Какая топология имеет древовидную структуру в корне которой располагается файловый сервер
Поскольку GEPON в классическом виде имеет древовидную структуру, не обратить внимание на эту топологию было бы преступлением.
Древовидная топология сама по себе предполагает наличие таких топологических элементов, как «корень», «ствол», «ветви» и «листья».
«Корнем»древовидных структур в PON является собственноOLT, из которого «произрастает» пассивное «дерево» (состоящее, как мы помним, из абонентских «поддеревьев»).
«Стволом» пассивного дерева является обычно самый толстый (читай: ёмкий) кабель, проложенный от «корня» до первого (корневого) делителя.
В качестве «ветвей» можно рассматривать оптические кабелиразной ёмкости, проложенные на всём пути от корневого делителя к «листьям».
В роли «листьев» выступают ONU и всё стоящее за ONU клиентское оборудование.
*Таким образом, на базе одного Low-Level BDCOM OLT (который имеет 4 EPON порта)возможно построить одно дерево, состоящее из четырех поддеревьев суммарной ёмкостью 256 абонентов (по 64 абонента каждое поддерево).
Топологию «дерево» можно строить как угодно (лишь бы фантазии хватило), но концептуально все древовидные топологии можно разделить на два типа:
- Направление и географическое положение дерева и поддеревьев в нем совпадают (например, пассивное дерево «растет и ветвится» только на север от корня).
- Поддеревья «произрастают» независимо друг от друга (например, первое поддерево «растет и ветвится» на север от корня, второе – на северо-запад, третье-на юг…).
Первый тип деревьев представляет собой дерево четыре-в-одном, корень, ствол, ветви и узлы деления которого «наложены» друг на друга и географически представляют собой одну и ту же точку или линию.
*в простонародье дерево первого типа называют «мультидеревом»*
Деревья второго типа используют географически независимые друг от друга узлы деления, то есть поддеревья«произрастают» как-бы отдельно от остальных своих собратьев, имея при этом общий корень.
Другими словами, разница в том, что первый тип дерева (мультидерево) имеет большую ёмкость абонентов (256 и более) и использует общий магистральный кабель (4, 8, редко – больше волокон) для обслуживания абонентов, а второй тип обслуживает до 64-х оптических абонентов на каждое направление, используя отдельный кабель.
*здесь и далее будет указываться цифра 64, характерная для оборудования компании BDCOM и ряда других производителей*
Используя первый тип дерева (мультидерево) можно построить мощную и очень ёмкую инфраструктуру в целом населённом пункте(возможно, даже в небольшом спальном районе города), используя группу OLT’ов на стороне провайдера и одно магистральное дерево.
Второй тип дерева логично использовать для обеспечения связью небольших локальных районов (до 4-х независимых районов на один Low-Level OLT).
Первый тип дерева(«мультидерево») более элегантный, но более сложный с точки зрения проектирования. По сути, именно этот тип дерева и является классикой построения древовидных пассивных сетей. Классическое PON-дерево удобно разворачивать в небольших населенных пунктах или микрорайонах с высокой плотностью застройки и большим количеством потенциальных абонентов, географически расположенных рядом.
Основной задачей инженера-проектировщика при построении топологии будущей сети типа «мультидерево» является грамотный выбор местоположения узлов деления .
Это связано с тем, что до последнего (абонентского) узла деления ствол и ветви мультидерева будут содержать в себе волокна от всех включенных в корень поддеревьев.
*Число волокон в мультидереве (до абонентского узла деления) должно быть равно количеству EPON портов в корне или кратно ему. Кратность нужна в случае, если планируется расширение абонентской базы в заданном районе: в этом случае в корень придется ставить еще один OLT, к которому потребуется подключать дополнительные волокна (а это очень удобно делать, когда они уже в наличии, а не когда надо судорожно и в спешке прокладывать новый кабель).*
Ветви «мультидерева» обязательно должны покрыть всю площадь предполагаемого района подключения, а листья, как и во всех остальных случаях, отводятся под абонентские подключения. Проектировать такую пассивную сеть удобно, разбивая жилой массив на квадраты (квадратно-гнездовой способ) и устанавливая в центре каждого квадрата делитель 1хM, обеспечивающий транспорт сигнала на M направлений внутри этого квадрата. (Рисунок 9).
Рисунок 9 – квадратно-гнездовой способ проектирования топологии PON типа «мультидерево» с использованием планарных делителей 1х4
Фактически, сеть будет представлять собой N независимых поддеревьев (где N кратно числу EPON портов в корне мультидерева и, соответственно, числу волокон в кабеле) в одном физическом дереве.
После того, как обозначены основные узлы деления и проложен кабель, начинается пошаговое развитие «мультидерева». В корневом N-волоконном кабеле, идущем от станции провайдера до абонентских узлов деления, задействуется первое волокно (начинает расти ствол первого поддерева). Во всех узлах деления это волокно соединяется необходимыми делителями (первое поддерево начинает ветвиться), а остальные волокна остаются «разорванными» (Рисунок 10). Таким образом, становится активным первое из N поддеревьев в «мультидереве».
Рисунок 10 – основной узел деления при развитии топологии PON типа «мультидерево»
Как только любой из абонентских делителей (тот, из которого растут «листья» абонентских подключений) на определенном направлении полностью заполняется абонентами, в этом же направлении начинает развиваться второе из N деревьев – и так до тех пор, пока все волокна на всех направлениях не будут заняты
*как уже было сказано выше, для оборудования BDCOM N = 64 при оптическом бюджете системы 30дБ).*
Основным достоинством «мультидерева» является экономия волокна и простота включения нового абонента.
Основные недостатки: сложность первоначального проектирования и риски, связанные с неверным планированием числа возможных абонентов.
На рисунке 11 изображен второй тип дерева . Вариаций построения топологии такого типа много, но для простоты восприятия показан самый простой случай, отдалённо напоминающий FTTX.
На стороне провайдера, сразу за OLT, устанавливается делитель 1х8, который одной стороной подключается к PON порту OLT, а другой – к восьмиволоконному кабелю, играющему роль «ствола» будущего поддерева. По мере необходимости, «ствол» режется, от него ответвляется и разваривается одно волокно, из которого начинает расти «ветвь» на 8 абонентов, а остальные волокна пускаются дальше. Каждое ответвление от основной магистрали поддерева может быть выполнено с использованием делителя 1х8 или комбинации делителей 1х2 и 1х4.
Рисунок 11 – топология PON типа «дерево»
Основным достоинством второго типа дерева является простота понимания процесса построения сети. Кроме того, второй тип дерева обеспечивает относительно удобное освоение конкретного направления: один порт на один микрорайон с возможностью ветвления «на месте».
Главным недостатком является отклонение от концепции экономии волокна в пользу простоты исполнения топологии сети: используется несколько независимых многоволоконных магистральных кабелей (по одному кабелю на каждый EPON порт OLT) для построения пассивной сети под управлением одного OLT (читай как: у пассивного дерева такого типа может быть только ОДИН корень).
И первый, и второй типы деревьев, как уже было сказано выше, могут ветвиться с использованием любых делителей 1хN, образуя разнообразные причудливые формы. Главное – соблюдение двух правил:
А) «Правило оптического бюджета»: оптический бюджет потерь необходимо «уложить» в минимальный оптический бюджет системы. При этом желательно оставить 3дБ «про запас»;
Б) «Правило деления на N»: ни одно волокно, выходящее из PON-порта OLT, не должно быть поделено больше, чем на N конечных волокон, и к нему должно быть подключено не более N ONU (зависит от программных возможностей системы).
Однако, как показывает практика, не все комбинации делителей одинаково полезны хороши. Рассмотрим самые «ходовые» комбинации в цифрах (Рисунок 12). При строительстве ирасчётах каждой комбинации наиболее правильно использовать комбинированную «механическо-сварную» методологию включения делителей: вход делителя сварен с корневымUpLink волокном, а выходы соединяются с DownLink волокнами(ветвями или абонентскими патч-кордами) посредством механического соединения типа SC/UPC-SC/UPC.
Ниже показаны самые распространенные топологии типа «дерево», численные данные по которым можно найти в приложенных таблицах, показанных в качестве примера. Каждая таблица с расчётами включает в себя потери на соединении SFPOLT с корневымволокномподдерева, а также потери на соединении «абонентскийпатч-корд – ONU».
Рисунок 12 – Основные способы ветвления пассивного дерева.
Самый распространённый набор делителей для любого типа древовидной топологии. Для полной загрузки одного поддерева (64 абонента для одного EPON порта оборудования BDCOM) таких делителей нужно 9: один корневой + восемь абонентских (см. Рисунок 9 и Рисунок 12). Для полной загрузки стандартного«мультидерева» на 256 абонентов (опять же, и далее в том числе, для оборудования BDCOM), построенного по принципу «1х8 + 1х8», необходимо 36 этих самых «1х8» (см. Рисунок 10, Рисунок 12).
Что касательно бюджета потерь и остаточного оптического бюджета – его проиллюстрирует Таблица 3, в которой показаны значения уровня сигнала после каждого элемента дерева (SC/UPC-SC/UPC механические соединения и делители 1х8). Напомним, что за исходное значение мощности принята мощность 4dBm, а минимальная чувствительность ONU по паспорту равна -26dBm.
Как видно из таблицы, дерево 1х8 + 1х8 имеет нормальные показатели в плане потерь мощности. Остаточный оптический бюджет
7дБ способен обеспечить глубину дерева до 19 км (без учёта сварок, перегибов и проч.) при затухании на длине волны 1310nm = 0,36дБ/км.
Достаточно удобная топология для жилых массивов, в которых абоненты расположены кучно близко друг к другу, но каждая группа абонентов обособлена от других таких же групп (Рисунок 12). Набор делителей 1х4 и 1х16 можно использовать двумя способами: или сначала поделить корень поддерева на 4 ветви, а потом каждую из них поделить еще на 16, или наоборот (сначала на 16, а потом на 4). Сторонники есть и у того, и у другого способа. Бюджет потерь одинаков: от перемены мест слагаемых сумма… ну, вы в курсе.
Достаточно удобная топология для жилых массивов, в которых абоненты расположены кучно близко друг к другу, но каждая кучка группа абонентов обособлена от других таких же групп (Рисунок 10). Набор делителей 1х4 и 1х16 можно использовать двумя способами: или сначала поделить UpLink на 4 DownLink`a, а потом каждый из них поделить еще на 16, или наоборот (сначала на 16, а потом на 4). Сторонники есть и у того, и у другого способа. Бюджет потерь одинаков: от перемены мест слагаемых сумма… ну, вы в курсе.
Как и в предыдущем случае, бюджет потерь для всех вариаций одинаков (см. Таблица 6 ).
Как видно, мощность на приёмнике ONU схожая с вариантом 1х4 + 1х4 + 1х4 ( Таблица 4 ), мобильность выше. Одна из самых «ветвистых»среди наиболее распространенных топологий.
На самом деле, все вышеперечисленные комбинации – это только «верхушка айсберга» PON. Иногда потребность такова, что вместо планарных делителей 1х2 необходимо использовать сварные с неравноплечим коэффициентом затуханий на каждом выходе. Иногда требуется каскад планарных делителей 1х2 (вплоть до 6 делителей подряд). Все возможные комбинации перечислить просто невозможно, и в этом большой плюс: берем карту местности, включаем фантазию и делаем то, что никто никогда еще не делал! Оптический бюджет стерпит!
При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.
Рис.9. Структура кольцевой топологии ЛВС.
Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географическое расположение рабочих станций далеко от формы кольца (например, в линию).
Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.
Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.
Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий. Отдельные звезды включаются с помощью специальных коммутаторов (англ. Hub - концентратор), которые по-русски также иногда называют "хаб". В зависимости от числа рабочих станций и длины кабеля между рабочими станциями применяют активные или пассивные концентраторы. Активные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключительно разветвительным устройством (максимум на три рабочие станции). Управление отдельной рабочей станцией в логической кольцевой сети происходит так же, как и в обычной кольцевой сети. Каждой рабочей станции присваивается соответствующий ей адрес, по которому передается управление (от старшего к младшему и от самого младшего к самому старшему). Разрыв соединения происходит только для нижерасположенного (ближайшего) узла вычислительной сети, так что лишь в редких случаях может нарушаться работа всей сети.
Рис. 10. Структура логической кольцевой цепи ЛВС.
Шинная топология
При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.
Рис.11. Структура шинной топологии ЛВС.
Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.
В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кабель с тройниковым соединителем. Отключение и особенно подключение к такой сети требуют разрыва шины, что вызывает нарушение циркулирующего потока информации и зависание системы.
Новые технологии предлагают пассивные штепсельные коробки, через которые можно отключать и/или подключать рабочие станции во время работы вычислительной сети.
Благодаря тому, что рабочие станции можно подключать без прерывания сетевых процессов и коммуникационной среды, очень легко прослушивать информацию, т.е. ответвлять информацию из коммуникационной среды.
В ЛВС с прямой (не модулируемой) передачей информации всегда может существовать только одна станция, передающая информацию. Для предотвращения коллизий в большинстве случаев применяется метод разделения, согласно которому для каждой подключенной рабочей станции в определенные моменты времени предоставляется исключительное право на использование канала передачи данных. Поэтому требования к пропускной способности вычислительной сети при повышенной нагрузке повышаются, например, при вводе новых рабочих станций. Рабочие станции присоединяются к шине посредством устройств ТАР (англ. Terminal Access Point - точка подключения терминала). ТАР представляет собой специальный тип подсоединения к коаксиальному кабелю. Зонд игольчатой формы внедряется через наружную оболочку внешнего проводника и слой диэлектрика к внутреннему проводнику и присоединяется к нему.
Основные характеристики трех наиболее типичных типологий вычислительных сетей приведены в таблице.
Древовидная топология создаётся путём комбинации рассмотренных выше топологий ЛВС. Древовидная топология структура выглядит в виде ели, которая расширяется внизу. Отказ одного компьютера (рабочей станции) приводит к отказу лишь одной ветви, поэтому эта топология более надёжна, чем кольцевая. Сети с древовидной топологией применяются там, где невозможно непосредственное применение базовых (шинной, кольцевой и звёздной) топологий. Для подключения рабочих станций в сеть используются хабы.
Локальная сеть имеет небольшую протяжённость, но существует и процветает ещё один вид сетей – это глобальная, которая может охватывать значительные расстояния (десятки тысяч километров).
Вывод: Локальная вычислительная сеть (ЛВС) – это сеть, в котором компьютеры с подключенными к ним периферийными устройствами расположены в географически ограниченном пространстве, чаще всего в пределах промышленного или коммерческого предприятия, банка, библиотеки, научной организации или учебного заведения.
Глобальные компьютерные сети
В 1961 году Defence Advanced Research Agency (DARPA) по заданию министерства обороны США приступило к проекту по созданию экспериментальной сети передачи пакетов. Эта сеть, названная ARPANET, предназначалась первоначально для изучения методов обеспечения надежной связи между компьютерами различных типов. Многие методы передачи данных через модемы были разработаны в ARPANET. Тогда же были разработаны и протоколы передачи данных в сети - TCP/IP. TCP/IP - это множество коммуникационных протоколов, которые определяют, как компьютеры различных типов могут общаться между собой.
Эксперимент с ARPANET был настолько успешен, что многие организации захотели войти в нее, с целью использования для ежедневной передачи данных. И в 1975 году ARPANET превратилась из экспериментальной сети в рабочую сеть. Ответственность за администрирование сети взяло на себя Defence Communication Agency (DCA), в настоящее время называемое Defence Information Systems Agency (DISA). Но развитие ARPANET на этом не остановилось; Протоколы TCP/IP продолжали развиваться и совершенствоваться.
В 1983 году вышел первый стандарт для протоколов TCP/IP, вошедший в Military Standards (MIL STD), т.е. в военные стандарты, и все, кто работал в сети, обязаны были перейти к этим новым протоколам. Для облегчения этого перехода DARPA обратилась с предложением к руководителям фирмы Berkley Software Design - внедрить протоколы TCP/IP в Berkley (BSD) UNIX. С этого и начался союз UNIX и TCP/IP.
Спустя некоторое время TCP/IP был адаптирован в обычный, то есть в общедоступный стандарт, и термин Internet вошел во всеобщее употребление. В 1983 году из ARPANET выделилась MILNET, которая стала относиться к Defence Data Network (DDN) министерства обороны США. Термин Internet стал использоваться для обозначения единой сети: MILNET плюс ARPANET. И хотя в 1991 году ARPANET прекратила свое существование, сеть Internet существует, ее размеры намного превышают первоначальные, так как она объединила множество сетей во всем мире. Рисунок 1 иллюстрирует рост числа хостов, подключенных к сети Internet с 4 компьютеров в 1969 году до 3,2 миллионов в 1994. Хостом в сети Internet называются компьютеры, работающие в многозадачной операционной системе (Unix, VMS), поддерживающие протоколы TCP\IP и предоставляющие пользователям какие-либо сетевые услуги.
Первоначально глобальные сети решали задачу доступа удаленных ЭВМ и терминалов к мощным ЭВМ, которые назывались host-компьютер (часто используют термин сервер). Такие подключения осуществлялись через коммутируемые или некоммутируемые каналы телефонных сетей или через спутниковые выделенные сети передачи данных, например, сети, работающие по протоколу Х.25.
Для подключения к таким сетям передачи данных использовались модемы, работающие под управлением специальных телекоммуникационных программ, таких как BITCOM, COMIT, PROCOM, MITEZ и т.д. Эти программы, работая под операционной системой MS-DOS, обеспечивали установление соединения с удаленным компьютером и обмен с ним информацией.
С закатом эры MS-DOS их место занимает встроенное в операционные системы коммуникационное программное обеспечение. Примером могут служить средства Windows95 или удаленный доступ (RAS) в WindowsNT.
В настоящее время все реже используются подключенные к глобальным сетям одиночные компьютеры. Это в основном домашние ПК. В основной массе абонентами компьютерных сетей являются компьютеры, включенные в локальные вычислительные сети (ЛВС), и поэтому часто решается задача организации взаимодействия нескольких удаленных локальных вычислительных сетей. При этом требуется обеспечить удаленному компьютеру связь с любым компьютером удаленной локальной сети, и, наоборот, любому компьютеру ЛВС с удаленным компьютером. Последнее становится весьма актуальным при расширении парка домашних и персональных компьютеров.
В России крупнейшими глобальными сетями считаются Спринт сеть (современное название Global One), сеть Инфотел, сети Роснет и Роспак, работающие по протоколу Х.25, а также сети Relcom и Internet, работающие по протоколу TCP/IP.
В качестве сетевого оборудования применяются центры коммутации, которые для сетей Х.25 часто исполняются как специализированные устройства фирм-производителей Siemens, Telenet, Alcatel, Ericsson и др., а для сети с TCP/IP используются маршрутизаторы фирм Cisco и Decnis. Структура сетей показана на рисунке 6.
Рис. 6. Принцип объединения компьютеров в глобальных сетях.
Internet является старейшей глобальной сетью. Internet предоставляет различные способы взаимодействия удаленных компьютеров и совместного использования распределенных услуг и информационных ресурсов.
Internet работает по протоколу TCP/IP. Основным «продуктом», который вы можете найти в Internet, является информация. Эта информация собрана в файлы, которые хранятся на хост-компьютерах, и она может быть представлена в различных форматах. Формат данных зависит от того, каким сетевым сервисом вы воспользовались, и какие возможности по отображению информации есть на ПК. Любой компьютер, который поддерживает протоколы TCP/IP, может выступать в качестве хост-компьютера.
Одним из недостатков передачи данных по сети Internet является недостаточная защита информации.
1. Передача файлов по протоколу FTP. Информационный сервис, основанный на передаче файлов с использованием протокола FTP (протокол передачи файлов).
2. Поиск файлов с помощью системы Archie. Archie – первая поисковая система необходима для нахождения нужной информации, разбросанной по Internet.
4. Списки рассылки. Список рассылки – это средство, предоставляющее возможность вести дискуссию группе пользователей, имеющих общие интересы.
Возможности сети Internet.
Интернет представляет собой глобальную компьютерную сеть, содержащую гигантский объем информации по любой тематике, доступной на коммерческой основе для всех желающих, и предоставляющую большой спектр информационных услуг. В настоящее время Интернет представляет собой объединение более 40 000 различных локальных сетей, за что она получила название сеть сетей. Каждая локальная сеть называется узлом или сайтом, а юридическое лицо, обеспечивающее работу сайта – провайдером. Сайт состоит из нескольких компьютеров – серверов, каждый из которых предназначен для хранения информации определенного типа и в определенном формате. Каждый сайт и сервер на сайте имеют уникальные имена, посредствам которых они идентифицируются в Интернет.
Для подключения в Интернет пользователь должен заключить контракт на обслуживание с одним из провайдеров в его регионе.
Вывод: Глобальные сети являются более широким понятием локальных компьютерных сетей, и зачастую объединяют в себе несколько локальных сетей. Internet представляет собой глобальную компьютерную сеть, содержащую гигантский объем информации по любой тематике, доступной на коммерческой основе для всех желающих, и предоставляющую большой спектр информационных услуг.
ЗАКЛЮЧЕНИЕ
В топология дерева это комбинация шинной топологии и звездообразной топологии. Эта комбинация позволяет пользователям иметь несколько серверов в сети. Подключите несколько звездообразных топологий к другой звездообразной топологии. Она также известна как расширенная звездообразная топология или иерархическая топология.
Сетевая топология - это систематический дизайн устройств в сети. Топология дерева имеет центральный узел, к которому подключены все остальные устройства, чтобы построить иерархию, которая должна иметь как минимум три уровня.
Топология дерева следует иерархической модели; по этой причине каждый уровень связан со следующим более высоким уровнем по симметричной схеме.
Эту топологию лучше всего применять в большой сети. Это не рекомендуется для небольшой сети, потому что потребуется использовать больше кабелей, чем в других топологиях, что приводит к большим потерям.
Лучше всего использовать древовидную топологию, потому что все компьютеры одновременно принимают сигналы, передаваемые центральным устройством.
характеристики
Два типа топологии
Топология дерева представляет собой комбинацию двух топологий: топологии шины и топологии звезды. Он построен путем соединения нескольких звездообразных топологий через магистральный кабель. Эта топология очень полезна для возможности расширения сети.
В древовидной сети несколько звездообразных сетей соединены шинной сетью. Этот основной провод выглядит как основной путь дерева, а другие звездные сети служат его ветвями.
В топологии шины различные узлы подключаются к основному кабелю, тогда как в топологии звезды центральный концентратор служит для соединения всех устройств.
Соединение точка-точка
В древовидной топологии каждый компьютер имеет прямое подключение к концентратору, а также каждая часть сети подключена к магистральному кабелю.
В этом типе сети кабельная разводка точка-точка выполняется для каждого отдельного сегмента и, следовательно, может поддерживаться несколькими поставщиками программного и аппаратного обеспечения. Однако, если центральная магистраль выходит из строя, вся сеть выходит из строя.
Каждое устройство на иерархическом уровне имеет прямую связь с каждым соседним узлом на его нижнем уровне.
Все узлы второго уровня имеют двухточечные соединения с узлами третьего уровня в своей иерархии, а основное устройство имеет двухточечное соединение с каждым узлом второго уровня.При просмотре диаграммы этой топологии эта конфигурация выглядит похожей на структуру дерева.
Иерархические отношения
Это сетевая топология, которая имеет по крайней мере три уровня иерархии, которые работают вместе с первичной сетью, потому что в звездообразной топологии уже показаны два уровня иерархии.
К концентратору можно подключить два или более устройства. Эти два устройства называются дочерними по отношению к главному узлу. Топология называется древовидной, потому что ее форма похожа на дерево с разными ветвями устройств.
Использование топологии дерева
- Он в основном используется в сети, охватывающей большую территорию. Идеально, если рабочие места сгруппированы по разным зонам.
- Связь между двумя сетями для создания более крупной сети.
- Сетевая структура, которая требует корневого устройства, промежуточных первичных устройств и конечных узлов, как показано в дереве.
- Для обмена информацией по более крупной сети.
- Позволяет пользователям иметь несколько серверов в сети.
Преимущество
- Древовидная топология снижает сетевой трафик.
- Он совместим со многими поставщиками оборудования и программного обеспечения.
- Устройства в других иерархиях сети не пострадают, если какое-либо из устройств в одной из ветвей сети будет повреждено.
Очень гибкий
В древовидной топологии компьютеры могут быть добавлены просто путем добавления нового концентратора в топологию сети. Следовательно, расширение узла возможно и просто.
Это означает, что он обеспечивает большую масштабируемость, потому что устройства последнего уровня могут вместить больше устройств в иерархической цепочке.
Вот почему легко добавить компьютер, просто удлинив кабель, который используется для его подключения.
Централизованный мониторинг
Эта топология позволяет пользователям легко контролировать и управлять довольно большой сетью, а древовидную топологию легко перенастроить.
Легкое обнаружение ошибок
Древовидную сеть можно легко расширить, поскольку дочерние узлы могут стать родителями будущих узлов.
Доступ к компьютеру
Поскольку древовидная топология предназначена для большой сети, все компьютеры будут иметь лучший доступ к любому устройству в сети.
Недостатки
- Требуется огромное количество кабелей по сравнению с топологией звезды и шины.
- Каждый раз, когда добавляются новые узлы, обслуживание становится сложнее. Следовательно, требуется много обслуживания.
Единая точка отказа
Если магистраль всей сети сломана, обе части сети не смогут связываться друг с другом, хотя одна часть сможет продолжить связь.
С другой стороны, если центральный концентратор сети выйдет из строя, выйдет из строя вся сеть. Таким же образом, если возникает проблема с центральным кабелем, вся сеть перестает работать.
Сложно настроить
Древовидную топологию сложно настроить. Это потому, что это топология для больших сетей. Кроме того, сложно подключить сеть. Требуется много кабелей, и их сложно обслуживать.
Читайте также: