Какие телефоны поддерживают mimo 4x4
Сети 4 G работают в стандарте LTE . Согласно Википедии LTE (буквально с англ . Long - TermEvolution — долговременное развитие, часто обозначается как 4G LTE) — стандарт беспроводной высокоскоростной передачи данных для мобильных телефонов и других терминалов, работающих с данными (модемов, например). Он увеличивает пропускную способность и скорость за счёт использования другого радиоинтерфейса вместе с улучшением ядра сети. Стандарт был разработан 3GPP (консорциум, разрабатывающий спецификации для мобильной телефонии). Беспроводной интерфейс LTE является несовместимым с 2G и 3G, поэтому он должен работать на отдельной частоте. В России для LTE выделено три частотных диапазона — 800, 1800 и 2600 МГц.
LTE FDD и LTE TDD
Стандарт LTE бывает двух видов, различия между которыми довольно существенны. FDD - FrequencyDivisionDuplex (частотный разнос входящего и исходящего канала) TDD - TimeDivisionDuplex (временной разнос входящего и исходящего канала). Грубо говоря, FDD - это параллельный LTE, а TDD - последовательный LTE. Например, при ширине канала в 20 МГц в FDD LTE часть диапазона (15 МГц) отдаётся для загрузки (download), а часть (5 МГц) для выгрузки (upload). Таким образом каналы не пересекаются по частотам, что позволяет работать одновременно и стабильно для загрузки и выгрузки данных. В TDD LTE всё тот же канал в 20 МГц полностью отдаётся и как для загрузки, так и для выгрузки, а данные передаются в ту и другую сторону поочерёдно, при этом приоритет имеет всё-таки загрузка. В целом FDD LTE предпочтительнее, т.к. он работает быстрее и стабильнее.
Частотные диапазоны LTE, Band
Сети LTE (FDD и TDD) работают на разных частотах в разных странах. Во многих странах эксплуатируются сразу несколько частотных диапазонов. Стоит отметить, что не всё оборудование умеет работать на разных "бэндах", т.е. частотных диапазонах. FDD-диапазоны нумеруются с 1 по 31, TDD-диапазоны с 33 по 44. Существуют дополнительно несколько стандартов, которым еще не присвоены номера. Спецификации на частотные полосы называются бэндами (BAND). В России и Европе в основном используются band 7, band 20, band 3 и band 38.
В России для сетей 4-го поколения на сегодня используются четыре частотных диапазона:
Диапазон частот
1800 МГц
2600 МГц
800 МГц
2600 МГц
Номер диапазона по класси-фикации 3GPP
В качестве примера приведу распределение частот среди основных российских операторов связив диапазоне LTE 2600 ( Band 7):
Как видим из этой схемы, Билайну досталось всего 10 МГц. Ростелекому тоже досталось только 10 МГц. МТС - 35 МГц в Московском регионе и 10 МГц по всей стране. А Мегафону и Yota (это один и тот же холдинг) досталось аж 65 МГц на двоих в Московском регионе и 40 МГц по всей России!
Через Yota в Москве виртуально работает только Мегафон в стандарте 4G, в других регионах - Мегафон и МТС. В диапазоне TDD по всей России кроме Москвы будут работать телевидение (Космос-ТВ и др.).
Полное распределение частот операторов сотовой связи в России см. здесь.
Сети 4G LTE в России
Оператор
Частотный диапазон
(МГц) Dw / Up
Ширина канала
(МГц)
Тип дуплекса
Номер полосы
Распределение частот среди операторов по регионам России можно найти здесь.
Для тех, кому трудно запомнить номера диапазонов-бэндов или под рукой нет подходящего справочника, рекомендую небольшое андроид-приложение RFrequence , скриншот которого приведен ниже.
Категории LTE
Абонентские устройства классифицируются по категориям. Наиболее распространенными на сегодня являются устройства 4-й категории CAT4. Это означает что максимально достижимая скорость мобильного интернета на прием (downlink или DL) может составлять 150 Мбит/секунду, на передачу (uplink или UL) – 50 Мбит/с. Важно отметить, что это максимально достижимая скорость в идеальных условиях – главные из которых — вы недалеко от вышки, кроме вас в соте больше нет абонентов, к базовой станции подведен оптический транспорт и др.
Наиболее распространенные категории абонентских устройств приведены в таблице.
Категория абонентского устройства
Макс. скорость загрузки (DL), Мбит/с
Агрегация несущих
Дополнительные технологии
CAT4
CAT6
CAT9
CAT12
4x4 MIMO, 256 QAM
CAT16
4x4 MIMO, 256 QAM
Таблица требует некоторых пояснений. Здесь упомянута «агрегация несущих» и «дополнительные технологии». Попытаюсь пояснить, что это такое.
Агрегация частот
Под словом «агрегация» в данном случае понимается объединение, т.е. агрегация частот – это объединение частот. Что это означает – попытаюсь объяснить ниже.
Известно, что скорость приема передачи зависит от ширины канала передачи. Как мы видели из таблицы в предыдущем разделе, ширина канала на загрузку, например, МТС равна 10 МГц в диапазоне Band 7 (кроме Москвы), на отдачу также 10 МГц. Чтобы увеличить скорость загрузки оператор перераспределяет купленные им частоты в соотношении 15 МГц на загрузку и 5 МГц на отдачу. Аналогично поступают и другие провайдеры.
Однажды кому-то из разработчиков пришла в голову светлая мысль – а что, если передавать сигнал не на одной несущей частоте, а на нескольких одновременно. Тем самым расширяется канал приема/передачи и скорость теоретически значительно возрастет. А если еще каждую несущую передавать по схеме MIMO 2х2, то получаем дополнительный выигрыш в скорости. Такая схема приема-передачи получила название «агрегации частот».Именно эту схему использует интернет 4 G + или LTE - Advanced ( LTE - A ).
В таблице указано, что для Cat .9, нужно, чтобы передатчик и приемник умели передавать и принимать сигнал на трех несущих частотах (в трех бэндах) одновременно, ширина каждого канала должна быть не менее 20 МГц. Для Cat .12 необходимо дополнительно, чтобы антенные устройства были соединены по схеме MIMO 4х4, т.е. фактически нужно 4 антенны на приемной и передающей стороне.
Загадочные символы 256 QAM означают определенный вид модуляции сигнала, позволяющий более плотно упаковывать информацию. Желающих более детально ознакомиться с этой темой могут начать знакомство с материалом в статье в Википедии и с тамошними ссылками.
Категорирование приемных устройств
Схемаагрегирования частот активно развивается российскими провайдерами, заключены много соглашений о взаимном использовании частотных диапазонов, реконструируется антенное хозяйство базовых станций.
Однако есть одна проблема – на приемной стороне абонент должен уметь принимать сигнал на нескольких несущих частотах одновременно. Далеко не все смартфоны, планшеты и модемы поддерживают агрегацию частот и, следовательно, не могут работать в 4 G +.
Начиная с 2016 года в документации к смартфонам указываются частотные диапазоны (бэнды) и категорию LTE ,в которых они умеют работать.Например, для смартфона выпуска 2017 г. Huawei P 10 Plus помимо прочих параметров указано:
HSPA+ до 42 Мбит/с
LTE Cat12 до 600 Мбит/с
FDD: Band 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 17, 18, 19, 20, 26, 28; TDD: Band 38, 39, 40, 41
Совместимость с операторами
МТС, Мегафон, Билайн, Теле2, Yota
Кроме того, этот смартфон имеет встроенную антенну MIMO 4 x 4 и соответствующий модем, позволяющий обрабатывать сигналы сразу на двух несущих частотах.
Если ваш смартфон поддерживает агрегацию частот, то вкладка «настройка»->«мобильная сеть» будет выглядеть примерно так:
Если это так, то ваш смартфон поддерживает LTE - A .
Таким образом, производители смартфонов начали догонять сотовых операторов. К сожалению, нельзя сказать того же о производителях модемов. До сих пор самый производительный модем дает максимальные скорости 150/50 Мбит/с, т.е. принадлежит Cat .4. Пока это обстоятельство не слишком огорчает, т.к. такие скорости, если будут достигнуты на практике, заслуживают восхищения. Однако, производство мобильных роутеров, похоже, начинает догонять смартфоны. На рынке стали появляться роутеры Cat .6 от Huawei и Netgeer (не поддерживает российские бэнды). Так роутер Huawei E5787s-33a можно купить на AliExpress примерно за 10 тыс. руб.
Надо сказать, что реальные скорости, достигаемые в режиме 4 G +, далеки от заявленных, но они значительно выше, чем в простом режиме 4 G . Автором проведен ряд экспериментов в Москве, где не трудно найти LTE - A (оператор Мегафон), со смартфоном Cat .12, результаты которых показаны на скриншотах. Первый скриншот – скорости для LTE - A (агрегация частот включена), второй скриншот для LTE (агрегация частот выключена). Отмечу, что почему-то при выполнении скриншота у значка 4 G + пропадает плюсик. Почему – не знаю, при тестировании плюс был – см. скрин.
Было проведено по шесть измерений для каждого режима.
Скорости при включенной агрегации частот в среднем заметно выше, хоть и не в разы. Измерения проводились вблизи вышки, днем.
Желающим поэкспериментировать с LTE-A
Если в вашей местности появился LTE - A , в чем вы убедились, измерив частоты выбранного вами оператора (провайдер раздает интернет на двух частотах, например, LTE 800 и LTE 2600, т.е. использует сочетание В7+В20) и у вас руки чешутся попробовать что это такое, то можете попытаться использовать схему из двух MIMO -антенн с диплексерами. Что из этого получится (и получится ли вообще хоть что-то), можете написать в комментариях к статье.
Отмечу здесь, что антенна NITSA -5 MIMO 2 x 2 фактически реализует эту схему. Отличие в том, что в NITSA -5 функцию диплексеров выполняют сами широкополосные излучатели антенны, т.к. каждый из них принимает соответствующим образом поляризованные сигналы из диапазонов 790÷960/1700÷2700 МГц одновременно.Напомню, чтоупомянутая антенна состоит из двух широкополосных облучателей, разнесенных на определенное расстояние и ориентированных так, что их векторы поляризации ортогональны.
В целом, эта антенна хорошо приспособлена для приема 4 G + на небольших расстояниях (до 5 км при наличии прямой видимости БС) , т.к. позволяет принимать любую комбинацию частот LTE - A и адаптирует MIMO 4 x 4 к широко распространенным модемам Cat .4, имеющих только два входа MIMO 2 x 2.
Как узнать параметры LTEсвоего 4G-сигнала
Интерфейс широко распространенного модема Huawei 3372 дает почти всю информацию о параметрах 4 G -сигнала. На главной странице интерфейса видим, что принимаем сигнал LTE , оператора сотовой связи, приблизительный уровень сигнала в виде 5 полосок, а также значок, показывающий, что связь установлена – стрелочки верх-вниз.
Определить частотный диапазон ( Band ) и стандарт передачи данных (разнос данных – FDD или TDD ) можно на следующей вкладке:
Выставив предпочтительный режим «только LTE », сняв галочку с параметра «все поддерживаемые», можно по очереди перебирая диапазоны узнать – на какой частоте вы получаете сигнал. Если сигнал принимается, то вверху справа будет отражаться информация, как на скриншоте, если приема нет, то появится надпись «Сигнала нет». После всех изменений не забудьте нажать кнопку «Применить».
Но не все так просто. Все вышесказанное прекрасно работает для диапазонов стандарта FDD . Выставить диапазон TDD не удается. Точно знаю, что в Москве МТС раздает LTE в диапазоне Band 38, т.е. частота 2600, тип передачи TDD . Попытка выставить этот диапазон для сим-карты МТС не удается, модем перегружает страницу и возвращается к предыдущему состоянию. При этом можно установить B 7 и B 3 как по отдельности, так и одновременно.
Измерения, проведенные на смартфоне с Андроид 7.0 и встроенным модемом Cat .12, показали следующий результат.
Отмечу, что Андроид 7.0 в отличие от более младших версий умеет измерять параметры сигнала и передавать данные приложениям, которые их запрашивают у ОС. На скриншоте видно, что на самом деле МТС (на скриншоте МГТС, это одно и то же) раздает LTE в диапазоне Band 38, т.е. в формате TDD .
Возможная причина такой ситуации заключается в том, что модемы серии Е3372 выпускаются в двух модификациях – Е3372 H и Е3372 S . У меня модем с буквой H на конце, разлоченный и перепрошитый в HiLink.У модемов E3372Н серийный номер начинается с комбинации G4P, а у E3372 S - L8F. Допускаю, что модемы серии S умеют настраиваться на В38, но проверить не могу, т.к. не имею под рукой соответствующего модема.
Таким образом, интерфейс модема HiLink дает почти всю информацию о параметрах LTE -сигнала. Однако, при определении частотного диапазона ( Band ) может допускать ошибки, когда передача данных осуществляется в формате TDD . Для определения «бэнда» целесообразно пользоваться другими инструментами, в частности приложениями, работающими под Андроид 7.0 и соответствующими смартфонами.
Ссылки
При написании статьи помимо ссылок, указанных в тексте, использованы следующие материалы.
Скорость мобильного интернета зависит как от оператора связи, так и от вашего устройства. Когда при описании сети оператора используются термины 4G+ или LTE-Advance, то речь идет о том, что на сети поддерживается технология агрегации несущих, она-то и обеспечивает более высокие скорости мобильного интернета. Что это такое, как это уже реализовано на сетях российских операторов мобильной связи, какие смартфоны ее поддерживают – об этом данная статья.
Для понимания принципа работы этой технологии давайте представим автомобильную дорогу. Очевидно, что пропускная способность дороги с двумя полосами движения выше чем у дороги с одной полосой. А трасса с тремя или даже четырьмя полосами позволяет пропустить еще большее количество разных автомобилей, двигающихся с различными скоростями.
Аналогично дорогам, в сотовой связи имеются несущие – радио частоты на которых передается полезная информация. Если агрегировать (объединить) несущие для передачи данных, то можно получить большую пропускную способность сети, а значит и скорость мобильного интернета конкретного абонента.
В России для сетей 4-го поколения на сегодня используются четыре частотных диапазона:
Диапазон частот | 1800 МГц | 2600 МГц | 800 МГц | 2600 МГц |
---|---|---|---|---|
Номер диапазона по классификации 3GPP | 3 | 7 | 20 | 38 |
Разделение каналов | FDD | FDD | FDD | TDD |
Распространение сигнала (территория покрытия, проникновение в помещение) | среднее | низкое | высокое | низкое |
Распространенность на смартфонах | высокая | высокая | Средняя, растет | Низкая, растет |
Ширина полосы и территория покрытия каждого диапазона у операторов отличаются. Например, международная версия в целом хорошего смартфона Xiaomi mi5 не поддерживает 20-й диапазон. Для российских абонентов это может быть критичным, т.к. не смотря на небольшую полосу в 5 МГц в этом диапазоне, ограничения по мощности и различное покрытие у разных операторов, сам диапазон имеет высокое indoor проникновение, т.е. у смартфона больше шансов передавать данные в помещении.
Другой пример, МегаФон имеет 40 МГц непрерывного спектра 7-го диапазона, в то время как у других операторов только 20 МГц. Это дает значительное преимущество оператору (для высоких скоростей и емкости), хотя и не реализованное полностью.
Проводя дальше аналогию с автомобильными дорогами можно сказать что новый смартфон должен уметь ехать по всем четырем дорогам (полосам).
Таким образом, при выборе нового смартфона, если вам важна скорость мобильного интернета, следует обратить внимание при чтении спецификации поддерживает ли данное устройство в идеале все четыре диапазона – 3, 7, 20, 38. На сегодня таких смартфонов пока немного, требуемый минимум – наличие диапазонов 3 и 7, средний вариант – наличие 3, 7 и 20 диапазонов.
Теперь поговорим, собственно об агрегации несущих.
Абонентские устройства классифицируются по категориям. Наиболее распространенными на сегодня являются устройства 4-й категории CAT4. Это означает что максимально достижимая скорость мобильного интернета на прием (downlink или DL) может составлять 150 Мбит/секунду, на передачу (uplink или UL) – 50 Мбит/с. Важно отметить, что это максимально достижимая скорость в идеальных условиях – главные из которых — вы недалеко от вышки, кроме вас в соте больше нет абонентов, к базовой станции подведен оптический транспорт и др.
Категория абонентского устройства | Макс. скорость DL, Мбит/с | Агрегация несущих | Дополнительные технологии |
---|---|---|---|
CAT4 | 150 | - | - |
CAT6 | 300 | 2х20 МГц | - |
CAT9 | 450 | 3Х20 МГц | - |
CAT12 | 600 | 3Х20 МГц | 4x4 MIMO, 256 QAM |
CAT16 | 980 | 4Х20 МГц | 4x4 MIMO, 256 QAM |
Смартфоны 4-й категории работают у всех 4-х российских операторов, устройства 6-й категории могут показать максимальные результаты в сетях МегаФон, МТС и Билайн, а вот устройства 9-й категории пока могут проявиться по максимуму только в сети МегаФон.
Агрегация несущих появляется в устройствах начиная с 6-й категории. Устройства с CAT6 поддерживают агрегацию двух несущих, и уже есть на нашем рынке. Это, например, Lenovo Moto P2, Lenovo Moto Z Play, Lenovo Moto Z, Sony Xperia X, Xiaomi Mi Note 2, Apple 6S.
Устройства 9-й категории только начали появляться. Это HTC M10, Apple iPhone 7, Sony Xperia XZ. Появление смартфонов 12-й и 16-й категорий ожидается в 2017 году, в первую очередь обращайте внимание на флагманские модели ASUS и Sony. Пиковые скорости будут возможны при условии реализации операторами дополнительных технологий 4x4 MIMO и 256 QAM. Если включение модуляции 256 QAM будет произведено в результате обновления программного обеспечения инфраструктуры оператора, то технология 4x4 MIMO (4 антенны на прием, 4 антенны на передачу) потребует инвестиций в антенное хозяйство. В связи с этим, максимальные пиковые скорости будут возможны в начале только в хот-спотах типа бизнес / торговые центры, вокзалы и т.п.
Как узнать категорию смартфона? Это не тривиальная задача. Хорошим признаком является используемый чипсет (процессор/модем). Узнать его можно, например, тут. Для устройств 6-й категории ориентируйтесь на Qualcomm Snapdragon 625, 626, 653, 435, а для устройств 9 категории – Qualcomm Snapdragon 820 и 821. Это к сожалению, не может гарантировать максимальный результат, так, например, смартфон ZTE Z11 построен на флагманском чипсете Snapdragon 820, но глобальная версия у нас будет работать только как устройство 4-й категории.
На сегодня из смартфонов 6-й категории можно рекомендовать — Moto Z и Xiaomi Mi Note 2, 9-й категории — Sony Xperia XZ и, если вы готовы переплачивать за бренд — iPhone 7. Автор не имел возможность протестировать Samsung Galaxy S7, и в частности, какие комбинации агрегации российских операторов поддерживаются, поэтому, коллеги, кто знает, пожалуйста, пишите в комментариях.
Скачивать уже не модно — все делятся фотографиями и видеозаписями
Никто и не спорит, что лучше быть богатым и здоровым, чем бедным и больным. Но, когда ресурсы сети ограничены, на свет появляется асимметричные по скорости способы передачи данных. Самый знаменитый и показательный пример такого подхода — ADSL (помните быстрый на скачивание, и «тухлый» на отдачу домашний интернет?), а ныне — мобильный канал связи. Например, идеальнейший вариант LTE предполагает до 326,4 Мбит/с на скачивание и до 172,8 Мбит/с на отдачу. В реальности же мы довольствуемся в разы менее крутой 4G-связью.
И, хотя операторы строят 4G-сеть ударными темпами, легче им не становится, потому что бог с ней, со скоростью скачивания (которой у LTE зачастую хватает для видеороликов в HD-разрешении), но с 2014 года по всему миру зверски растёт количество не скачанной, а переданной информации — по 54% прироста каждый год.
Пользователи мобильников всё больше любят раздавать, а не скачивать
Как так получается? А вот так:
- сэлфи-камеры резко прибавили в разрешении. Пару лет назад 1.3, максимум 2 Мп хватало всем. С тех пор даже у консервативного iPhone разрешение фронталки выросло в 5 раз.
- разрешение дисплеев и, как следствие, разрешение видео. Full HD в мобильнике стал ширпотребом, бюджетные смартфоны давно обзавелись HD-экранами, и передавать видеоролики в 1080p стали не только отчаянные и бешено богатые ребята, но и простые трудящиеся.
Qualcomm, МТС и Huawei рассказывают о доработке LTE-сетей в Приморском крае
- никто больше не стесняется быть «мобильным репортёром» — в YouTube и Instagram всё чаще загружают данные с помощью 4G, а кто-то и вовсе ведёт прямые трансляции в Periscope. Отдельный «ад оператора» — спортивные мероприятия и концерты, когда тысячи смартфонов одновременно пытаются передать массив фото и видео «наружу».
- облачные резервные копии. Добрая милая традиция лишать мобильники слота для карт памяти особо хороша тем, что если смартфон погибнет/«заглючит» — он унесёт с собой в могилу все фотографии, музыку, документы и видео на внутреннем накопителе. Поэтому многие владельцы мобильников перестраховываются и включают резервное копирование файлов в облако через LTE.
Сотовые сети приходится перестраивать под передачу данных на мероприятиях
За счёт чего нам выкатят ещё более быстрый LTE?
Конечно, операторы могли бы просто посоветовать абонентам, мол, «с ума не сходите, и не насилуйте сети 4G задачами, для которых нужен Wi-Fi и проводной интернет», но такая откровенность — самоубийство для рекламного отдела, да и перетягивать пользователей у операторов-конкурентов нужно. Поэтому ради любителей стримить/расшаривать данные с мобильника производители чипсетов (тех, кто в народе кличут «процессорами») в мобильниках, производители начинки для сотовых вышек и другого оборудования оператора и руководство самих операторов связи бегают, суетятся и пытаются сделать сотовые сети быстрее. Главный активист такого начинания на общемировой сцене — Qualcomm (который понимает, что только за счёт «Антут» самым крутым производителем не станешь). В России ему помогает сетевое подразделение Huawei (не путать с ребятами, которые конструируют мобильники) и МТС, который сейчас делает огромнейшие вливания, чтобы перестроить свою, во многом, самую старую сотовую сеть в России под новейшие «фишки» LTE.
Вообще, 4G и LTE в частности — это не «отлитая в граните» технология, которую один раз создали, а потом «штампуют» в одинаковом виде по всей стране. С 2011 года, когда LTE оформили в качестве одной из разновидности 4G связи, его дорабатывали по всем направлениям, и каждая такая доработка называется «релизом». Что-то наподобие обновлений, которые прилетают на вашу Windows каждую неделю.
Технология, призванная увеличить пиковую скорость передачи трафика, среднюю скорость передачи данных и пропускную способность сот в широкополосных беспроводных сетях, прежде всего в условиях работы там, где не обеспечиваются условия прямой видимости.
Число сетей с поддержкой 4x4 MIMO в мире
144 оператора инвестируют в развитие этой технологии, 86 запустили поддержку технологии на коммерческих сетях. Данные GSA на середину ноября 2019
Терминалы с поддержкой 4x4 MIMO и 256 QAM (на 2019.01)
Samsung Galaxy S8,
Samsung Galaxy S9,
Samsung Galaxy Note 9;
Huawei Mate20,
Huawei Mate 20 Pro,
Huawei P20,
Huawei P20 Pro,
Huawei Mate 10,
Huawei Mate 10 Pro;
Oppo Find X
Примеры операторов, которые используют MIMO 4x4
2015.12.22 Ericsson, Telstra и Qualcomm Technologies показали 4х4 MIMO и 256 QAM с использованием модема Qualcomm Snapdragon X12 LTE и Ericsson Networks Software 16B. В ходе демонстрации была достигнута пиковая скорость скачивания данных в 380 Мбит/с. Не сказано, какая полоса частот при этом использовалась, чисто теоретически хватило бы двух полос частот 20 МГц и 10 МГц. Переход к технологии 4х4 MIMO удваивает возможные пиковые скорости без необходимости наращивания полосы частот. Как ожидается, смартфоны, способные поддерживать комбинацию 4x4 MIMO и 256 QAM появятся на рынке уже в 2016 году.
2015.03.01 SK Telecom, в частности, рассказывает о планах поддержки скоростей до 600 Мбит/с за счет использования большего числа антенн в своей сети LTE (планируется ввести поддержку MIMO 4x4). Вместе с Nokia компания покажет работу в режиме поддержки до 600 Мбит/с на MWC2015 в Барселоне. Пока что на рынке нет абонентских терминалов, которые бы поддерживали эту технологию, но их появление ожидается в 2015 году.
2015.12.22 Ericsson, Telstra и Qualcomm Technologies показали 4х4 MIMO и 256 QAM с использованием модема Qualcomm Snapdragon X12 LTE и Ericsson Networks Software 16B. В ходе демонстрации была достигнута пиковая скорость скачивания данных в 380 Мбит/с. Не сказано, какая полоса частот при этом использовалась, чисто теоретически хватило бы двух полос частот 20 МГц и 10 МГц. Переход к технологии 4х4 MIMO удваивает возможные пиковые скорости без необходимости наращивания полосы частот. Как ожидается, смартфоны, способные поддерживать комбинацию 4x4 MIMO и 256 QAM появятся на рынке уже в 2016 году.
2015.03.01 SK Telecom, в частности, рассказывает о планах поддержки скоростей до 600 Мбит/с за счет использования большего числа антенн в своей сети LTE (планируется ввести поддержку MIMO 4x4). Вместе с Nokia компания покажет работу в режиме поддержки до 600 Мбит/с на MWC2015 в Барселоне. Пока что на рынке нет абонентских терминалов, которые бы поддерживали эту технологию, но их появление ожидается в 2015 году.
2015.03.01 MWC2015: В Южной Корее мобильный интернет вскоре станет еще быстрее
2014.10.03 T-Mobile расширяет партнерство с Nokia Networks в области дальнейшего расширения сети LTE. Контракт продолжает более, чем 16-летнее сотрудничество двух компаний. В рамках этого сотрудничество T-Mobile закупила и эксплуатирует оборудование LTE с функционалом MIMO 4x2 и 4х4, который можно активировать удаленно. В настоящее время в компании идет активация режима 4x2 MIMO.
2012.05.03 Компания Huawei, мировой лидер в области разработки ИКТ-решений, продемонстрировала первое в мире решение агрегирования несущих 4x4 MIMO (Multiple Input Multiple Output - множественный вход и множественный выход) для LTE TDD на Международном аналитическом саммите-2012 в Шэнчьжэне. В решении используются технологии 4x4 MIMO, позволяющие достичь пиковой скорости передачи данных до 520 Мбит/с для конечного пользователя.
2012.03.30 Полевые тесты LTE 4x4 MIMO в сети Deutsche Telekom, организованные Huawei, прошли успешно . По данным Huawei, во время этих тестов скорость загрузки данных доходила до 250 Mb/с. При тестировании в полевых условиях технологии LTE 4x4 MIMO было задействовано LTE-оборудование SingleRAN компании Huawei. Сеть LTE оператором Deutsche Telekom была запущена в Кельне (Германия) в июне 2011 года в диапазоне 1,8 ГГц. Deutsche Telekom проводил тесты технологии LTE в варианте 4x4 MIMO как подготовительный шаг для перехода в Gigabit Society.
За новостями телекома и IT удобно следить в телеграм-канале abloud62
Читайте также: