Как сделать шаблон по геометрии 9 класс
Вертикальные углы равны (на рис. 1 и 3; 6 и 8 и др.).
Внутренние накрест лежащие углы при параллельных прямых и секущей равны. (на рис. 4 и 6; 1 и 7).
Сумма внутренних односторонних углов при параллельных прямых и секущей равна 180˚ (на рис. 4 и 7; 1 и 6).
Соответственные углы при параллельных прямых и секущей равны. (на рис. 3 и 7; 1 и 5 и др.).
Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая перпендикулярна третьей прямой.
2. Медиана, биссектриса, высота
Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.
Высота треугольника – перпендикуляр опущенный из вершины угла на противоположную сторону.
Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
В любом треугольники все биссектрисы пересекаются в одной точке, все медианы пересекаются в одной точке, все медианы пересекаются в одной точке.
3. Треугольник
Сумма углов в любом треугольнике 180˚.
Средняя линия треугольника – прямая проходящая через середины двух сторон. Средняя линия параллельна одной из сторон и равна половине этой стороны.
Виды треугольников: тупоугольный (один угол тупой), прямоугольный (один угол прямой 90˚), остроугольный (все углы острые, меньше 90˚).
Равнобедренный треугольник — треугольник, у которого равны две стороны.
Свойства равнобедренного треугольника:
- в равнобедренном треугольнике углы при основании равны;
- в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой;
Равносторонний треугольник — треугольник, у которого все стороны равны. (все углы по 60 градусов)
Всякий равносторонний треугольник является равнобедренным, но не всякий равнобедренный — равносторонним.
Три признака равенства треугольников
I признак по двум сторонам и углу между ними
II признак (по стороне и прилежащим углам)
III признак (по трем сторонам)
Признаки подобия треугольников
I признак по двум равным углам
II признак по двум пропорциональным сторонам и углу между ними
III признак по трем пропорциональным сторонам
Площади подобных фигур относятся как коэффициент подобия в квадрате.
Объемы подобных фигур относятся как коэффициент подобия в кубе.
Треугольник называется прямоугольным, если один из его углов прямой.
Стороны, прилежащие к прямому углу называются катетами, а сторона, лежащая против прямого угла, – гипотенузой. (самая большая сторона это гипотенуза, две др катеты).
Свойства прямоугольного треугольника
Сумма острых углов прямоугольного треугольника равна 90 градусов.
Катет, лежащий против угла в 30˚, равен половине гипотенузы.
Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы.
Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, является радиусом описанной около этого треугольника окружности.
Теорема Пифагора:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: a² + b² = c².
Пифагоровы тройки:
- 3, 4, 5
- 6, 8, 10
- 5, 12, 13
- 9, 12, 15
Признаки равенства прямоугольных треугольников
- По двум катетам.
- По гипотенузе и катету.
- По катету и прилежащему острому углу.
- По катету и противолежащему острому углу.
- По гипотенузе и острому углу.
Признаки подобия прямоугольных треугольников:
- По острому углу.
- По пропорциональности двух катетов.
- По пропорциональности катета и гипотенузы.
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
Высота, проведенная из вершины прямого угла, разбивает прямоугольный треугольник на два подобных треугольника. Каждый из этих треугольников подобен исходному.
Высота прямоугольного треугольника: h=ab/c или h = (где АВ гипотенуза, СЕ высота опущенная на гипотенузу).
В прямоугольном треугольнике медиана, проведённая из вершины прямого угла, равна половине гипотенузы: m=c/2 (R=с/2=mc).
3. Четырехугольники
Сумма углов в любом четырехугольнике 360˚.
Параллелограмм
Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны.
У параллелограмма противолежащие стороны равны и противолежащие углы равны.
Сумма любых двух соседних углов параллелограмма равна 180°.
Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
Каждая диагональ делит параллелограмм на два равных треугольника.
Две диагонали параллелограмма делят его на четыре равновеликих треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
Ромбом называется параллелограмм, у которого все стороны равны.
Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.
Прямоугольник
Прямоугольником называется параллелограмм, у которого все углы прямые.
Диагонали прямоугольника равны и точкой пересечения делятся на четыре равных отрезка.
Квадрат.
Квадрат – это прямоугольник, у которого все стороны равны.
Диагонали квадрата равны и перпендикулярны.
Сторона и диагональ квадрата связаны соотношениями: .
Трапеция
Трапецией называется четырёхугольник у которого только две противолежащие стороны параллельны.
Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.
Средняя линия трапеции параллельна её основаниям и равна их полусумме.
Равнобокой называется трапеция, у которой боковые стороны равны.
У равнобокой трапеции: диагонали равны; углы при основании равны; сумма противолежащих углов равна 180.
Стороны и диагональ равнобокой трапеции связаны соотношением: d² = ab+c².
Трапеция называется прямоугольной, если одна из её боковых сторон перпендикулярна основаниям.
4. Окружность
Отрезок, соединяющий центр окружности с любой точкой окружности называется радиусом (r) окружности.
Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, называется диаметром окружности.
Прямая, имеющая с окружностью одну общую точку, называется касательной. Касательная и радиус проведенный в точку касания пересекаются под прямым углом.
Прямая, имеющая с окружностью две общие точки, называется секущей.
Центральный угол окружности – это угол, вершина которого лежит в центре окружности. Центральный угол равен дуге на которую он опирается.
Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают ее. Вписанный угол равен половине дуги на которую опирается.
Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.
Периоды развития геометрии
I период — зарождение геометрии как математической науки, начало которого теряется в глубине столетий, а концом считают V в. до н.э. Этот период характеризуется накоплением фактов и установлением первых зависимостей между геометрическими фигурами. Начался он в Древнем Египте и Вавилоне, в VII в. до н.э. Эти знания были перенесены в Грецию, где постепенно они начали оформляться в четкую систему.
III период — (XVII в. — 1826 г.). На этом этапе геометрия как наука рассматривает более общие фигуры и применяет совершенно новые методы. В этот период возникают: аналитическая геoметрия, дифференциальная геомeтрия, проективная геoметрия, начертательная гeометрия.
IV период — (1826 год) начинается с открытия Н. И. Лобачевским неэвклидовой геометрии, которая включает в себя геометрию Эвклида. В направлениях, начертанных выдающимися математиками, развивается современная геомeтрия. Одним из важных разделов современной геометрии является топология.
Источники идей и цитат для конспектов по Геометрии:
- Гeомeтрия 7-9 класс: опорные конспекты / А.А. Мещерякова — Минск: Аверсэв,
- Геомeтрия в схемах, терминах и таблицах — Феникс,
- Геомeтрия 7-9 класс. Учебник / А.Г.Мерзляк, В.Б.Полонский, М.С.Якир — М.: Вентана-Граф,
- Геомeтрия. Справочник в таблицах — М.: Айрис-Пресс
- Геометрия 7-9 класс. Учебник /
(с) Цитаты из вышеуказанных учебных пособий использованы на сайте в незначительных объемах, исключительно в учебных и информационных целях (пп. 1 п. 1 ст. 1274 ГК РФ).
Предлагаю небольшую серию презентаций, которые содержат практический материал к урокам геометрии в 9 классе. В данной презентации представлено 13 задач по темам "Стороны и углы правильного многоугольник", "Вписанный в окружность многоугольник", "Многоугольник описанный около окружности". Перед показом презентации необходимо её пролистать в режиме редактирования, т.к.в заметках к слайдам описана техническая составляющая каждого слайда и алгоритм работы на слайде. Каждый учитель может подобрать конкретный материал к уроку, согласно уровню класса.
Целевая аудитория: для 9 класса
Физкультминутки обеспечивают кратковременный отдых детей на уроке, а также способствуют переключению внимания с одного вида деятельности на другой.
Диплом и справка о публикации каждому участнику!
© 2007 - 2021 Сообщество учителей-предметников "Учительский портал"
Свидетельство о регистрации СМИ: Эл № ФС77-64383 выдано 31.12.2015 г. Роскомнадзором.
Территория распространения: Российская Федерация, зарубежные страны.
Учредитель: Никитенко Евгений Игоревич
Сайт является информационным посредником и предоставляет возможность пользователям размещать свои материалы на его страницах.
Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях.
Публикуя материалы на сайте, пользователи берут на себя всю ответственность за содержание материалов и разрешение любых спорных вопросов с третьими лицами.
Администрация сайта готова оказать поддержку в решении любых вопросов, связанных с работой и содержанием сайта.
Если вы обнаружили, что на сайте незаконно используются материалы, сообщите администратору через форму обратной связи — материалы будут удалены.
Использование материалов сайта возможно только с разрешения администрации портала.
Фотографии предоставлены
Алгебра - это больше, чем наука, это способ разговаривать о науке
Ни искусство, ни мудрость не могут быть достигнуты, если им не учиться
Предлагаем интерактивные разработки уроков по темам учебника геометрии
В.Ф. Бутузова для 9 класса.
Читайте также: