Какие программные средства обычно используются для создания компьютерных моделей
Развитие промышленного производства неразрывно связано с применением моделирования. А по мере усложнения производственных процессов моделирование все чаще проводится с помощью современных компьютерных технологий.
Компьютерное моделирование, возникшее как одно из направлений математического моделирования с развитием информационных компьютерных технологий стало самостоятельной и важной областью применения компьютеров. В настоящее время компьютерное моделирование в научных и практических исследованиях является одним из основных методов познания. Без компьютерного моделирования сейчас невозможно решение производственных задач.
Компьютерная модель - представление информации о моделируемом объекте, системе, процессе или явлении средствами компьютера. Компьютерная модель описывает функционирование отдельных частей системы и правила взаимодействия между ними.
Компьютерное моделирование - процесс создания и исследования компьютерной модели. Компьютерное моделирование целесообразно проводить, когда отсутствуют или неприемлемы аналитические методы решения задачи, при необходимости проведения большого количества вычислений, при визуализации и т.п. Компьютерное моделирование дополняет результаты аналитического исследования и обладает некоторыми преимуществами: позволяет снизить трудоемкость расчетов и сроки исследования; предоставляет богатые возможности визуального представления явлений и процессов. В технологии компьютерного моделирования можно выделить несколько этапов:
постановка, анализ задачи и построение информационной модели;
формализация (в частности - разработка математической модели);
выбор программного обеспечения и построение компьютерной модели;
тестирование модели, отладка;
исследование модели и анализ результатов.
Моделирование начинается с анализа и объекта изучения. На первом этапе формируются законы, управляющие исследованием, происходит отделение информации от реального объекта, формируется существенная информация, отбрасывается несущественная, происходит первый шаг абстракции. На втором этапе строится так называемая формальная (в частности, математическая) модель явления, которая содержит: набор постоянных величин, констант, которые характеризуют моделируемый объект в целом и его составные части (постоянные параметры модели); набор переменных величин, меняя значение которых можно управлять поведением модели; формулы, связывающие величины в каждом из состояний моделируемого объекта; формулы, описывающие процесс смены состояний моделируемого объекта.
На третьем этапе формальная модель реализуется на компьютере, выбираются подходящие программные средства.
На четвертом этапе компьютерного моделирования выполняется тестирование и исправление ошибок. Проверить компьютерную модель на соответствие оригиналу, проверить насколько хорошо или плохо отражает модель основные свойства объекта, часто удается с помощью простых модельных примеров, когда результат моделирования известен заранее.
На последнем этапе, выполняется исследование модели в зависимости от поставленной задачи. Например, оптимизационные модели можно исследовать на чувствительность. Анализ модели на чувствительность - это процесс, реализуемый после получения оптимального решения. В рамках такого анализа выявляется чувствительность оптимального решения к изменениям исходной модели. Результаты компьютерного моделирования можно представить в виде графиков, диаграмм, таблиц, демонстрации явления в реальном или виртуальном времени и т.п. В заключении экспериментов с моделью можно выработать рекомендации по повышению эффективности существующей или проектируемой экономической системы.
Для разработки моделей производственных систем и процессов обычно используются системы автоматизированного проектирования (рисунки 2, 3).
Рисунок 2 - Трехмерное моделирование в T-Flex
Рисунок 3 - Инженерный анализ в ANSYS
В настоящее время, когда компьютерная промышленность, предлагает разнообразнейшие средства моделирования, любой квалифицированный инженер, технолог или менеджер должен уметь уже не просто моделировать сложные объекты, а моделировать их с помощью современных технологий, реализованных в форме графических сред или пакетов визуального моделирования (рисунок 4), позволяющие создавать многоуровневые структурные модели исследуемых объектов в графических терминах.
Рисунок 4 - Визуальное моделирование в Model Vision Studium
Однако для реализации моделей, требующих не столько визуализации объектов и процессов, сколько расчетов различных параметров, могут быть использованы универсальные программы, например электронные таблицы (рисунок 5) и математические пакеты.
Рисунок 5 - Интерфейс табличного процессора MS Excel
Особенность электронных таблиц заключается в возможности применения формул для описания связи между значениями различных ячеек. Расчет по заданным формулам выполняется автоматически. Изменение содержимого какой-либо ячейки приводит к пересчету значений всех ячеек, которые с ней связаны формульными отношениями и, тем самым, к обновлению всей таблицы в соответствии с изменившимися данными.
Функциональные возможности MS Excel позволяют расширить вспомогательные программы - надстройки (рисунок 6).
Рисунок 6 - Надстройки MS Excel
Надстройка Поиск решений (рисунок 7) позволяет найти оптимальное значение формулы содержащейся в ячейке, которая называется целевой. Эта процедура работает с группой ячеек, прямо или косвенно связанных с формулой в целевой ячейке. Чтобы получить по формуле, содержащейся в целевой ячейке, заданный результат, процедура изменяет значения во влияющих ячейках. Чтобы сузить множество значений, используемых в модели, применяются ограничения. Эти ограничения могут ссылаться на другие влияющие ячейки.
Рисунок 7 - Надстройка MS Excel Поиск решения
Теоретической основой надстройки «Поиск решения» является симплекс-метод, позволяющий находить оптимальное решение задачи планирования с помощью итерационного процесса перехода к улучшающимся планам. Алгоритмы симплексного метода и метода «branch-and-bound» для решения линейных и целочисленных задач с ограничениями разработаны Джоном Уотсоном (John Watson) и Деном Филстра (Dan Fylstra) из Frontline Systems, Inc. Средство поиска решения MS Excel использует также алгоритм нелинейной оптимизации Generalized Reduced Gradient (GRG2), разработанный Леоном Ласдоном (Leon Lasdon, University of Texas at Austin) и Аланом Уореном (Allan Waren, Cleveland State University).
В математических пакетах моделирование также основано на использовании формул и функций (рисунки 8, 9). Применение математических пакетов (систем компьютерной математики) упрощает работу с данными и позволяет получать результаты без проведения расчетов вручную или специального программирования. Кроме того, математический пакет MathCad позволяет представлять вычисления в привычной математической форме.
Рисунок 8 - Интерфейс MathCad
Рисунок 9 - Интерфейс MatLab
Таким образом, рассмотрены теоретические основы моделирования, виды моделей, выделены оптимизационные модели, которые так часто приходится реализовывать на производстве с использованием компьютерных технологий.
Моделирование – это метод научного исследования явлений, процессов, объектов, устройств или систем, основанный на построении, изучении и использовании моделей с целью получения новых знаний, совершенствования характеристик объектов исследования или управления ими.
Моделирование необходимо для изучения сущности изучаемого объекта, определения способ управления им, прогнозирования возможных последствий тех или иных событий, решения задач прикладного характера – все это делает моделирование необходимым изобретением для многих сфер жизни общества. Одним из видов моделирования является компьютерноемоделирование.
Компьютерное моделирование – это метод решения задачи, анализа или синтеза сложной системы на основе использования ее компьютерной модели.
Компьютерная модель бывает двух видов:
1. Структурно-функциональная модель – условный образ объекта, описанный с помощью взаимосвязанных компьютерных таблиц, диаграмм, рисунков и т.д.
2. Имитационная модель– отдельная программа, позволяющая воспроизводить процессы функционирования объекта при воздействии на него различных факторов.
Компьютерное моделирование, как деятельность, предполагает поэтапность :
- Анализ требований и проектирование (постановка цели и задачи моделирования, сбор информации об объекте, построение концептуальной и проверка её достоверности)
- Разработка модели ( выбор среды моделирования, составление логической модели, назначение модели и модельного времени, проверка истинности и адекватности модели)
- Проведение эксперимента ( запуск, прогноз и отладка модели, анализ результатов моделирования и подведение итогов)
Нас интересует второй этап, а именно среда моделирования.
Несмотря на наличие множества специализированных пакетов компьютерного моделирования, табличный процессор Microsoft Excel является наиболее доступным, поэтому именно его применяют для решения большинства прикладных задач. В связи с этим рассмотрим именно его в качестве примера.
Microsoft Excel позволяет решать оптимизационные задачи, что является актуальным для коммерсанта. Среди них выделяют следующие :
- Задача сетевого планирования и управления.
- Задачи массового обслуживания.
- Задачи управления запасами
- Задачи распределения ресурсов
- Задачи ремонта и замены оборудования
- Задачи составления расписания.
- Задачи планировки и размещения
- Задачи выбора маршрута или сетевые задачи.
Оптимизационная задача– это экономико-математическая задача, цель которой состоит в нахождении наилучшего варианта использования имеющихся ресурсов.
Давайте рассмотрим некоторые аспекты работы с Microsoft Excel, позволяющие решать оптимизационные задачи.
Элементы экрана : открываяMicrosoft Excelмы видим таблицу, которая называется рабочим листом. Таблица состоит из строк и столбцов, образуя ячейки в которые вводятся данные. Сверху таблицы находиться строка заголовка, строка меню и строка формулы с отображением активной ячейки. Все это можно увидеть на рисунке.
Формулы служат для проведения разнообразных расчетов. С помощью Excel можно быстро вводить формулу. Формула состоит из трех основных частей :
- Знак равенства
- Совокупность значений или ссылки на ячейки, с которыми выполняются расчеты
- Операторы
Если знак равенства не введен, то вводимые значения воспринимаются как просто данные.
Так же функцию можно ввести нажав на специальную кнопку вызова функции.
Надстройка – поиск решения : Надстройка «поиск решения» позволяет решать оптимизационные задачи.
В строке меню выбираем поиск решения и у нас открывается диалоговое окно «параметры поиска решения», в которых указаны три основных поля:
1. Оптимизировать целевую функцию
2. Изменяя ячейки переменных
3. В соответствии с ограничениями.
Оптимизировать целевую ячейку означает выбрать ту ячейку, которая будет связана с другими ячейками формулой и которая будет отображать результат задачи. Можно выбирать поиск max и min значения ячейки, в зависимости от условия.
Изменяя ячейки переменных означает, что нужно указать переменные ячейки, которые не должны содержать формул и в которых изменение их значения должно повлиять на результат целевой ячейки.
В соответствии с ограничениям означает, что надо указать ячейки, которые будут отображать ограничения данной задачи. Все это можно увидеть на рисунке.
В целом решение оптимизационной задачи в Microsoft Excel состоит из следующих этапов:
- Ввести исходные данные
- Ввести зависимость для целевой функции
- Ввести зависимость для ограничений
- Запустить команду Поиск решения
- Оптимизировать целевую функцию
- Изменить ячейки переменных
- Ввести ограничения
- Найти решение и создать отчеты.
В данной работе мы в краткой форме рассмотрели сущность компьютерного моделирования, как вид моделирования и один из видов программного обеспечения, а именно Microsoft Excel, предназначенного для моделирования на ЭВМ. А в Excel был продемонстрирован один способов решения прикладных задач, связанных с компьютерным моделированием, тем самым была обоснована актуальность данной темы.
Подготовить эффектный рекламный ролик, сконструировать проект интерьера, создать анимацию для приложения или просто яркую презентацию — всё это позволяет делать 3D-графика. Чтобы создать качественную объемную визуализацию, понадобятся специальные программы. Ниже мы перечислили наиболее популярные программы для 3D-моделирования. Они подойдут как новичкам — например, для быстрой визуализации своего дизайна интерьера, так и продвинутым специалистам, которые хотят отрисовать видео с максимальной реалистичностью. Выбирать программу для изучения советуем по своему уровню:
С чего начать
Autodesk TinkerCAD
Назначение: обучение моделированию, создание простых моделей.
Стоимость: бесплатно.
Пожалуй, самая простая программа для 3D моделирования, самая настоящая песочница. TinkerCAD взаимодействует с Minecraft и Scratch, имеет специальные программы для обучения разным дисциплинам, так что если думаете, чем полезным можно увлечь своего ребёнка 一 выбор перед вами. Вишенкой на торте служит возможность экспортировать созданную модель для 3D-печати, так что на базовом уровне она будет полезна и взрослым.
DesignSpark Mechanical
Назначение: моделирование инженерных конструкций.
Стоимость: бесплатно.
Mechanical ориентирован в первую очередь на начинающих специалистов и просто любителей в части 3D моделирования. Возможности по сравнению с AutoCAD куда скромнее, зато бесплатно, и эффективно 一 без труда можно создать почти любую объёмную деталь для дальнейшего использования в более сложных композициях или отправки на 3D-печать. О сложных текстурах и динамическом представлении здесь речи не идёт, но техническим специалистам они особо и не нужны.
SketchUp
Назначение: быстрая визуализация архитектурных идей.
Стоимость: бесплатно для личного пользования и профессионально от 119 долларов в месяц.
SketchUp очень распространен среди простых пользователей в качестве программы 3D моделирования дизайна, быстрой визуализации моделей квартир, комнат и внутренних коммуникаций. Однако возможности программы куда шире, благо несколько лет продукт разрабатывался командой Google. На профессиональном уровне SketchUp позволяет решать сложные архитектурные задачи, будь то конструирование целых зданий и даже районов, не затрачивая на это много времени и сил.
FreeCAD
Назначение: моделирование деталей и конструкций.
Стоимость: бесплатно.
FreeCAD 一 классический представитель свободного ПО, с помощью которого любой пользователь может сделать первые шаги в мире 3D-моделирования, не углубляясь в тонкости визуализации. Будет очень полезна и тем, кто не понаслышке знаком с Python 一 продукт позволяет создавать и интегрировать собственные модули, написанные на этом языке. Так что если вы мечетесь в будущей специализацией между программированием и дизайном, FreeCAD станет идеальный помощником.
Продвинутый уровень
Autodesk AutoCAD
Назначение: моделирование инженерных конструкций.
Стоимость: от 10250 рублей в месяц.
Программа, изначально заточенная под создание двухмерных инженерных чертежей, сегодня имеет очень мощные возможности для 3D-моделирования. Во всяком случае, это касается всего за пределами конечной визуализации и наложения текстур. Будь то техническая деталь с множеством маленьких элементов или модель огромного здания 一 AutoCAD справится одинаково хорошо. Поэтому работникам технических специальностей освоить эту программу надо едва ли не в обязательном порядке. Также он будет полезен для работы с 3D-печатью или резкой.
Cinema 4D
Назначение: графическая визуализация сцен.
Стоимость: от 5350 рублей в месяц.
Несмотря на простой интерфейс Cinema4D имеет достаточно широкие возможности по скульптурированию, рендерингу, созданию текстур и эффектов в анимации. Плюс здесь есть целый ряд инструментов, призванных упростить и ускорить процесс создания сцен. При этом не стоит думать, что с программой справится любой пользователь 一 опыт хотя бы базового 3D моделирования крайне необходим, да и сцены сами себя не построят.
ZBrush
Назначение: скульптурирование моделей.
Стоимость: от 40 долларов в месяц.
Все, кто в реальном мире любит возиться с глиной и гипсом, от работы с ZBrush получат колоссальное удовольствие. Здесь точно также основная область творчества лежит в области скульптурирования. После получения желаемых очертаний лица или тела, программа поможет вам добавить нужные текстуры, блики и тени для достижения финального результата. Работать с ZBrush настолько комфортно, что можно его воспринимать не только, как профессиональный инструмент, но и полноценное развлечение. Посетив любое из многочисленных сообществ программы вы сами в этом убедитесь.
Blender
Назначение: скульптурирование моделей и анимация.
Стоимость: бесплатно.
Blender является уникальным симбиозом качества и доступности. Здесь есть инструменты для создания качественных 3D-моделей, наложения на них текстур, в том числе волос и тканей, дальнейшей анимации и постобработки видео. И всё это запаковано в менее 200 мегабайт пространства. При этом, как и любой крупный проект с открытым кодом, Blender имеет мощное комьюнити и постоянно обрастает всё новыми возможностями.
Для профессионалов
Autodesk 3ds Max
Назначение: создание качественных графических 3D-моделей.
Требуемый уровень подготовки: профессионал.
Стоимость: от 9790 рублей в месяц.
Пожалуй, одна из наиболее мощных программ для 3D моделирования, используемая повсеместно: в играх, киноиндустрии, архитектуре, интерьерном и ландшафтном дизайне, презентациях любых продуктов. Здесь на высочайшем уровне реализованы возможности обработки текстур, рендеринга, трассировки лучей, взаимодействия объектов, что позволяет реализовать задумки любой сложности. Строго рекомендуется для всех специалистов, кто отвечает за визуальное представление объектов, как в статике, так и динамике.
Autodesk Maya
Назначение: графическая визуализация сцен.
Требуемый уровень подготовки: профессионал.
Стоимость: от 9800 рублей в месяц.
Maya идеально подойдёт для всех, кому предстоит создавать отрисовать сюжеты с максимальной реалистичностью, то есть представителям кино, мультипликации и игр. Возможности для создания эффектов здесь ограничены только вашей фантазией. К примеру, используя только встроенные модули, вы сможете реализовать взаимодействие ветра, дождя, тканей, взрывов, волос и много другого. Одновременно и в одной сцене. Разумеется, для этого придётся потратить много времени на обучение Maya и грамотное планирование сцен, но это того стоит.
Заключение
Безусловно, это не полный список программ для 3D-моделирования, однако он содержит самые востребованные инструменты для дизайнеров и конструкторов. Поэтому неважно, хотите ли вы найти что-то для визуализации интерьера будущей квартиры или построить с нуля успешную карьеру 一 здесь вы найдёте эффективное решение.
На заре компьютерного моделирования все моделирующие программы были уникальными и писались непосредственно на существовавших в то время языках программирования (Алголе и Фортране). В качестве спецификации будущей моделирующей программы выступала запись на математическом языке. Эффективность полученного кода повышалась за счет использования языка Ассемблера (написание всей моделирующей программы или её наиболее трудоёмких частей осуществлялось в машинных командах, что давало серьёзный выигрыш в быстродействии).
В середине прошлого столетия возникла необходимость автоматизации процесса моделирования. Первым шагом на пути автоматизации моделирования было создание библиотек численных методов для заданного класса уравнений. К концу 70-х годов прошлого столетия были созданы специализированные коллекции численных методов практически для всех областей численного анализа.
Появление коллекций и библиотек резко расширило возможности моделирования. Если математическая модель представляла собой не очень большую систему уравнений, то перевести ее в операторы Фортрана не составляло большого труда. Обычно над этим совместно работали три специалиста: специалист в прикладной области, математик и программист.
Наличие библиотек не позволяет уйти от необходимости многократно проводить модельные эксперименты для различных входных данных и обрабатывать их результаты. Дальнейшие шаги на пути автоматизации моделирования были связаны с разработкой систем автоматизации вычислительного эксперимента – пакетов прикладных программ (ППП).
Системы автоматизации моделирования позволяют автоматически строить моделирующую программу по математической модели системы и автоматически преобразовать результаты вычислительных экспериментов на уровень абстракции математической модели.
На рис. 4.3 показано преобразование данных в системе автоматизации моделирования.
Рис. 4.3 Преобразование данных в системе автоматизации моделирования
При использовании системы автоматизации моделирования разработчик формирует математическую модель исследуемой системы на формальном входном языке моделирования.
Современные пакеты моделирования, как правило, включают специальные визуальные редакторы, позволяющие вводить описание моделируемой системы в форме, максимально удобной для восприятия человеком. Математические выражения пишутся с использованием многоэтажных дробей, символов интегралов, сумм и производных. Структура и поведение изображаются в виде структурных схем и графов переходов.
Эти графические описания автоматически переводятся в программу модели. Вместе с исполняющей системой пакета моделирования программа модели составляют моделирующую программу.
Пакет прикладных программ (аббр. ППП, англ. Software package) – программный пакет, комплекс взаимосвязанных программ, предназначенных для решения задач определенного класса.
Они служат программным инструментарием решения функциональных задач и являются самым многочисленным классом программных продуктов. В данный класс входят программные продукты, выполняющие обработку информации различных предметных областей.
Пакеты прикладных программ можно разделить на статические и динамические.
В случае статического пакета сначала происходит построение прикладной программы (работает пакет-конструктор), затем производится расчет (пакет-вычислитель), после чего графический пакет выполняет визуализацию полученных данных.
Работа пакета-вычислителя и графического пакета может происходить параллельно.
В случае динамического пакета все три этапа выполняются динамически в рамках единого процесса. Такой подход может быть эффективным, но разработка динамического пакета более трудоемка, чем статического.
На практике статические пакеты более распространены, чем динамические.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
По мере усложнения исследуемых систем моделирование все чаще проводится с помощью современных компьютерных технологий.
Компьютерная модель – представление информации о моделируемом объекте, системе, процессе или явлении средствами компьютера. Компьютерная модель описывает функционирование отдельных частей системы и правила взаимодействия между ними.
Компьютерное моделирование (КМ) – процесс создания и исследования компьютерной модели. Компьютерное моделирование целесообразно проводить когда отсутствуют или неприемлемы аналитические методы решения задачи, при необходимости проведения большого количества вычислений, при визуализации и т.п.
Компьютерное моделирование, возникшее как одно из направлений математического моделирования с развитием информационных компьютерных технологий стало самостоятельной и важной областью применения компьютеров. В настоящее время компьютерное моделирование в научных и практических исследованиях является одним из основных методов познания. Без компьютерного моделирования сейчас невозможно решение крупных научных и экономических задач. Выработана технология исследования сложных проблем, основанная на построении и анализе с помощью вычислительной техники математической модели изучаемого объекта. Такой метод исследования называется вычислительным экспериментом. Вычислительный эксперимент применяется практически во всех отраслях науки - в физике, химии, астрономии, биологии, экологии, даже в таких сугубо гуманитарных науках как психология, лингвистика и филология, кроме научных областей вычислительные эксперименты широко применяются в экономике, в социологии, в промышленности, в управлении.
Проведение вычислительного эксперимента имеет ряд преимуществ перед так называемым натурным экспериментом:
- для вычислительного эксперимента не требуется сложного лабораторного оборудования;
- существенное сокращение временных затрат на эксперимент;
- возможность свободного управления параметрами, произвольного их изменения, вплоть до придания им значений, выходящих за рамки эксперимента;
- возможность проведения вычислительного эксперимента там, где натурный эксперимент невозможен из-за удаленности исследуемого явления в пространстве (астрономия) либо из-за его значительной растянутости во времени (биология, экономика, планирование), либо из-за возможности внесения необратимых изменений в изучаемый процесс (экология);
- богатые возможности визуального представления явлений и процессов.
В технологии КМ можно выделить несколько этапов:
- подготовительный этап (постановка и системный анализ задачи, определение целей моделирования, построение информационной модели);
- формализация (в частности – разработка математической модели);
- выбор программного обеспечения, построение компьютерной модели, ее тестирование и отладка;
- исследование модели и анализ результатов.
I этап – моделирование начинается с анализа и изучения объекта исследования. Формируются законы, управляющие исследованием, происходит отделение информации от реального объекта, формируется существенная информация, отбрасывается несущественная, происходит первый шаг абстракции. Преобразование информации определяется решаемой задачей. Информация, существенная для одной задачи, может оказаться несущественной для другой. Потеря существенной информации приводит к неверному решению или не позволяет вообще получить решение. Учет несущественной информации вызывает излишние сложности, а иногда создает непреодолимые препятствия на пути к решению. Переход от реального объекта к информации о нем осмыслен только тогда, когда поставлена задача. В тоже время постановка задачи уточняется по мере изучения объекта. Т.о. на 1 этапе параллельно идут процессы целенаправленного изучения объекта и уточнения задачи.
Определяются цели моделирования:
- Понимание. Модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром.
- Управление. Модель нужна для того, чтобы научиться управлять объектом (или процессом); определить наилучшие способы управления при заданных целях и критериях; выработать концепцию управления объектом.
- Прогнозирование. Модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект. Прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным – на грани выполнимости – в системах биолого-экономических, социальных. Если относительно легко ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве, то несравненно труднее проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительною помощь.
II этап –строится так называемая формальная (в частности, математическая) модель явления, которая содержит:
- набор постоянных величин, констант, которые характеризуют моделируемый объект в целом и его составные части (постоянные параметры модели);
- набор переменных величин, меняя значение которых можно управлять поведением модели (динамические или управляющие параметры);
- формулы и алгоритмы, связывающие величины в каждом из состояний моделируемого объекта;
- формулы и алгоритмы, описывающие процесс смены состояний моделируемого объекта.
Многие решаемые прикладные задачи стандартизованы и формализация производится в расчете на известную математическую модель и алгоритм ее решения.
III этап –выбираются подходящие программные средства для реализации формальной модели на компьютере, выполняется построение компьютерной модели (в частности, разработка алгоритма и программы), которая затем тестируется на специально подготовленных тестовых моделях.
Тестирование - это процесс исполнения компьютерной модели с целью выявления ошибок. Подбор тестовой модели - это своего рода искусство, хотя для этого разработаны и успешно применяются некоторые основные принципы тестирования.
Тестирование - это процесс деструктивный, поэтому считается, что тест удачный, если обнаружена ошибка. Проверить компьютерную модель на соответствие оригиналу, проверить насколько хорошо или плохо отражает модель основные свойства объекта, часто удается с помощью простых модельных примеров, когда результат моделирования известен заранее.
IV этап – осуществляется вычислительный эксперимент с моделью. Например, определяется поведение модель при тех или иных наборах динамических параметров, выполняется прогнозирование или оптимизация в зависимости от поставленной задачи.
Результатом компьютерного эксперимента будет являться информационная модель явления, представленная в виде графиков, зависимостей одних параметров от других, диаграмм, таблиц, демонстрации явления в реальном или виртуальном времени и т.п.
V этап.Выполняется исследование модели в зависимости от поставленной задачи. Например, оптимизационные модели можно исследовать на чувствительность. Анализ модели на чувствительность – это процесс, реализуемый после получения оптимального решения. В рамках такого анализа выявляется чувствительность оптимального решения к изменениям исходной модели. Результаты компьютерного моделирования можно представить в виде графиков, диаграмм, таблиц, демонстрации явления в реальном или виртуальном времени и т.п. В заключении экспериментов с моделью можно выработать рекомендации по повышению эффективности существующей или проектируемой системы.
Т.о., решение любой прикладной задачи на компьютере описывается следующей технологической цепочкой: «реальный объект – модель – программная реализация – результаты – реальный объект». Из этой цепочки видно, что моделирование выступает как метод решения прикладных задач.
Рисунок 2 -Общая схема процесса компьютерного математического моделирования
Читайте также: