Как сделать ячейку памяти из транзисторов
Микросхемы ОЗУ построена на биполярных и МДП транзисторах. Элементом памяти в первых из них служит простейший триггер, во вторых – триггер или конденсатор, заряжаемый до напряжения, соответствующего единичному состоянию элемента. Биполярные триггерные микросхемы обладают значительным быстродействием, а МДП микросхемы – большей емкостью ЗУ. Кроме того, МДП-микросхемы потребляют значительно меше энергии.
Типичный пример триггерного ОЗУ – параллельный регистр;. При четырех битах хранимой информации все его компоненты умещаются в одном корпусе с 14-ю выводами, обеспечивающими доступ ко всем входам и выходам четырех элементов памяти. Организация памяти в виде отдельных регистров применяется при создании ОЗУ малой ёмкости.
При увеличении емкости ОЗУ возникает проблема доступа к каждому элементу памяти при ограниченном числе выводов в корпусе. Эта задача решается с помощью адресной организации ЗУ с использование дешифратора кода адреса. Как уже говорилось ранее, дешифратор с n адресными входами дешифрирует 2 n состояний. Таким образом, при четырёх входах можно организовать обращение к 16 элементам памяти при 10 к 1024 элементам.
Запоминающее устройство адресного типа состоит из трех основных блоков: массива элементов памяти (накопитель), блока адресной выборки (дешифратор адреса) и блока управления.
Рассмотрим назначение и взаимодействие этих блоков на примере ОЗУ на 64 бита с адресной организацией выборки 16 четырехразрядных слов (16 слов х 4 разряда = 64 бита).
Таким образом, блок управления (десять элементов И) обеспечивает работу ОЗУ в режимах: запись, считывание, сквозной перенос, хранение информации.
Выходные логические элементы И выполнены по схеме с открытым коллектором, что позволяет соединять вместе выходы Q нескольких микросхем ОЗУ. При этом происходит наращивание емкости ОЗУ две микросхемы—32 слова, три—48 и т. д..
Адресное управление А1—А4, информационные входы D1—D4 и выход Q1—Q4 всех микросхем объединяют в общие шины, а выбор рабочего массива осуществляют дополнительным дешифратором по входам V и W. Так построена микросхема К155РУ2 рисунок 1,б.
При конструировании ОЗУ ёмкостью в сотни тысяч бит в одном корпусе возникают трудности с созданием дешифраторов с таким числом выходов. Их удалось преодолеть при построении матричных накопителей, в которых выборка каждого элемента памяти осуществляется не по одной шине, а по двум (по строкам и столбцам). Функциональная схема такого ОЗУ емкостью 256 бит приведена на рисунке 2. Для выбора 256 ячеек необходимы восемь адресных входов. Они разделены на две четверки, каждая из которые управляет дешифратором на 16 положений. При любой комбинации сигналов A1-A8 единичные значения сигналов на шине строки и шине столбца окажутся только у одного элемента памяти. Только этот элемент будет воспринимать управляющие сигналы, идущие по общим шинам: выбор микросхемы CS (Chip Select), разрядная шина 1, разрядная шина 0. Анализ логической структуры блока местного управления (три элемента И) позволяет составить таблицу режимов работы этого ОЗУ.
Запись в выбраную ячейку
Считыва6ние из выбранной ячейки
Выходной усилитель ОЗУ в режиме записи и хранения информации находится в третьем состоянии (состояние с высоким сопротивлением), что позволяет наращивать объем памяти так же, как и для микросхемы К155РУ2.
Цоколевка микросхем К176РУ2 и 1К561РУ2 (ОЗУ с такой структурой выполнены по КМДП технологии показана на рисунке 2,б. Используя их, необходимо помнить, что информация на адресных (А1—А8) и информационном входах должна меняться при высоком уровне сигнала CS как в режиме записи, так и в режиме считывания. В противном случае будет разрушаться ранее записанная информация. Смена информации должна производиться за время не менее 0,1 мкс до начала сигнала СS=0 либо не ранее чем через 0,5 мкс после его окончания.
Постоянные ЗУ допускают только считывание занесенной в них информации. В ПЗУ по каждому n-разрядному адресу записано одно заранее установленное m-разрядное слово. Таким образом, ПЗУ являются преобразователями кода адреса в код слова, т. е. комбинационной системой с n входа- ми и m выходами.
Накопитель ПЗУ обычно выполняется в виде системы взаимно перпендикулярных шин, в пересечениях которых либо стоит (логическая 1), либо отсутствует (логический 0) элемент, связывающий между собой соответствующие горизонтальную и вертикальную шины. Выборка слов производится так же, как и в ОЗУ, при помощи дешифратора. Выходные транзисторы усилителей могут быть с открытым коллектором или с третьим состоянием. Тогда при стробирующем сигнале V=1 микросхема отключается от выходной шины, что позволяет наращивать память простым объединением выходов микросхем ПЗУ.
В настоящее время производиться огромное количество ПЗУ, или энергонезависимой памяти, как последовательного так и параллельного типа. В данной статье я расскажу только про параллельные ПЗУ так как для того чтобы рассказать про последовательные такие как I 2 . Рассмотрим однократно программируемое ПЗУ к155ре3. Информационная ёмкость её 256 бит, организация 32х8. В этих ПЗУ элементом памяти является биполярный транзистор с выжигаемой перемычкой. При программировании в ячейке где должен быть записан 0, через транзистор пропускают импульс тока, достаточного для разрушения перемычки.
Микросхема К573РФ6 ПЗУ с ультрафиолетовым стиранием, объём памяти 64Кбит организация 8192х8. Микросхема имеет в своём корпусе окошко, используемое пи стирании ультрафиолетовым светом. После стирания это окошко заклеивается светонепроницаемой плёнкой. После стирания все ячейки находятся в состоянии логической единицы. Микросхема работает в режиме программирования когда напряжение источника питания 25 вольт, на входе -OE напряжение высокого уровня. Для записи информации необходимо подать байт данных на выходы данных. Адресные сигналы и сигналы данных имеют ТТЛ уровень. Когда адресная и входная информация выставлена подается на вход -CE/PGM импульс программирования с уровнем ТТЛ и длительностью 50 мс. Импульс программирования подаётся для каждого байта записываемой информации. После программирования каждой ячейки необходимо проверить правильно ли она запрограммирована. Если байт считанный с ПЗУ не соответствует записываемому то процедуру программирования для данное ячейки необходимо повторить.
GIG Опубликована: 2005 г. 0 0
Вознаградить Я собрал 0 0
Информация на флешке хранится в ячейках памяти, каждая из которых может запомнить один бит: 0 или 1. Флешка состоит из миллиардов таких ячеек памяти.
Ячейка памяти
Одна ячейка памяти — один бит. Одна буква в тексте — 8 бит или 1 байт. Этот текст занимает примерно 6 тысяч байт, то есть, чтобы сохранить его на флешку, потребуется 48 тысяч ячеек памяти. Для нового эпизода Доктора Хауса в HD потребуется примерно 11 миллиардов ячеек памяти. Трудно представить себе, что они все легко поместятся на площади в 1 квадратный сантиметр.
Ячейка памяти — это транзистор. С двух сторон у него находится два полупроводника n-типа, у которых много свободных электронов, которые могут свободно двигаться, то есть переносить ток.
Между этими полупроводниками находится полупроводник p-типа, у которого, наоборот, недостаток электронов. Ток там переносится, соответственно, дырками от недостающих электронов.
Ток не может проходить между n-полупроводниками, потому что между ними находится p-проводник, а у них разный тип проводимости.
Но над p-полупроводником находится управляющий затвор. Это такой электрод, на который можно подать положительное или отрицательное напряжение. Если на него подать положительное напряжение, то он отодвинет дырки в p-полупроводнике и притянет электроны, поскольку противоположные заряды притягиваются.
Плавающий затвор окружен диэлектриком, чтобы электрончики с него не сбежали. Теоретически, ячейка памяти может хранить свое значение бесконечно, ну или по крайней мере десятки лет.
Получится так называемый n-переход, по которому может пройти электричество с одного полупроводника n-типа на другой и транзистор сможет проводить ток.
Между управляющим затвором и p-полупроводником есть металлическая пластинка — это плавающий затвор. Если ее зарядить отрицательно, то она будет мешать работе управляющего затвора, и транзистор не будет проводить ток вне зависимости от того, есть на управляющем затворе положительное напряжение или нет.
Как читаются данные
Чтобы проверить, что записано в ячейке памяти, ноль или единица, на управляющий затвор подают напряжение и проверяют, может ли идти по транзистору ток:
- — Если на управляющем затворе есть избыток электронов, то ток идти не будет, значит это единица.
- — Если на управляющеи затворе избытка электронов нет, то ток пойдет, значит это ноль.
Как записываются
Чтобы записать единичку в ячейку памяти, надо на плавающий затвор закинуть электронов. Но это не так-то просто сделать, потому что плавающий затвор окружен диэлектриком, который, как известно, не проводит ток.
Туннельный эффект — явление, возможное только в квантовой механике, когда, благодаря своим волновым свойствам, электрон перепрыгивает с одного места на другое. То есть он оказывается по ту сторону диэлектрика, не проходя через него. В классической механике такое невозможно.
Для того, чтобы поместить электроны в плавающий затвор, на управляющий затвор подают положительное напряжение — гораздо выше, чем при чтении. Часть проходящих электронов запрыгивают на плавающий затвор благодаря туннельному эффекту.
Стирание данных происходит точно так же, только вместо положительного напряжение на управляющий затвор подается отрицательное, и электроны спрыгивают с плавающего затвора.
В предыдущих статьях цикла:
Хранение данных в твердотельных накопителях можно разделить на две логические части: хранение информации в одной ячейке и организация хранения ячеек.
Каждая ячейка твердотельного накопителя хранит один или несколько бит информации. Для хранения информации используются различные физические процессы. При разработке твердотельных накопителей прорабатывались следующие физические величины для кодирования информации:
- электрические заряды (в том числе Flash-память);
- магнитные моменты (магниторезистивная память);
- фазовые состояния (память с изменением фазового состояния).
Память на основе электрических зарядов
Кодирование информации с помощью отрицательного заряда лежит в основе нескольких решений:
- стираемые ультрафиолетом ПЗУ (EPROM);
- электрически стираемые ПЗУ (EEPROM);
- Flash-память.
Каждая ячейка памяти — это полевой МОП-транзистор с плавающим затвором, в котором хранится отрицательный заряд. Его отличие от обычного МОП-транзистора заключается в наличии плавающего затвора — проводника в слое диэлектрика.
Полевые МОП-транзисторы c плавающим затвором были разработаны Давоном Кангом (Dawon Kahng) и Саймоном Мин Зи (Simon Min Sze) из Bell Labs в 1967 году. Позднее, при исследовании дефектов интегральных схем, было замечено, что из-за заряда в плавающем затворе изменилось пороговое напряжение, открывающее транзистор. Это открытие побудило Дова Фромана (Dov Frohman) начать работу над памятью на основе этого феномена.
Erasable Programmable Read-Only Memory
В EPROM-памяти не предполагалась очистка плавающих затворов транзисторов электрическим способом. Вместо этого предлагалось воздействовать на транзисторы сильным ультрафиолетовым излучением, фотоны которого придают энергию электронам энергию, необходимую, чтобы покинуть плавающий затвор. Для доступа ультрафиолета вглубь чипа на корпус добавлено кварцевое стекло.
Electrically Erasable Programmable Read-Only Memory
В 1972 году три японца: Ясуо Таруи (Yasuo Tarui), Ютака Хаяши (Yutaka Hayashi) и Кийоко Нагаи (Kiyoko Nagai) представили первое электрически стираемое постоянное запоминающее устройство (Electrically Erasable Programmable Read-Only Memory, EEPROM или E 2 PROM). Позже их научные исследования станут частью патентов на коммерческие реализации EEPROM-памяти.
Каждая ячейка EEPROM-памяти состоит из нескольких транзисторов:
- транзистор с плавающим затвором для хранения бита;
- транзистор для управления режимом чтения-записи.
Такая конструкция сильно усложняет разводку электрической схемы, поэтому EEPROM память использовалась в случаях, когда малый объем памяти не был критичен. Для хранения большого объема данных по-прежнему использовался EPROM.
Flash-память
Flash-память, совмещающая лучшие черты EPROM и EEPROM, разработана японским профессором Фудзио Масуокой (Fujio Masuoka), инженером компании Toshiba, в 1980 году. Первая разработка получила название Flash-память типа NOR и, как и ее предшественники, основана на полевых МОП-транзисторах с плавающим затвором.
Разводка транзисторов в памяти типа NAND
Спустя семь лет Фудзио Маусока (Fujio Masuoka) разработал Flash-память типа NAND. Данный вид памяти отличается количеством транзисторов на битовой линии. В памяти типа NOR каждый транзистор напрямую подключен к битовой линии, в то время как в NAND-памяти транзисторы подключены последовательно.
Чтение из памяти такой конфигурации сложнее: на необходимую линию слова подается напряжение, необходимое для чтения, а на все остальные линии слова подается напряжение, которое открывает транзистор вне зависимости от уровня заряда в нем. Так как все остальные транзисторы гарантированно открыты, то наличие напряжения на битовой линии зависит только от одного транзистора, на которое подано напряжение чтения.
Изобретение Flash-памяти типа NAND позволяет значительно уплотнять схему, размещая бо́льший объем памяти при тех же размерах. До 2007 года объем памяти увеличивали путем уменьшения производственного техпроцесса чипа.
В 2007 году компания Toshiba представила новую версию NAND-памяти: Vertical NAND (V-NAND), также известную как 3D NAND. В этой технологии делается акцент на размещение транзисторов в несколько слоев, что вновь позволяет уплотнить схему и увеличить объем памяти. Тем не менее, уплотнение схемы не может повторяться до бесконечности, поэтому исследовались другие методы увеличения хранимого объема памяти.
Изначально каждый транзистор хранил два уровня заряда: логический ноль и логическую единицу. Такой подход называется Single-Level Cell (SLC). Накопители с такой технологией отличаются высокой надежностью и максимальным количеством циклов перезаписи.
Со временем было принято решение увеличить объем накопителей ценой износостойкости. Так количество уровней заряда в ячейке до четырех, а технологию назвали Multi-Level Cell (MLC). Следом появились Triple-Level Cell (TLC) и Quad-Level Cell (QLC). В будущем появится новый уровень — Penta-Level Cell (PLC) с пятью битами в одной ячейке. Чем больше бит помещается в одну ячейку, тем больше объем накопителя при той же стоимости, но меньше износостойкость.
Использование Flash-памяти в космической индустрии затруднительно, так как радиация пагубно влияет на электроны в плавающих затворах.
Перечисленные проблемы мешают Flash-памяти стать безоговорочным лидером в области хранения информации. Несмотря на то, что накопители на базе Flash-памяти широко распространены, ведутся исследования других видов памяти, лишенных этих недостатков, среди которых хранение информации в магнитных моментах и фазовых состояниях.
Магниторезистивная память
Кодирование информации магнитными моментами появилось в 1955 году в виде памяти на магнитных сердечниках. До середины 1970-х годов ферритовая память была основным видом памяти. Чтение бита из памяти такого типа приводило к размагничиванию кольца и потере информации. Таким образом, после чтения бита его приходилось записывать обратно.
Согласно JEDEC SSD-диски на базе Flash-памяти без питания должны сохранять информацию как минимум три месяца при температуре окружающей среды 40°С. Разработанный Intel чип на базе магниторезистивной памяти обещает сохранить данные десять лет при температуре 200°С.
Несмотря на сложность разработки, магниторезистивная память не деградирует во время использования и имеет лучшее быстродействие среди остальных видов памяти, что не позволяет списать со счетов этот вид памяти.
Память с изменением фазового состояния
Третий перспективный вид памяти — память на основе фазового перехода. Данный вид памяти использует свойства халькогенидов переключаться между кристаллическим и аморфным состоянием при нагреве.
Халькогениды — бинарные соединения металлов с 16-ой группой (6-ой группы главной подгруппы) периодической таблицы Менделеева. Например, в CD-RW, DVD-RW, DVD-RAM и Blu-ray дисках используются теллурид германия (GeTe) и теллурид сурьмы (III) (Sb2Te3).
Исследования по применению фазового перехода для хранения информации проводились в 1960-ые года Стэнфордом Овшинским (Stanford Ovshinsky), но тогда до коммерческой реализации дело не дошло. В 2000-х снова возник интерес к технологии, Samsung запатентовала технологию, позволяющую переключать бит за 5 нс, а Intel и STMicroelectronics увеличили количество состояний до четырех, тем самым увеличив возможный объем вдвое.
При нагреве выше точки плавления халькогенид теряет кристаллическую структуру и, остывая, превращается в аморфную форму, характеризующуюся высоким электрическим сопротивлением. В свою очередь при нагревании до температуры выше точки кристаллизации, но ниже точки плавления халькогенид возвращается в кристаллическое состояние с низким уровнем сопротивления.
Считается, что разработка Intel, технология 3D Crosspoint (3D XPoint) использует именно фазовые переходы для хранения информации. 3D XPoint используется в накопителях Intel® Optane™ Memory, для которых заявлена большая износостойкость.
Заключение
Физическое устройство твердотельных накопителей претерпело множество изменений за более, чем полувековую историю, однако, каждое из решений имеет свои недостатки. Несмотря на неоспоримую популярность Flash-памяти, несколько компаний, среди которых Samsung и Intel, прорабатывают возможность создания памяти на магнитных моментах.
Сокращение износа ячеек, их уплотнение и повышение общей емкости накопителя — вот направления, которые в настоящий момент являются перспективными для дальнейшего развития твердотельных накопителей.
Протестировать самые крутые на сегодняшний день накопители NAND и 3D XPoint можно уже сейчас в нашей Selectel LAB.
Как вы считаете, будет ли технологии хранения информации на электрических зарядах вытеснена другими, например, кварцевыми дисками или оптической памятью на нанокристаллах соли?
Флеш‐память (англ. Flash-Memory ) — разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.
Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (максимально — около миллиона циклов [1] ). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи — намного больше, чем способна выдержать дискета или жёстких дисков, более надёжна и компактна.
Благодаря своей компактности, дешевизне и низком энергопотреблении флеш‐память широко используется в портативных устройствах, работающих на батарейках и аккумуляторах — цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах и коммуникаторах. Кроме того, она используется для хранения встроенного программного обеспечения в различных устройствах (маршрутизаторах, мини‐АТС, принтерах, сканерах), различных контроллерах.
Ещё один недостаток устройств на базе флеш‐памяти по сравнению с жёсткими дисками — как ни странно, меньшая скорость. Несмотря на то, что производители SSD накопителей заверяют, что скорость этих устройств выше скорости винчестеров, в реальности она оказывается ощутимо ниже. Конечно, SSD накопитель не тратит подобно винчестеру время на разгон, позиционирование головок и т. п. Но время чтения, а тем более записи, ячеек флеш‐памяти, используемой в современных SSD накопителях, больше. Что и приводит к значительному снижению общей производительности. Справедливости ради следует отметить, что последние модели SSD накопителей и по этому параметру уже вплотную приблизились к винчестерам. Однако, эти модели пока слишком дороги.
Содержание
Принцип действия
Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell ). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC ), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC ) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.
В основе этого типа флеш-памяти лежит ИЛИ‑НЕ элемент (англ. NOR ), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.
Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.
Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.
В NOR архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND архитектуры.
В основе NAND типа лежит И-НЕ элемент (англ. NAND ). Принцип работы такой же, от NOR типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND чипа может быть существенно меньше. Так же запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.
NAND и NOR архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.
История
NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.
На конец 2008 года, лидерами по производству флеш-памяти являются Samsung (31% рынка) и Toshiba (19% рынка, включая совместные заводы с Sandisk). (Данные согласно iSupply на Q4'2008). Стандартизацией чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0 [2] , выпущенная 28 декабря 2006 года. Группа ONFI поддерживается конкурентами Samsung и Toshiba в производстве NAND чипов: Hynix и Micron Technology. [3]
Характеристики
Скорость некоторых устройств с флеш-памятью может доходить до 100 Мб/с [4] . В основном флеш-карты имеют большой разброс скоростей и обычно маркируются в скоростях стандартного CD-привода (150 КБ/с). Так указанная скорость в 100x означает 100 × 150 КБ/с = 15 000 КБ/с= 14.65 МБ/с.
В основном объём чипа флеш-памяти измеряется от килобайт до нескольких гигабайт.
В 2005 году SanDisk представили NAND чипы объёмом 1 ГБ [5] , выполненные по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.
Компания Samsung в сентябре 2006 года представила 8 ГБ чип, выполненный по 40-нм технологическому процессу [6] . В конце 2007 года Samsung сообщила о создании первого в мире MLC (multi-level cell) чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу. Ёмкость чипа также составляет 8 ГБ. Ожидается, что в массовое производство чипы памяти поступят в 2009 году.
Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. К 2007 году USB устройства и карты памяти имели объём от 512 МБ до 64 ГБ. Самый большой объём USB устройств составлял 4 ТБ.
Файловые системы
Основное слабое место флеш-памяти — количество циклов перезаписи. Ситуация ухудшается также в связи с тем, что ОС часто записывает данные в одно и то же место. Например, часто обновляется таблица файловой системы, так что первые сектора памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволяет существенно продлить срок работы памяти.
Для решения этой проблемы были созданы специальные файловые системы: JFFS2 [7] и YAFFS [8] для GNU/Linux и Microsoft Windows.
SecureDigital и FAT.
Применение
Флеш-память наиболее известна применением в USB флеш-носителях (англ. USB flash drive ). В основном применяется NAND тип памяти, которая подключается через USB по интерфейсу USB mass storage device (USB MSC). Данный интерфейс поддерживается всеми ОС современных версий.
Благодаря большой скорости, объёму и компактным размерам USB флеш-носители полностью вытеснили с рынка дискеты. Например, компания 2003 года перестала выпускать компьютеры с дисководом гибких дисков [9] .
В данный момент выпускается широкий ассортимент USB флеш-носителей, разных форм и цветов. На рынке присутствуют флешки с автоматическим шифрованием записываемых на них данных. Японская компания Solid Alliance даже выпускает флешки в виде еды [10] .
Есть специальные дистрибутивы GNU/Linux и версии программ, которые могут работать прямо с USB носителей, например, чтобы пользоваться своими приложениями в интернет-кафе.
Технология Windows Vista способна использовать USB-флеш носитель или специальную флеш-память, встроенную в компьютер, для увеличения быстродействия [11] . На флеш-памяти также основываются карты памяти, такие как SecureDigital (SD) и Memory Stick, которые активно применяются в портативной технике (фотоаппараты, мобильные телефоны). Вкупе с USB носителями флеш-память занимает большую часть рынка переносных носителей данных.
NOR тип памяти чаще применяется в BIOS и ROM-памяти устройств, таких как DSL модемы, маршрутизаторы и т. д. Флеш-память позволяет легко обновлять прошивку устройств, при этом скорость записи и объём для таких устройств не так важны.
Типы карт памяти
Существуют несколько типов карт памяти, используемых в портативных устройствах:
MMC (MultiMedia Card): карточка в формате MMC имеет небольшой размер — 24×32×1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.
RS-MMC (Reduced Size MultiMedia Card): карта памяти, которая вдвое короче стандартной карты MMC. Её размеры составляют 24×18×1,4 мм, а вес — около 6 г, все остальные характеристики не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер. DV-RS-MMC (Dual Voltage Reduced Size MultiMedia Card): карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24×18×1,4 мм. MMCmicro: миниатюрная карта памяти для мобильных устройств с размерами 14×12×1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать переходник.
SD Card (Secure Digital Card): поддерживается фирмами Panasonic и SD (Trans-Flash) и SDHC (High Capacity): Старые карты SD так называемые Trans-Flash и новые SDHC (High Capacity) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 2 ГБ для Trans-Flash и 32 ГБ для High Capacity (Высокой Ёмкости). Устройства чтения SDHC обратно совместимы с SDTF, то есть SDTF карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SDTF увидится только 2 ГБ от ёмкости SDHC большей ёмкости, либо не будет читаться вовсе. Предполагается, что формат TransFlash будет полностью вытеснен форматом SDHC. Оба суб-формата могут быть представлены в любом из трёх форматов физ. размеров (Стандартный, mini и micro). miniSD (Mini Secure Digital Card): От стандартных карт Secure Digital отличаются меньшими размерами 21,5×20×1,4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер. microSD (Micro Secure Digital Card): являются на настоящий момент (2008) самыми компактными съёмными устройствами флеш-памяти (11×15×1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах, и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD.
MS Duo (Memory Stick Duo): данный стандарт памяти разрабатывался и поддерживается компанией MS Duo (Memory Stick Duo): Данный формат является конкурентом формата microSD (по аналогичному размеру), сохраняя преимущества карт памяти Sony.
xD-Picture Card: используются в цифровых фотоаппаратах фирм Fuji и некоторых других.
Читайте также: