Как сделать функцию распределения случайной величины
Введем базовые понятия статистики, без которых невозможно объяснить более сложные понятия.
Генеральная совокупность и случайная величина
Пусть у нас имеется генеральная совокупность (population) из N объектов, каждому из которых присуще определенное значение некоторой числовой характеристики Х.
Примером генеральной совокупности (ГС) может служить совокупность весов однотипных деталей, которые производятся станком.
Поскольку в математической статистике, любой вывод делается только на основании характеристики Х (абстрагируясь от самих объектов), то с этой точки зрения генеральная совокупность представляет собой N чисел, среди которых, в общем случае, могут быть и одинаковые.
В нашем примере, ГС - это просто числовой массив значений весов деталей. Х – вес одной из деталей.
Если из заданной ГС мы выбираем случайным образом один объект, имеющей характеристику Х, то величина Х является случайной величиной . По определению, любая случайная величина имеет функцию распределения , которая обычно обозначается F(x).
Функция распределения
Функцией распределения вероятностей случайной величины Х называют функцию F(x), значение которой в точке х равно вероятности события X файл примера ):
В справке MS EXCEL Функцию распределения называют Интегральной функцией распределения ( Cumulative Distribution Function , CDF ).
Приведем некоторые свойства Функции распределения:
- Функция распределения F(x) изменяется в интервале [0;1], т.к. ее значения равны вероятностям соответствующих событий (по определению вероятность может быть в пределах от 0 до 1);
- Функция распределения – неубывающая функция;
- Вероятность того, что случайная величина приняла значение из некоторого диапазона [x1;x2): P(x 1 =0. Следовательно, плотность вероятности для непрерывной величины может быть, в отличие от Функции распределения, больше 1. Например, для непрерывной равномерной величины , распределенной на интервале [0; 0,5] плотность вероятности равна 1/(0,5-0)=2. А для экспоненциального распределения с параметром лямбда =5, значение плотности вероятности в точке х=0,05 равно 3,894. Но, при этом можно убедиться, что вероятность на любом интервале будет, как обычно, от 0 до 1.
Примечание : Площадь, целиком заключенная под всей кривой, изображающей плотность распределения , равна 1.
Примечание : Напомним, что функцию распределения F(x) называют в функциях MS EXCEL интегральной функцией распределения . Этот термин присутствует в параметрах функций, например в НОРМ.РАСП (x; среднее; стандартное_откл; интегральная ). Если функция MS EXCEL должна вернуть Функцию распределения, то параметр интегральная , д.б. установлен ИСТИНА. Если требуется вычислить плотность вероятности , то параметр интегральная , д.б. ЛОЖЬ.
Примечание : Для дискретного распределения вероятность случайной величине принять некое значение также часто называется плотностью вероятности (англ. probability mass function (pmf)). В справке MS EXCEL плотность вероятности может называть даже "функция вероятностной меры" (см. функцию БИНОМ.РАСП() ).
Вычисление плотности вероятности с использованием функций MS EXCEL
Понятно, что чтобы вычислить плотность вероятности для определенного значения случайной величины, нужно знать ее распределение.
Найдем плотность вероятности для стандартного нормального распределения N(0;1) при x=2. Для этого необходимо записать формулу =НОРМ.СТ.РАСП(2;ЛОЖЬ) =0,054 или =НОРМ.РАСП(2;0;1;ЛОЖЬ) .
Напомним, что вероятность того, что непрерывная случайная величина примет конкретное значение x равна 0. Для непрерывной случайной величины Х можно вычислить только вероятность события, что Х примет значение, заключенное в интервале (а; b).
Вычисление вероятностей с использованием функций MS EXCEL
1) Найдем вероятность, что случайная величина, распределенная по стандартному нормальному распределению (см. картинку выше), приняла положительное значение. Согласно свойству Функции распределения вероятность равна F(+∞)-F(0)=1-0,5=0,5.
В MS EXCEL для нахождения этой вероятности используйте формулу =НОРМ.СТ.РАСП(9,999E+307;ИСТИНА) -НОРМ.СТ.РАСП(0;ИСТИНА) =1-0,5. Вместо +∞ в формулу введено значение 9,999E+307= 9,999*10^307, которое является максимальным числом, которое можно ввести в ячейку MS EXCEL (так сказать, наиболее близкое к +∞).
2) Найдем вероятность, что случайная величина, распределенная по стандартному нормальному распределению , приняла отрицательное значение. Согласно определения Функции распределения, вероятность равна F(0)=0,5.
В MS EXCEL для нахождения этой вероятности используйте формулу =НОРМ.СТ.РАСП(0;ИСТИНА) =0,5.
3) Найдем вероятность того, что случайная величина, распределенная по стандартному нормальному распределению , примет значение, заключенное в интервале (0; 1). Вероятность равна F(1)-F(0), т.е. из вероятности выбрать Х из интервала (-∞;1) нужно вычесть вероятность выбрать Х из интервала (-∞;0). В MS EXCEL используйте формулу =НОРМ.СТ.РАСП(1;ИСТИНА) - НОРМ.СТ.РАСП(0;ИСТИНА) .
Все расчеты, приведенные выше, относятся к случайной величине, распределенной по стандартному нормальному закону N(0;1). Понятно, что значения вероятностей зависят от конкретного распределения. В статье Распределения случайной величины в MS EXCEL приведены распределения, для которых в MS EXCEL имеются соответствующие функции, позволяющие вычислить вероятности.
Обратная функция распределения (Inverse Distribution Function)
Вспомним задачу из предыдущего раздела: Найдем вероятность, что случайная величина, распределенная по стандартному нормальному распределению, приняла отрицательное значение.
Вероятность этого события равна 0,5.
Теперь решим обратную задачу: определим х, для которого вероятность, того что случайная величина Х примет значение =НОРМ.СТ.ОБР(0,5) =0.
Однозначно вычислить значение случайной величины позволяет свойство монотонности функции распределения.
Обратите внимание, что для вычисления обратной функции мы использовали именно функцию распределения , а не плотность распределения . Поэтому, в аргументах функции НОРМ.СТ.ОБР() отсутствует параметр интегральная , который подразумевается. Подробнее про функцию НОРМ.СТ.ОБР() см. статью про нормальное распределение .
В англоязычной литературе обратная функция распределения часто называется как Percent Point Function (PPF).
Примечание : При вычислении квантилей в MS EXCEL используются функции: НОРМ.СТ.ОБР() , ЛОГНОРМ.ОБР() , ХИ2.ОБР(), ГАММА.ОБР() и т.д. Подробнее о распределениях, представленных в MS EXCEL, можно прочитать в статье Распределения случайной величины в MS EXCEL .
В данном разделе вы найдете формулы по теории вероятностей в онлайн-варианте (в формате для скачивания - см. на странице Таблицы и формулы по теории вероятностей).
Каталог формул по теории вероятности онлайн
Случайные величины. Способы задания
Ряд распределения дискретной случайной величины
$$ \begin <|c|c|>\hline X_i & x_1 & x_2 & \dots & x_n \\ \hline p_i & p_1 & p_2 & \dots & p_n \\ \hline \end $$
Сумма вероятностей всегда равна 1 (условие нормировки):
Функция распределения (интегральная функция распределения)
Функция распределения случайной величины $X$ определяется по формуле $F(x)=P(X\lt x)$. Это неубывающая функция, принимающая значения от 0 до 1. Если задана плотность распределения $f(x)$, то функция распределения выражается как интеграл от плотности:
Плотность распределения (дифференциальная функция распределения)
Плотность распределения случайной величины $X$ определяется по формуле $f(x)=F'(x)$. Существует только для непрерывной случайной величины. Для нее выполняется условие нормировки (площадь под кривой вероятности равна 1):
Вероятность попадания случайной величины в заданный интервал
Может быть вычислена двумя способами:
1) через функцию распределения
$$P(\alpha \lt X \lt \beta) = F(\beta)-F(\alpha).$$
2) через плотность распределения
Случайные величины. Числовые характеристики
Математическое ожидание случайной величины
1) Для дискретной случайной величины $X$, заданной рядом распределения:
$$M(X) = \sum_^ x_i \cdot p_i.$$
2) Для непрерывной случайной величины $X$, заданной плотностью распределения:
Дисперсия случайной величины
По определению дисперсия – это второй центральный момент:
$$ D(X) =M\left[ \left(X-M(X)\right)^2 \right] =M(X^2)-\left(M(X)\right)^2.$$
1) Для дискретной случайной величины $X$:
$$ D(X)= \sum_^ x_i^2 \cdot p_i - \left(M(X)\right)^2.$$
2) Для непрерывной случайной величины $X$:
Среднее квадратическое отклонение случайной величины
Коэффициент вариации случайной величины
Начальный момент r–го порядка случайной величины
определяется по формуле:
В частности, первый начальный момент – это математическое ожидание: $\nu_1=M(X^1)=M(X).$
Центральный момент r – го порядка случайной величины
определяется по формуле:
$$\mu_r = M\left[ \left(X-M(X)\right)^r \right]$$
В частности, второй центральный момент – это дисперсия:
$$\mu_2 = M\left[ \left(X-M(X)\right)^2 \right] = D(X).$$
Асимметрия
Коэффициент асимметрии положителен, если правый хвост распределения длиннее левого (правая часть кривой более пологая), и отрицателен в противном случае. Если распределение симметрично относительно математического ожидания, то его коэффициент асимметрии равен нулю.
Эксцесс
Коэффициент эксцесса нормального распределения равен нулю. Он положителен, если пик распределения около математического ожидания острый, и отрицателен, если пик гладкий.
Определение дискретной случайной величины и ряд её распределения
Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и в свою очередь, случайная величина называется дискретной, если множество её значений конечно или счётно.
Кроме дискретных случайных величин существуют также непрерывные случайные величины.
Рассмотрим более подробно понятие случайной величины. На практике часто встречаются величины, которые могут принимать некоторые значения, но нельзя достоверно предсказать, какое именно значение каждая из них примет в рассматриваемом опыте, явлении, наблюдении. Например, число мальчиков, которые родятся в Москве в ближайший день, может быть различным. Оно может быть равным нулю (не родится ни одного мальчика: родятся все девочки или вообще не будет новорождённых), одному, двум и так далее до некоторого конечного числа n. К подобным величинам относятся: масса корнеплода сахарной свеклы на участке, дальность полёта артиллерийского снаряда, количество бракованных деталей в партии и так далее. Такие величины будем называть случайными. Они характеризуют все возможные результаты опыта или наблюдения с количественной стороны.
Примерами дискретных случайных величин с конечным числом значений могут служить число родившихся детей в течение дня в населённом пункте, число пассажиров автобуса, число пассажиров, перевезённых московским метро за сутки и т. п.
Число значений дискретной случайной величины может быть и бесконечным, но счётным множеством. Но в любом случае их можно в каком-то порядке пронумеровать, или, более точно - установить взаимно-однозначное соответствие между значениями случайной величины и натуральными числами 1, 2, 3, . n.
Внимание: новое, очень важное понятие теории вероятностей - закон распределения. Пусть дискретная случайная величина X может принимать n значений: . Будем считать, что они все различны (в противном случае одинаковые должны быть объединены) и расположены в возрастающем порядке. Для полной характеристики дискретной случайной величины должны быть заданы не только все её значения, но и верояности , с которыми случайная величина принимает каждое из значений, т. е. .
Законом распределения дискретной случайной величины называется любое правило (функция, таблица) p(x), позволяющее находить вероятности всевозможных событий, связанных со случайной величиной (например, вероятность того, что она пример какое-то значение или попадёт в какой-то интервал).
Наиболее просто и удобно закон распределения дискретной случайной величины задавать в виде следующей таблицы:
Значение | . |
Вероятность | . |
Такая таблица называется рядом распределения дискретной случайной величины. В верхней строке ряда распределения перечислены в порядке возрастания все возможные значения дискретной случайной величины (иксы), а в нижней - вероятности этих значений (p).
События являются несовместимыми и единственно возможными: они образуют полную систему событий. Поэтому сумма их вероятностей равна единице:
Пример 1. В студенческой группе организована лотерея. Разыгрывается две вещи стоимостью по 1000 руб. и одна стоимостью по 3000 руб. Составить закон распределения суммы чистого выигрыша для студента, который приобрёл один билет за 100 руб. Всего продано 50 билетов.
Решение. Интересующая нас случайная величина X может принимать три значения: - 100 руб. (если студент не выиграет, а фактически проиграет 100 руб., уплаченные им за билет), 900 руб. и 2900 руб. (фактический выигрыш уменьшается на 100 руб. - на стоимость билета). Первому результату благоприятствуют 47 случаев из 50, второму - 2, а третьему - один. Поэтому их вероятности таковы: P(X=-100)=47/50=0,94 , P(X=900)=2/50=0,04 , P(X=2900)=1/50=0,02 .
Закон распределения дискретной случайной величины X имеет вид
Сумма выигрыша | -100 | 900 | 2900 |
Вероятность | 0,94 | 0,04 | 0,02 |
Функция распределения дискретной случайной величины: построение
Ряд распределения может быть построен только для дискретной случайной величины (для недискретной он не может быть построен хотя бы потому, что множество возможных значений такой случайной величины несчётно, их нельзя перечислить в верхней строке таблицы).
Наиболее общей формой закона распределения, пригодной для всех случайных величин (как дискретных, так и недискретных), является функция распределения.
Функцией распределения дискретной случайной величины или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х.
Функция распределения любой дискретной случайной величины есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины, и равны вероятностям этих значений.
Пример 2. Дискретная случайная величина X - число очков, выпавших при бросании игральной кости. Постоить её функцию распределения.
Решение. Ряд распределения дискретной случайной величины X имеет вид:
Значение | 1 | 2 | 3 | 4 | 5 | 6 |
Вероятность | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |
Функция распределения F(x) имеет 6 скачков, равных по величине 1/6 (на рисунке внизу).
Пример 3. В урне 6 белых шаров и 4 чёрных шара. Из урны вынимают 3 шара. Число белых шаров среди вынутых шаров - дискретная случайная величина X . Составить соответствующий ей закон распределения.
Решение. Дискретная случайная величина X может принимать значения 0, 1, 2, 3. Соответствующие им вероятности проще всего вычислисть по правилу умножения вероятностей. Получаем следующий закон распределения дискретной случайной величины:
Значение | 0 | 1 | 2 | 3 |
Вероятность | 1/30 | 3/10 | 1/2 | 1/6 |
Пример 4. Составить закон распределения дискретной случайной величины - числа попаданий в цель при четырёх выстрелах, если вероятность попадания при одном выстреле равна 0,1.
Решение. Дискретная случайная величина X может принимать пять различных значений: 1, 2, 3, 4, 5. Соответствующие им вероятности найдём по формуле Бернулли . При
Следовательно, закон распределения дискретной случайной величины X имеет вид
Число попаданий | 0 | 1 | 2 | 3 | 4 |
Вероятность | 0,6561 | 0,2916 | 0,0486 | 0,0036 | 0,0001 |
Если вероятности значений дискретной случайной величины можно определить по формуле Бернулли, то случайная величина имеет биномиальное распределение.
Если число испытаний достаточно велико, то вероятность того, что в этих испытаниях интересующее событие наступит именно m раз, подчиняется закону распределения Пуассона.
Функция распределения дискретной случайной величины: вычисление
Чтобы вычислить функцию распределения дискретной случайной величины F(х), требуется сложить вероятности всех тех значений, которые меньше или равны граничному значению х.
Пример 5. В таблице данные о зависимости числа расторгнутых в течение года браков от длительности брака. Найти вероятность того, что очередной расторгнутый брак имел длительность менее или равную 5 годам.
Длительность брака (лет) | Число | Вероятность | F(x) |
0 | 10 | 0,002 | 0,002 |
1 | 80 | 0,013 | 0,015 |
2 | 177 | 0,029 | 0,044 |
3 | 209 | 0,035 | 0,079 |
4 | 307 | 0,051 | 0,130 |
5 | 335 | 0,056 | 0,186 |
6 | 358 | 0,060 | 0,246 |
7 | 413 | 0,069 | 0,314 |
8 | 432 | 0,072 | 0,386 |
9 | 402 | 0,067 | 0,453 |
10 и более | 3287 | 0,547 | 1,000 |
Всего | 6010 | 1 |
Решение. Вероятности вычислены путём деления числа соответствующих расторгнутых браков на общее число 6010. Вероятность того, что очередной расторгнутый брак был длительностью в 5 лет, равна 0,056. Вероятность, что длительность очередного расторгнутого брака меньше или равна 5 годам, равна 0,186. Мы получили её, прибавив к значению F(x) для браков с длительностью по 4 года включительно вероятность для браков с длительностью в 5 лет.
Связь закона распределения дискретной случайной величины с математическим ожиданием и дисперсией
Часто не все значения дискретной случайной величины известны, но известны некоторые значения или вероятности из ряда, а также математическое ожидание и (или) дисперсия случайной величины, которым посвящён отдельный урок.
Приведём здесь некоторые формулы из этого урока, которые могут выручить при составлении закона распределения дискретной случайной величины и разберём примеры решения таких задач.
Математическое ожидание дискретной случайной величины - сумма произведений всех возможных её значений на вероятности этих значений:
Формула дсперсии дискретной случайной величины по определению:
Часто для вычислений более удобна следующая формула дисперсии:
Пример 6. Дискретная случайная величина X может принимать только два значения. Меньшее значение она принимает с вероятностью p = 0,6 . Найти закон распределения дискретной случайной величины X , если известно, что её математическое ожидание и дисперсия .
Решение. Вероятность того, что случайная величина примет бОльшее значение x 2 , равна 1 − 0,6 = 4 . Используя формулу (1) математического ожидания, составим уравнение, в котором неизвестные - значения нашей дискретной случайной величины:
Используя формулу (2) дисперсии, составим другое уравнение, в котором неизвестные - также значения дискретной случайной величины:
Систему из двух полученных уравнений
решаем методом подстановки. Из первого уравнения получаем
Подставив это выражение во второе уравнение, после несложных преобразований получим квадратное уравнение
которое имеет два корня: 7/5 и −1 . Первый корень не отвечает условиям задачи, так как x 2 1 . Таким образом, значения, которые может принимать дискретная случайная величина X по условиям нашего примера, равны x 1 = −1 и x 2 = 2 .
Закон распределения дискретной случайной величины X можем представить в виде следующей таблицы:
Значение | −1 | 2 |
Вероятность | 0,6 | 0,4 |
Пример 7. Дискретная случайная величина X может принимать только два значения. Большее значение 3 она принимает с вероятностью p = 0,4 . Кроме того, известна дисперсия дискретной случайной величины: D(X) = 6 Найти закон распределения дискретной случайной величины X .
Решение. В этом примере вероятности равны p 1 = 0,6 и p 2 = 0,4 . Математическое ожидание обозначим μ . Из формул математического ожидания и дисперсии (1) и (2) получим систему уравнений
Возводя первое уравнение в квадрат и приравнивая к μ² выражения из обоих уравнений, получим квадратное уравнение
Корни этого уравнения 8 и −2 . По условию задачи в качестве значения дискретной случайной величины годится только корень −2 .
Получаем закон распределения дискретной случайной величины X :
Значение | −2 | 3 |
Вероятность | 0,6 | 0,4 |
Пример 8. Дискретная случайная величина X может принимать только два значения: 1 и 6. Известна дисперсия дискретной случайной величины: D(X) = 6 Найти закон распределения дискретной случайной величины X .
Решение. Математическое ожидание обозначим μ . Получим закон распределения дискретной случайной величины, в котором пока неизвестны вероятности:
Значение | 1 | 6 |
Вероятность | p | 1−p |
Из формул математического ожидания и дисперсии (1) и (2) получим систему уравнений
Возводя первое уравнение в квадрат и приравнивая к μ² выражения из обоих уравнений, получим квадратное уравнение
имеющее корни 0,4 и 0,6 .
Таким образом, возможны два закона распределения дискретной случайной величины X :
Значение | 1 | 6 |
Вероятность | 0,4 | 0,6 |
Значение | 1 | 6 |
Вероятность | 0,6 | 0,4 |
Чтобы задание было сформулировано более полно, необходимо указать какое-либо дополнительное условие, например, что меньшему значению дискретной случайной величины соответствует меньшее, или, наоборот, большее значение вероятности.
При бросании игральной кости могут появиться числа 1, 2, 3, 4, 5 и 6. Заранее определить возможные исходы невозможно, так как они зависят от многих случайных причин, которые не могут быть полностью учтены. В данном примере выпавшее число очков есть величина случайная, а числа 1, 2, 3, 4, 5 и 6 есть возможные значения этой величины.
Случайная величина - величина, которая в результате опыта со случайным исходом принимает то или иное числовое значение, причем заранее неизвестно, какое именно. Случайные величины (кратко: СВ) обозначают большими латинскими буквами , а принимаемые ими значения — малыми буквами
Из приведенного выше примера, видно, что случайная величина Х может принять одно из следующих возможных значений: 1, 2, 3, 4, 5, 6. Эти значения отделены одно от другого промежутками, в которых нет возможных значений Х. Таким образом, в этом примере СВ принимает отдельные, изолированные возможные значения.
Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.
Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями; его можно задать таблично, аналитически (в виде формулы) и графически.
Закон распределения ДСВ Х удобно задавать с помощью следующей таблицы
.
Графически ряд распределения изображают в виде многоугольника (или полигона) распределения.
1.1. В ящике 2 нестандартные и 4 стандартные детали. Из него последовательно вынимают детали до первого появления стандартной детали. Построить ряд и многоугольник распределения ДСВ — числа извлеченных деталей.
Решение.
Рассмотрим все возможные значения, которые может принимать случайна величина (СЛ) :
- первой вынули стандартную деталь;
— первая вынутая деталь нестандартная, вторая стандартная;
— первая деталь нестандартная, вторая деталь нестандартная, третья деталь стандартная.
Соответствующие им вероятности найдем воспользовавшись правилом умножения вероятностей (заметьте, что события зависимы):
Тогда закон распределения дискретной случайной величины Х примет вид:
1 | 2 | 3 | |
Построим многоугольник распределения, отложив на оси абсцисс (ОХ) значения ДСВ Х, а на оси ординат (ОY) соответствующие им вероятности:
1.2. В партии, содержащей 20 изделий, имеется четыре изделия с дефектами. Наудачу отобрали три изделия для проверки их качества. Построить ряд распределения числа дефектных изделий, содержащихся в указанной выборке.
Решение.
— число дефектных изделий, содержащихся в выборке.
Рассмотрим все возможные значения, которые может принимать случайна величина (СЛ) :
— ни одно изделие выборки не является дефектным, т.е. все изделия удовлетворяют стандарту;
— выборка содержит одно изделие с дефектом и два стандартных изделия;
— выборка содержит два изделия с дефектом и одно стандартное изделие;
— выборка содержит три изделия с дефектом;
Найдем соответствующие им вероятности :
Тогда закон распределения дискретной случайной величины Х примет вид:
0 | 1 | 2 | 3 | |
1.3. Три стрелка, ведущие огонь по цели, сделали по одному выстрелу. Вероятности их попадания в цель соответственно равны 0,5; 0,6; 0,8. Построить ряд и многоугольник распределения СВ X — числа попаданий в цель.
Решение.
Пусть вероятности попадания для 1-го, 2-го и 3-го стрелков соответственно равны , тогда вероятности их промахов равны . Из предыдущих занятий должны помнить как связаны противоположные события: .
Рассмотрим все значения, которые может принять ДСВ Х - числа попаданий в цель.
- ни один из стрелков не попал в цель;
- один из стрелков попал в цель;
- двое стрелков поразили цель;
- три стрелка поразили цель.
Найдем соответствующие им вероятности :
Запись вида означает, что 1-й стрелок попал, два других промахнулись, аналогичные рассуждения применимы к другим слагаемым.
— (двое из трех поразили цель);
— (три стрелка поразили цель).
0 | 1 | 2 | 3 | |
0,04 | 0,26 | 0,46 | 0,24 |
Функция распределения
Функцией распределения называют функцию , определяющую вероятность того, что случайная величина в результате испытания примет значение, меньшее некоторого фиксированного значения
Свойства функции распределения:
Функция распределения ДСВ имеет вид
где суммирование ведется по всем индексам , для которых
1.4. Задан закон распределения ДСВ Х:
-2 | -1 | 0 | 2 | 3 | |
0,1 | 0,2 | 0,3 | 0,3 | 0,1 |
Найти функцию распределения и построить ее график.
Решение.
По определению функции распределения находим:
если , то , так как значения меньше -2 ДСВ Х не принимает;
если , то
если , то , так как может принять значения -2 или -1
если , то
если , то
если , то
Таким образом, функция распределения имеет вид:
II. Операции над дискретными случайными величинами
Суммой (соответственно, разностью или произведением) ДСВ Х, принимающей значения с вероятностями , \quad i=1,2, . , n" width="248" height="18" />
и ДСВ Y, принимающей значения с вероятностями , \quad j=1,2, . , m" width="253" height="19" />
называется ДСВ, принимающая все значения вида (соответственно, или ) с вероятностями =P\\cdot \\>=P\
Обозначение: (соответственно, или ).
Обозначение: (соответственно, ).
Дискретные СВ Х и Y называются независимыми, если независимы события " width="71" height="18" />
и " width="70" height="19" />
при любых
Случайной величиной называют переменную величину, которая в результате каждого испытания принимает одно заранее неизвестное значение, зависящее от случайных причин. Случайные величины обозначают заглавными латинскими буквами: $X,\ Y,\ Z,\ \dots $ По своему типу случайные величины могут быть дискретными и непрерывными.
Дискретная случайная величина — это такая случайная величина, значения которой могут быть не более чем счетными, то есть либо конечными, либо счетными. Под счетностью имеется ввиду, что значения случайной величины можно занумеровать.
Пример 1. Приведем примеры дискретных случайных величин:
а) число попаданий в мишень при $n$ выстрелах, здесь возможные значения $0,\ 1,\ \dots ,\ n$.
б) число выпавших гербов при подкидывании монеты, здесь возможные значения $0,\ 1,\ \dots ,\ n$.
в) число прибывших кораблей на борт (счетное множество значений).
г) число вызовов, поступающих на АТС (счетное множество значений).
1. Закон распределения вероятностей дискретной случайной величины.
Дискретная случайная величина $X$ может принимать значения $x_1,\dots ,\ x_n$ с вероятностями $p\left(x_1\right),\ \dots ,\ p\left(x_n\right)$. Соответствие между этими значениями и их вероятностями называется законом распределения дискретной случайной величины. Как правило, это соответствие задается с помощью таблицы, в первой строке которой указывают значения $x_1,\dots ,\ x_n$, а во второй строке соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$.
$\begin<|c|c|>
\hline
X_i & x_1 & x_2 & \dots & x_n \\
\hline
p_i & p_1 & p_2 & \dots & p_n \\
\hline
\end$
Пример 2. Пусть случайная величина $X$ — число выпавших очков при подбрасывании игрального кубика. Такая случайная величина $X$ может принимать следующие значения $1,\ 2,\ 3,\ 4,\ 5,\ 6$. Вероятности всех этих значений равны $1/6$. Тогда закон распределения вероятностей случайной величины $X$:
$\begin<|c|c|>
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\
\hline
\end$
Замечание. Поскольку в законе распределения дискретной случайной величины $X$ события $1,\ 2,\ \dots ,\ 6$ образуют полную группу событий, то в сумме вероятности должны быть равны единице, то есть $\sum=1$.
2. Математическое ожидание дискретной случайной величины.
Свойства математического ожидания $M\left(X\right)$:
- $M\left(X\right)$ заключено между наименьшим и наибольшим значениями случайной величины $X$.
- Математическое ожидание от константы равно самой константе, т.е. $M\left(C\right)=C$.
- Постоянный множитель можно выносить за знак математического ожидания: $M\left(CX\right)=CM\left(X\right)$.
- Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: $M\left(X+Y\right)=M\left(X\right)+M\left(Y\right)$.
- Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: $M\left(XY\right)=M\left(X\right)M\left(Y\right)$.
Пример 3. Найдем математическое ожидание случайной величины $X$ из примера $2$.
Можем заметить, что $M\left(X\right)$ заключено между наименьшим ($1$) и наибольшим ($6$) значениями случайной величины $X$.
Пример 4. Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=2$. Найти математическое ожидание случайной величины $3X+5$.
Используя вышеуказанные свойства, получаем $M\left(3X+5\right)=M\left(3X\right)+M\left(5\right)=3M\left(X\right)+5=3\cdot 2+5=11$.
Пример 5. Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=4$. Найти математическое ожидание случайной величины $2X-9$.
Используя вышеуказанные свойства, получаем $M\left(2X-9\right)=M\left(2X\right)-M\left(9\right)=2M\left(X\right)-9=2\cdot 4-9=-1$.
3. Дисперсия дискретной случайной величины.
Возможные значения случайных величин с равными математическими ожиданиями могут по-разному рассеиваться вокруг своих средних значений. Например, в двух студенческих группах средний балл за экзамен по теории вероятностей оказался равным 4, но в одной группе все оказались хорошистами, а в другой группе — только троечники и отличники. Поэтому возникает необходимость в такой числовой характеристике случайной величины, которая бы показывала разброс значений случайной величины вокруг своего математического ожидания. Такой характеристикой является дисперсия.
Дисперсия дискретной случайной величины $X$ равна:
В англоязычной литературе используются обозначения $V\left(X\right),\ Var\left(X\right)$. Очень часто дисперсию $D\left(X\right)$ вычисляют по формуле $D\left(X\right)=\sum^n_-<\left(M\left(X\right)\right)>^2$.
Свойства дисперсии $D\left(X\right)$:
- Дисперсия всегда больше или равна нулю, т.е. $D\left(X\right)\ge 0$.
- Дисперсия от константы равна нулю, т.е. $D\left(C\right)=0$.
- Постоянный множитель можно выносить за знак дисперсии при условии возведения его в квадрат, т.е. $D\left(CX\right)=C^2D\left(X\right)$.
- Дисперсия суммы независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X+Y\right)=D\left(X\right)+D\left(Y\right)$.
- Дисперсия разности независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X-Y\right)=D\left(X\right)+D\left(Y\right)$.
Пример 6. Вычислим дисперсию случайной величины $X$ из примера $2$.
Пример 7. Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=2$. Найти дисперсию случайной величины $4X+1$.
Используя вышеуказанные свойства, находим $D\left(4X+1\right)=D\left(4X\right)+D\left(1\right)=4^2D\left(X\right)+0=16D\left(X\right)=16\cdot 2=32$.
Пример 8. Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=3$. Найти дисперсию случайной величины $3-2X$.
Используя вышеуказанные свойства, находим $D\left(3-2X\right)=D\left(3\right)+D\left(2X\right)=0+2^2D\left(X\right)=4D\left(X\right)=4\cdot 3=12$.
4. Функция распределения дискретной случайной величины.
Способ представления дискретной случайной величины в виде ряда распределения не является единственным, а главное он не является универсальным, поскольку непрерывную случайную величину нельзя задать с помощью ряда распределения. Существует еще один способ представления случайной величины — функция распределения.
Функцией распределения случайной величины $X$ называется функция $F\left(x\right)$, которая определяет вероятность того, что случайная величина $X$ примет значение, меньшее некоторого фиксированного значения $x$, то есть $F\left(x\right)=P\left(X 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)+P\left(X=6\right)=1/6+1/6+1/6+1/6+1/6+1/6=1$.
Читайте также: