с ее словами, нотная запись в MIDI-формате, способная управлять синтезатором, и т.п. Мощной особенностью Quick Time является возможность формировать изображение на новой дорожке путем ссылок на кадры, имеющиеся на других дорожках. Полученная таким способом дорожка оказывается несоизмеримо меньше, чем если бы на нее были скопированы требуемые кадры. Благодаря описанной возможности файл подобного типа легко может содержать не только полную высококачественную версию видеофильма, но и специальным образом "упрощенную" копию для медленных компьютеров, а также рекламный ролик, представляющий собой "выжимку" из полной версии. И все это без особого увеличения объема по сравнению с полной копией.
Все большее распространение в последнее время получают системы сжатия видеоизображений, допускающие некоторые незаметные для глаза искажения изображения с целью повышения степени сжатия. Наиболее известным стандартом подобного класса служит MPEG (Motion Picture Expert Group), который разработан и постоянно развивается созданным в 1988 году Комитетом (группой экспертов) международной организации ISO/IEC (International Standards Organization/International Electrotechnical Commission) по стандартам высококачественного сжатия движущихся изображений. Методы, применяемые в MPEG, непросты для понимания и опираются на достаточно сложную математику. Укажем лишь наиболее общие приемы, за счет которых достигается сжатие. Прежде всего, обрабатываемый сигнал из RGB-представления с равноправными компонентами преобразуется в яркость и две "координаты" цветности. Как показывают эксперименты, цветовые компоненты менее важны для восприятия и их можно проредить вдвое. Кроме того, производится специальные математические преобразования (DCT - дискретно-косинусное преобразование), несколько загрубляющее изображение в мелких деталях. Опять таки из экспериментов следует, что на субъективном восприятии изображение это практически не сказывается. Наконец, специальными методами (в том числе и методом, изображенным на рис.2) ликвидируется сильная избыточность информации, связанная со слабыми отличиями между соседними кадрами. Полученные в результате всех описанных процедур данные дополнительно сжимаются общепринятыми методами, подобно тому, как это делается при архивации файлов.
В последнее время все большее распространение получает технология под названием DivX (происходит от сокращения слов Digital Video Express, обозначающих название видеосистемы, которая "прославилась" неудачной попыткой взимать небольшую оплату за каждый просмотр видеодиска; к собственно технологии DivX это никакого отношения не имело). Благодаря DivX удалось достигнуть степени сжатия, позволившей вмесить качественную запись полнометражного фильма на один компакт-диск - сжать 4,7 Гб DVD-фильма до 650 Мб. И хотя это достижение, к сожалению, чаще всего используется для пиратского копирования, сам по себе этот факт не умаляет достоинств новой технологии. Как и то, что самая первая версия сжатия DivX была сработана французскими хакерами из MPEG-4 - современные версии DivX уже не имеют к этому событию никакого отношения.
Наиболее популярные программы проигрывания видеофайлов позволяют использовать замещаемые подсистемы сжатия и восстановления видеоданных - кодеки (от англ. compression/decompression - codec, сравните с образованием термина "модем").
Такой подход позволяет легко адаптировать новые технологии, как только те становятся доступными. Замещаемые кодеки хороши как для пользователей, так и для разработчиков программного обеспечения. Тем не менее, большое разнообразие кодеков создает определенные трудности для производителей видеопродукции. Часто в качестве выхода из создавшегося положения необходимые кодеки помещают на компакт-диск с фильмами или даже поставляют видеоматериалы в нескольких вариантах, предоставляя тем самым возможность выбрать подходящий. Все больше распространяется автоматизация распознавания, когда плейер, обнаружив информацию об отсутствующем кодеке, загружает его из Интеренет.
Числовая информация – не единственный тип данных , обрабатываемых с помощью ЭВМ. Очень большой пласт прикладных задач связан с обработкой текстовой информации. К ним относятся текстовые редакторы, всевозможные переводчики, компиляторы алгоритмических языков, информационно-справочные системы, системы обработки экономических данных и многие другие.
Языки C, C++ разделяют текстовые данные на примитивы, значением которых являются одиночные символы ( символьные данные ) и последовательности примитивов в виде цепочек символов , завершающихся установленным признаком конца ( строковые данные ). Символьные данные могут быть представлены как скалярными величинами (символьные константы , символьные переменные), так и массивами таких данных. Строковые данные наряду с константами и скалярными переменными тоже могут быть организованы в массивы, напоминающие привычные текстовые документы.
В ранних версиях систем программирования для кодировки символьных данных использовались так называемые кодовые страницы ( code page ). С одной из таких кодовых страниц в свое время выступила фирма IBM , предложившая в качестве стандарта 7-битовую кодировку управляющих и отображаемых символов на компьютерах серии IBM /360. Однако с развитием средств обработки символьной информации 128 различных кодов оказалось недостаточно, и для подключения кодов с символами национальных алфавитов производители средств вычислительной техники соответствующих стран начали подключать к стандарту IBM дополнительные наборы символов. Для кодировки новых расширений потребовался еще один двоичный разряд, и так возникли сменные наборы, дополнявшие устоявшуюся таблицу IBM . Каждая страна или группа стран построила свой уникальный набор из 256 символов, получивший название кодовой страницы. Чтобы отличать эти страницы друг от друга, им присвоили номера. Пользователям нашей страны досталась кодовая страница с номером 866. Довольно много хлопот разнообразие этих страниц вызывало у производителей программных продуктов, учитывающих специфику национальных алфавитов. Трудно приходилось и производителям устройств вывода (принтеры, плоттеры), т.к. в их конструкциях предусматривались аппаратно зашитые таблицы шрифтов.
Системы программирования BC 3.1 и BCB ориентированы на однобайтовую кодировку символьных данных на базе кодовых страниц ASCII . Сложность заключается в том, что под управлением MS-DOS в нашей стране используется кодовая страница с номером 866, а в операционных системах Windows 98/NT/2000/XP отечественная кодовая страница имеет номер 1251. У обеих кодовых страниц первые половины идентичны стандарту IBM . Здесь находятся коды управляющих символов ( группа кодов от 0x00 до 0x1F ), различные разделители (точки, запятые, скобки и т.п.) и знаки операций, большие и малые буквы латинского алфавита. А вот вторые половины этих кодовых страниц устроены по -разному и из-за этого тексты на русском языке, подготовленные в среде Windows , отображаются консольными приложениями BCB в виде некоторой абракадабры. Это явление не наблюдалось в среде BC 3.1, т.к. там и набор программы и ее выполнение происходят в рамках одной и той же кодовой страницы.
4.1. Символьные данные и их представление в памяти ЭВМ
Одиночным символьным данным (константам и переменным) в оперативной памяти ЭВМ выделяется по одному байту, в которых хранятся соответствующие значения – числовые коды конкретных символов в соответствии с их кодировкой в той или иной странице.
Чтобы познакомиться с 866-й кодовой страницей предлагается выполнить следующую программу:
Читайте также: