Какие сигналы могут хранить и обрабатывать компьютеры дискретные аналоговые
Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.
Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.
С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот – каждая деталь завершена и связана с другими за счет специальных линий связи.
Сигнал
Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.
Описываемый код передачи данных задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.
В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.
Виды сигналов
Существует несколько типов классификации имеющихся сигналов. Рассмотрим, какие бывают виды.
- По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
- По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
- В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.
Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.
Для чего обрабатывается сигнал?
Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.
Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.
В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.
Создание и формирование
Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и цифро-аналоговый (ЦАП) преобразователи. Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.
При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.
Динамический диапазон
Аналоговый сигнал
Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.
Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.
Цифровой сигнал
Цифровой сигнал является особым потоком данных, он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.
Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.
Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.
Применение цифрового сигнала
Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.
В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.
Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.
Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.
Дискретный сигнал
Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения – это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.
Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.
Сравнение цифрового и аналогового сигналов
Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.
Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.
Если говорить коротко, то аналоговый сигнал – способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.
Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.
Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.
Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ – только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.
p, blockquote 1,0,0,0,0 -->
p, blockquote 2,0,0,0,0 -->
Аналоговый сигнал
Это природный тип сигналов окружает нас повсеместно и постоянно. Звук, изображение, тактильные ощущения, запах, вкус и команды мозга. Все возникающие, во Вселенной без участия человека, сигналы являются аналоговыми.
p, blockquote 3,0,0,0,0 -->
В электронике, электротехнике и системах связи аналоговую передачу данных применяют со времени изобретения электричества. Характерной особенностью является непрерывность и плавность изменения параметров. Графически сеанс аналоговой связи можно описать как непрерывную кривую, соответствующую величине электрического напряжения в определённый момент времени. Линия изменяется плавно, разрывы возникают только при обрыве связи. В природе и электронике аналоговые данные генерируются и распространяются непрерывно. Отсутствие непрерывного сигнала означает тишину или черный экран.
p, blockquote 4,0,0,0,0 -->
В непрерывных системах связи аналогом звука, изображения и любых других данных является электрические или электромагнитные импульсы. Например, громкость и тембр голоса передаются от микрофона на динамик посредством электрического сигнала. Громкость зависит от величины, а тембр от частоты напряжения. Поэтому при голосовой связи сначала напряжение становится аналогом звука, а потом звук аналогом напряжения. Таким же образом происходит передача любых данных в аналоговых системах связи.
p, blockquote 5,0,0,0,0 -->
Что такое дискретный сигнал
В цифровой системе хранения и передачи данных, отсутствие сигнала, также является формой обмена информацией. В какой-то момент времени он равен нулю, в другой принимает какое-либо значение. Поэтому дискретным называют сигнал прерывный, отсюда и название discretus или разделённый. Аналоговые данные разбиваются на отдельные блоки, обрабатываются и передаются в виде цифрового кода.
p, blockquote 6,0,0,0,0 -->
p, blockquote 7,0,0,0,0 -->
Дискретность не подразумевает разрыв связи. В цифровых системах широко используется двоичная система обработки и обмена информацией. Двоичная подразумевает кодировку данных с помощью единицы и нулей. В доли секунды сигнал прерывисто принимает значение 1 или 0. Вместо непрерывной кривой имеем отдельные дискретные значения. Определенный набор нулей и единичек уже несёт в себе какую либо информацию. Примитивный набор это бит или двоичный разряд. Сам по себе он ничего не значит. Данные могут кодироваться только при объединении восьми битов в следующую по сложности комбинацию – байт. Чем больше объединённых байтов, тем больше и точнее можно описать передаваемую информацию.
p, blockquote 8,0,1,0,0 -->
На качество генерируемых данных влияет не только количество объединённых битов, но и скорость передачи. Непрерывная аналоговая кривая должна быть разбита на как много больше мини участков прерывного сигнала. Полученный таким образом звук и цвет будут соответствовать оригиналу. Качественный дискретный сигнал формирует точную копию аналогового. Например, звуковая дорожка MP3 закодированная со скоростью 320 000 бит в секунду (320 kbps) значительно лучше кодированной в 128 kbps. Дорожки скоростью меньше 128 слушать вообще невозможно.
p, blockquote 9,0,0,0,0 -->
Чем отличается непрерывный сигнал от дискретного
На первый взгляд отличия в сигналах можно не различить. Оба передаются в виде электрических импульсов по проводам или электромагнитными волнами в эфире. Преобразовываются в звук и изображение, выводятся на динамики и экран. Но разница существенна. Отличие аналогового сигнала от цифрового обусловлено особенностями обработки и передачи данных.
p, blockquote 10,0,0,0,0 -->
Аналоговые данные не кодируются и не шифруются, просто отображаются в электрические или электромагнитные импульсы. Приёмник преобразовывает импульсы в полном соответствии с полученным сигналом. Передаваемый и принимаемый импульс многогранен и характеризуются постоянным плавным изменением с течением времени. Величина и частота определяют параметры информации. Примером может быть соответствие определённого цвета экрана заданному напряжению. С течением времени цвета плавно меняются следуя изменению напряжения.
Казалось бы, природное происхождение, простота генерации, передачи и приёма благоприятствуют использованию аналогового сигнала. Но в дело вмешиваются электрические и электромагнитные помехи. Это могут быть электромагнитные наводки от электрических сетей, работающих механизмов, рельеф местности, грозы, бури на солнце, шумы создаваемые работой передающего и принимающего оборудования, прочие. Они изменяют плавную кривую. На приёмник информация поступает с изменениями. Шипение, хрипы и искаженное изображение обычная история для аналоговой связи.
p, blockquote 12,0,0,0,0 -->
Цифровая технология использует совсем иной принцип передачи. Аналоговые данные сначала кодируются и только потом передаются. Кодировка заключается в описании непрерывной кривой аналоговой информации. В каждый конкретный момент времени, передаваемый импульс имеет значение единицы или нуля, и определенная последовательность битов отображает всю полноту оригинальной картинки или звука.
p, blockquote 14,0,0,0,0 -->
p, blockquote 15,0,0,0,0 -->
Примером непрерывных и дискретных сигналов могут служить старая проводная и новая сотовая связь. Через старые АТС иногда невозможно было разговаривать с соседним домом. Шумы и плохое усиление сигнала мешали слышать друг друга. Что бы вести полноценную беседу, приходилось громко кричать самому и прислушиваться к собеседнику. Другое дело сотовая связь основанная на цифровой технологии. Звук закодирован и хорошо передаётся на далёкие расстояния. Отчетливо слышно собеседника даже с другого континента.
p, blockquote 16,1,0,0,0 -->
Оба вида связи не лишены недостатков, а ключевыми отличиями являются:
- Аналоговый подвержен помехам и поступает с искажениями. В то время как цифровой доходит полностью без искажений или отсутствует вовсе.
- Принять или перехватить аналоговое вещание может любой приёмник такого принципа. Дискретная передача адресована конкретному адресату, кодируется и мало доступна к перехвату.
- Объём передаваемых данных у аналоговой связи конечен, поэтому она практически исчерпала себя в передаче теле сигнала. Напротив с развитием технологии преобразования аналоговой информации в цифровой код растут объемы и качество трансляции. Например, главным отличием цифрового от аналогового телевидения является превосходное качество изображения.
Цифровая технология выигрывает по всем показателям. Споры идут только среди любителей музыки. Многие меломаны и звукорежиссеры утверждают, что могут различить аналоговый оригинал и цифровую копию. Однако большинство слушателей этого сделать не в состоянии. Да и с развитием цифровых систем аналоговые данные кодируются точнее. Оригинальное звучание и цифровая копия делаются практически неразличимым.
p, blockquote 18,0,0,0,0 -->
Как аналоговый сигнал преобразуется в цифровой и наоборот
Первой в цифровую форму преобразовали математическую, физическую и компьютерную информацию. Описать формулы и расчеты не составило труда. А вот для преображения аналоговой действительности в цифровые массивы уже потребовались специальные устройства. Ими стали аналого-цифровые преобразователи или сокращенно АЦП. Они предназначены для преобразования различных физических величин в цифровые коды. Обратное действие совершают устройства ЦАП.
p, blockquote 19,0,0,0,0 -->
Любые цифровые передатчики и приёмники оснащены такими преобразователями. Например, сотовому телефону, поступивший звук необходимо обработать и передать в оцифрованном виде. В то же время необходимо принять от другого абонента код, преобразовать и передать напряжение на динамик. Так же и с изображением на смартфонах и в телевизорах. В любом случае первоначальной информацией выступает напряжение.
p, blockquote 20,0,0,0,0 -->
p, blockquote 21,0,0,0,0 -->
Существует много видов АЦП, но самыми распространёнными являются следующие:
- параллельного преобразования;
- последовательного приближения;
- дельта-сигма, с балансировкой заряда.
Преобразования в АЦП понятийно связаны с измерением и сравнением. Кодировка, это процесс сравнения полученных от источника данных с эталоном. То есть полученная аналоговая величина сравнивается с эталонной (с заданным напряжением). Эталоном выступает информация о конкретном цвете, звуке и т.п. Она соответствует заложенным в устройство представлениям о преобразуемом сигнале. Потом данные эталонной величины кодируются для передачи. Во время аналого-цифровой обработки физических превращений сигнала не происходит. С аналогового делается цифровой матрица (модель).
p, blockquote 23,0,0,0,0 -->
Упрощенно работу любого АЦП можно представить так:
- Измерение через определенные интервалы времени амплитуды напряжения.
- Сравнение с эталоном и формирование данных.
- Отгрузка оцифрованных сведений об изменениях амплитуды на передатчик.
p, blockquote 25,0,0,0,0 -->
Как выглядят спектры аналогового и дискретного сигнала
Изображение сигналов можно представить как две функции. На рисунке наглядно представлено, чем отличается непрерывный сигнал от дискретного. Напряжение исходного изменяется плавно, обработанного прерывисто. Спектр дискретного периодически ступенчато совпадает с непрерывным.
p, blockquote 26,0,0,0,0 -->
p, blockquote 27,0,0,0,0 -->
Изменения дискретного происходят резко, через определённый период времени. Уровень в цифровой системе зашифровывается и любую величину напряжения описывают двоичным кодом. От частоты измерений зависит сглаженность преобразования и оригинальность передаваемых данных. Чем точнее описан уровень сигнала и чем чаще проводится и обрабатывается измерение, тем точнее совпадает спектр начального и переданного сигналов.
p, blockquote 28,0,0,0,0 -->
p, blockquote 29,0,0,0,0 -->
Какие системы связи используют цифровой сигнал а какие аналоговый
Несмотря на архаичность аналоговая технология ещё используется для телефонной и радио связи. Многие проводные сети до сих пор остаются аналоговыми. В основном это традиционные телефонные линии местных операторов. Но, для магистральной передачи данных связи уже повсеместно используют цифровые каналы. Так же аналоговая технология применяется в простых и дешёвых переносных радиостанциях.
p, blockquote 30,0,0,0,0 -->
Во всех вновь создаваемых системах используют цифровую технологию обработки сигнала. Это оптоволоконные и проводные линии, сигнализация и телеметрия, военная и гражданская промышленная связь. И конечно же на цифровое вещание переходит телевидение. Аналоговый способ передачи данных исчерпал себя. На смену пришла новая высококачественная и защищенная связь.
p, blockquote 31,0,0,0,0 -->
Список книг помогающих разобраться в аналоговых и цифровых сигналах
Более подробно изучить и сравнить принципы обработки и передачи данных можно прочитав следующую литературу:
Старая добрая аналоговая связь быстро сдаёт позиции. Несмотря на модернизацию и улучшения, возможность обмена данными достигла предела. К тому же, остались старые болезни – искажения и шумы. В то же время цифровая связь лишена этих недостатков, и передаёт большие объёмы информации быстро, качественно, без ошибок.
В современной электронике сигналы делят на три типа: аналоговый, дискретный и цифровой. Все они используются в своей области технологий. Сегодня мы с вами обсудим, что из себя представляют эти сигналы, и где они могут нам встретиться.
Аналоговый сигнал, как можно догадаться из его названия, является неким аналогом реальной физической величины (температура, интенсивность излучения и так далее). Все реальные физические величины изменяются непрерывно и с какой угодно малой точностью, то есть число состояний физической величины стремится к бесконечности. Следовательно, все это справедливо и к аналоговому сигналу в электронике.
В связи с этим открывается масса возможностей использования аналогового сигнала. Так как число его состояний по факту бесконечно, то с его помощью можно закодировать огромное количество информации. Но на сегодняшний день не найдено таких аналоговых схем с помощью которых мы могли бы работать с информацией в привычном для нас виде.
Аналоговые сигналы встречаются нам повсюду. Вся воспринимаемая нами информация при помощи органов чувств переводится в электрические сигналы, которые обрабатывает уже наш мозг. Аналоговое телевидение - один из видов телевещания, но в данный момент идет замена его на цифровое. Так же радио работает с аналоговыми сигналами.
Дискретные сигналы отличаются от аналоговых тем, что они изменяются не непрерывно, а периодично, и количество состояний такого сигнала, в теории, может быть бесконечным. Такие сигналы представляют собой последовательность отсчетов какой-либо величины.
Дискретный сигнал является чем то промежуточным между аналоговым и цифровым сигналами.
Цифровой сигнал так же, как и дискретный является периодичным, но в отличии от последнего обладает ограниченным набором значений. Чаще всего применяется двоичное представление, в котором сигнал может принимать только 2 значения: высокий и низкий логические уровни (1 и 0). Все значения сигнала, которые находятся между условно принятыми логическими состояниями 0 и 1, являются переходными и не могут иметь какого-либо значения в конкретной системе.
Цифровые сигналы повсеместно используются в вычислительной технике. Любой микропроцессор оперирует именно цифровыми сигналами.
В настоящее время все вычисления основаны на работе какого-либо микропроцессора или микроконтроллера, который оперирует лишь цифровыми сигналами. Поэтому возникает необходимость в преобразовании получаемых от различных физических систем аналоговых сигналов в цифровые сигналы, для их последующей обработки.
Устройства, занимающиеся преобразованием аналогового сигнала в цифровой, называются аналого-цифровыми преобразователями (АЦП). О них читайте в будущих статьях. Если не хотите ничего пропустить, то обязательно подписывайтесь на канал! Всего вам доброго и до скорых встреч!
Универсальность дискретного (цифрового) представления информации
Для передачи информации, или, правильнее сказать, данных, используется физический процесс, который может быть описан математической формулой и называется сигналом. Именно сигналы различают по способу их представления как аналоговые и дискретные (см. рис. 1 и 2).
Рис. 1. Аналоговый сигнал
Рис. 2. Дискретный сигнал
Аналоговая информация характеризуется плавным изменением ее параметров. Основные параметры наиболее простых синусоидальных аналоговых сигналов могут непрерывно и плавно меняться.
Дискретная информация базируется на ряде фиксированных уровней представления заданных параметров, взятых в определенные промежутки времени. Если этих уровней много, можно говорить о цифровом представлении информации, то есть когда в определенные дискретные моменты они принимают конкретные дискретные значения. К счастью, аналоговую информацию легко преобразовать в цифровую. Это делают так называемые аналогоцифровые преобразователи (АЦП). Обратное преобразование обеспечивают цифроаналоговые преобразователи (ЦАП).
В качестве носителей аналоговой информации могут использоваться различные физические величины, принимающие различные значения на некотором интервале, например, электрический ток, радиоволна и т.д. При дискретизации, то есть при преобразовании непрерывных изображений и звука в набор дискретных значений в форме кодов, за основу берется какое-либо конкретное значение, а любые другие, отличающиеся от нормы, просто игнорируются.
Аналоговыми устройствами являются:
телевизор - луч кинескопа непрерывно перемещается по экрану, чем сильнее луч, тем ярче светится точка, в которую он попадает; изменение свечения точек происходит плавно и непрерывно;
проигрыватель грампластинок – чем больше высота неровностей на звуковой дорожке, тем громче звучит звук;
телефон – чем громче мы говорим в трубку, тем выше сила тока, проходящего по проводам, тем громче звук, который слышит собеседник.
К дискретным устройствам относятся:
монитор – яркость луча изменяется не плавно, а скачкообразно (дискретно). Луч либо есть, либо его нет. Если луч есть, то мы видим яркую точку (белую или цветную). Если луча нет, мы видим черную точку. Поэтому изображение на экране монитора получается более четким, чем на экране телевизора;
проигрыватель аудиокомпакт-дисков – звуковая дорожка представлена участками с разной отражающей способностью;
струйный принтер – изображение состоит из отдельных точек разного цвета.
Человек благодаря своим органам чувств привык иметь дело с аналоговой информацией, а в компьютере информация представлена в цифровом виде. Преобразование графической и звуковой информации из аналоговой формы в дискретную производится путем дискретизации, то есть разбиения непрерывного графического изображения или звукового сигнала на отдельные элементы.
Чувствительные органы живого организма в основном по своей природе дискретны. Зрительные образы воспринимают клетки сетчатки глаза, тактильные ощущения возникают в чувствительных нейронах, запахи воспринимаются рецепторами обоняния, каждый из которых в любой момент времени находится либо в возбужденном, либо невозбужденном состоянии. Все чувственные восприятия преобразуются в организме из дискретной формы в непрерывную, причем информация хранится не в отдельных нейронах головного мозга, а распределена по нему целиком. Непрерывность представления, например, зрительной информации позволяет человеку уверенно воспринимать динамику окружающего мира. Дискретные величины принимают не все возможные, а только определенные значения, и их можно пересчитать.
В технике непрерывная информация называется аналоговой. Многие устройства, созданные человеком, работают с аналоговой информацией. Луч кинескопа телевизора перемещается по экрану, вызывая свечение точек. Чем сильнее луч, тем ярче свечение. Изменение свечения происходит плавно и непрерывно. Проигрыватель грампластинок, ртутный термометр, манометр - примеры аналоговых устройств. Некоторые бытовые приборы могут иметь как аналоговую, так и цифровую конструкцию. К примеру, тонометр - прибор для измерения кровяного давления. Существенным отличием является то, что аналоговый прибор может выдать абсолютно произвольную величину показаний (чуть больше или меньше деления), а набор показаний у цифрового прибора ограничен количеством цифр на индикаторе. Компьютер работает исключительно с дискретной (цифровой) информацией. Память компьютера состоит из отдельных битов, а значит, дискретна. Датчики, посредством которых воспринимается информация, измеряют в основном непрерывные характеристики - температуру, нагрузку, напряжение и т.д. Встает проблема преобразования аналоговой информации в дискретную форму.
Идея дискретизации непрерывного сигнала заключается в следующем. Пусть имеется некоторый непрерывный сигнал. Можно допустить, что на маленьких промежутках времени значение характеристик этого сигнала постоянно и меняется мгновенно в конце каждого промежутка. "Нарезав" весь временной интервал на эти маленькие кусочки и взяв на каждом из них значение характеристик, получим сигнал с конечным числом значений. Таким образом, он станет дискретным. Непрерывная величина часто ассоциируется с графиком функции, а дискретная - с таблицей ее значений.
Такой процесс называется оцифровкой аналогового сигнала, а преобразование информации - аналого-цифровым преобразованием. Точность преобразования зависит от величины дискретности - частоты дискретизации: чем выше частота дискретизации, тем ближе цифровая информация к качеству аналоговой. Но и тем больше вычислений приходится делать компьютеру и тем больше информации хранить и обрабатывать.
Дискретизация – это преобразование непрерывных изображений и звука в набор дискретных значений в форме кодов.
При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования – на основе синусоидального несущего сигнала и на основе последовательности прямоугольных импульсов. Первый способ часто называется также модуляцией или аналоговой модуляцией, подчеркивая тот факт, что кодирование осуществляется за счет изменения параметров аналогового сигнала. Второй способ обычно называют цифровым кодированием. Эти способы отличаются шириной спектра результатирующего сигнала и сложностью аппаратуры, необходимой для их реализации.
В настоящее время все чаще данные, изначально имеющие аналоговую форму (речь, телевизионное изображение), передаются по каналам связи в дискретном виде, то есть в виде последовательности единиц и нулей. Процесс представления аналоговой информации в дискретной форме называется дискретной модуляцией. Аналоговая модуляция применяется для передачи дискретных данных по каналам с узкой полосой частот, типичным представителем которых является канал тональной частоты (телефонная сеть).
В простых вычислительных машинах, в таких, как цифровые электромеханические или аналоговые, перенастройка на различные задачи осуществлялась с помощью изменения системы связей между элементами на специальной коммутационной панели. В современных универсальных компьютерах такие изменения производятся с помощью запоминания в специальном устройстве, накапливающем информацию, той или иной программы ее работы.
В отличие от аналоговых машин, оперирующих непрерывной информацией, современные компьютеры имеют дело с дискретной информацией, на входе и выходе которых в качестве такой информации могут выступать любые последовательности десятичных цифр, букв, знаков препинания и других символов. Внутри системы эта информация кодируется в виде последовательности сигналов, принимающих лишь два различных значения.
В то время как возможности аналоговых машин ограничены преобразованиями строго ограниченных типов сигналов, современные компьютеры обладают свойством универсальности, иными словами, компьютер может производить преобразования любых буквенно-цифровых данных благодаря программе, составленной для выполнения той или иной задачи. Эта способность компьютера достигается за счет универсальности его системы команд, то есть элементарных преобразований информации.
Свойство универсальности компьютера не ограничивается возможностью оперирования одной лишь буквенно-цифровой информацией. В данном виде может быть представлена (закодирована) любая дискретная информация, а также – с любой заданной степенью точности – произвольная непрерывная информация. Таким образом, компьютеры могут рассматриваться как универсальные преобразователи информации. Свойство универсальности современных компьютеров открывает возможность моделирования с их помощью любых других преобразователей информации, в том числе любых мыслительных процессов.
Технологии цифровой обработки акустических сигналов и изображений находят все более широкое применение в различных областях, в частности при идентификации пользователей или для построения многоуровневых систем защиты. Вместе с тем в перечне основных предъявляемым к соответствующим системам требований на первом месте стоит универсальность, быстрота и эффективность выполнения различных процедур обработки на основе использования стандартных недорогих технических средств, входящих в комплект традиционной офисной техники и компьютерной телефонии: ПК, сканера, принтера, звуковой платы, модема. Для реализации таких систем нужны подходы, позволяющие обрабатывать акустический сигнал и речь.
Практически 80% информации человек получает через зрение, что означает доминирование зрительных рецепторов в жизнедеятельности человека. Вся информация в аппарате мышления человека сохраняется в виде образов, причем в этом образе сконцентрирована информация, полученная всеми рецепторами человека. Можно сделать вывод, что информация в памяти человека хранится в виде графических объектов. Развивая гипотезу о том, что любая информация, получаемая человеком извне, проходит стадию преобразования в изображения с последующей их целенаправленной обработкой, можно вывести последовательность процедур, пригодную для реализации в автоматизированных системах обработки данных различного рода, в том числе и в речи:
предобработка, когда независимо от вида полученной информации осуществляется ее преобразование к общему виду первичных описаний в виде двухмерных матриц данных, имеющих неотрицательные значения, которые можно рассматривать как изображения, образы;
обработка предполагает, что на основе каких-либо общих принципов, методов и алгоритмов осуществляются преобразования полученных первичных данных для достижения поставленных целей (сжатие, «шумоочистка», сравнение, распознавание и др.);
получение новых знаний и принятие решений основываются на заключении из характера и вида полученной из внешнего мира информации, а также результатов ее обработки для выполнения конкретных действий в соответствии с общей стратегией поведения человека.
Практическая значимость этой гипотезы состоит в том, что интеллектуальные возможности человека по анализу и обработке визуальной информации, а также наработанный научный потенциал в области восстановления, распознавания и обработки изображений можно распространить сегодня на существующие технологии обработки информации иного рода, в том числе на акустические сигналы и речь.
Люди воспринимают пространство как «глубину», и изображения, формируемые мысленным взором, представляются им трехмерными. Однако в точных дисциплинах редко применяется обработка трехмерных изображений, что объясняется очевидными техническими трудностями работы с ними, а также недостаточным пониманием природы процесса восприятия изображений. В большинстве практических приложений исследователи имеют дело с квазитрехмерными изображениями, когда по двум известным параметрам, например, частоте и времени, строится некая двухмерная матрица, значения которой определяются значениями третьего известного параметра, например, мощностью и амплитудой рассчитанного мгновенного спектра.
Читайте также: