Как сделать электромагнитное поле
Группа исследователей из разных стран, в том числе физики из российского МИФИ, предложили новый способ использования лазеров для генерации суперсильных магнитных полей. Эти поля по своей мощности на порядок превосходят те, что мы способны произвести на нашей планете. Они могут стать ключом к использованию чистой энергии ядерного синтеза и моделированию астрофизических процессов в лаборатории.
Сильнее любого магнитного поля на Земле.
Исследователи предложили новый способ использования лазеров для генерации магнитных полей, которые по своей мощности на порядок превосходят те, что мы на сегодняшний день способны произвести на нашей планете.
В природе подобные суперсильные поля существуют только в космическом пространстве, и они могут быть ключом к использованию чистой энергии ядерного синтеза и моделированию астрофизических процессов в лабораторных условиях.
Идея захватывающая, однако до сих пор в качестве доказательств жизнеспособности данной технологии физики использовали лишь теоретические расчеты, и экспериментально она пока не подтверждена, на что имеется уважительная причина: на данный момент мы не располагаем достаточно мощными лазерами, чтобы ее проверить.
Между тем на бумаге замысел работает благодаря так называемому эффекту Фарадея, который является результатом необычного взаимодействия между светом и магнитным полем.
Это довольно сложный процесс. Если говорить в общих чертах, эффект Фарадея связан с тем фактом, что при движении электромагнитной волны — такой, как видимый свет — через немагнитную среду ее плоскость поляризации будет вращаться при наличии постоянного магнитного поля.
Если разбирать это явление немного подробнее, можно сказать, что, когда свет поляризован, это значит, что все световые волны вибрируют в одной плоскости. Но угол этой плоскости может вращаться.
А благодаря эффекту Фарадея при свете, проходящем через среду, плоскость поляризации будет вращаться в соответствии с постоянным магнитным полем.
Как все это связано с лазерами? Ну, побочный результат эффекта Фарадея заключается в том, что, если вы начинаете воздействовать на поляризацию видимого света, проходящего через магнитную среду, она будет порождать магнитное поле.
Чем сильнее электромагнитная волна, тем выше производимое ею магнитное поле — так что, если вы используете действительно сильные лазеры, у вас должно возникнуть реально крутое поле.
Физики экспериментируют с этой идеей начиная с 1960-х годов, но причина, по которой она до сих пор не реализована, в том, что эффект Фарадея также требует наличия поглощения — того, что обычно происходит в ходе столкновения электронов.
После того как вы добьетесь определенной интенсивности лазера, электроны становятся ультрарелятивистскими, это означает, что они в своем огромном множестве сталкиваются реже и обычного поглощения в итоге не происходит.
По этой причине исследователи предположили, что лазер, достаточно мощный, чтобы создать суперсильное магнитное поле, также будет останавливать процесс абсорбции, что в свою очередь сведет на нет эффект Фарадея.
Однако недавно исследователи из России, Италии и Германии выдвинули гипотезу о том, что при очень высокой интенсивности лазерных волн поглощение может осуществляться не за счет столкновения электронов, но благодаря радиационному трению.
А этот особый тип трения, по крайней мере на бумаге, может привести к генерации суперсильного магнитного поля.
По расчетам команды ученых, достаточно мощный лазер будет способен производить поля с магнитной индукцией в несколько гигагаусс (гаусс (Гс) является единицей измерения магнитных полей).
Для сравнения: гигагаусс — это 10 9 Гс, или 1 000 000 000 Гс. Магнитное поле сумасшедшей силы, создаваемое магнитно-резонансным томографом, может достичь только 70 000 Гс, в то время как поверхность нейтронной звезды составляет около 1012 Гс.
Магнитные поля, которые мы можем создавать сегодня в лаборатории, достигают предела 108 Гс, с их помощью удается эффективно контролировать ядерный синтез в течение длительных периодов времени — то, где эта новая технология может особенно пригодиться.
Она также позволит ученым в лаборатории воссоздать невероятно сильные магнитные условия космического пространства.
Хорошая новость в том, что в рамках европейского проекта Extreme Light Infrastructure три лазера уже находятся на стадии разработки в Чехии, Румынии и Венгрии, так что прогресс налицо.
Магнитометр, который иногда ещё называют гауссометром, измеряет силу магнитного поля [в данном случае магнитную индукцию / прим. перев.]. Это прибор, необходимый при измерении силы постоянных магнитов и электромагнитов, а также для установления формы поля нетривиальных комбинаций из магнитов. Он достаточно чувствительный для того, чтобы определить намагниченность металлических предметов. В случае, если зонд будет работать достаточно быстро, он сможет определять изменяющиеся во времени поля от моторов и трансформаторов.
В мобильных телефонах обычно есть трёхосевой магнитометр, однако он оптимизирован для слабого магнитного поля Земли силой в 1 Гаусс = 0,1 мТл [миллитесла] и насыщается в полях с индукцией в несколько мТл. Где именно в телефоне расположен этот датчик, обычно непонятно, и расположить его внутри узкого места типа разреза магнита часто невозможно. Более того, лучше вообще не подносить смартфон к сильным магнитам.
В данной статье я опишу, как сделать простейший переносной магнитометр из распространённых комплектующих: нам потребуются линейный датчик Холла, Arduino, дисплей и кнопка. Общая стоимость прибора не выходит за пределы €5, а измерять он будет индукцию от -100 до +100 мТл с погрешностью в 0,01 мТл – гораздо лучше, чем можно было ожидать. Для получения точных абсолютных показателей его понадобится откалибровать: я опишу, как это делается при помощи длинного самодельного соленоида.
Шаг 1: датчик Холла
Эффект Холла часто применяется для измерения магнитных полей. Когда электроны проходят через проводник, помещённый в магнитное поле, их относит в сторону, в результате чего в проводнике появляется поперечная разность потенциалов. Правильно выбрав материал и геометрию полупроводника, можно получить измеряемый сигнал, который затем можно будет усилить и выдать измерение одной компоненты магнитного поля.
Я использую SS49E, поскольку он дешёвый и доступный. Что стоит отметить из его документации:
- Питание: 2.7 — 6.5 В, что прекрасно совместимо с 5 В для Arduino.
- Нулевой сигнал: 2.25-2.75 В, примерно посередине между 0 и 5 В.
- Чувствительность: 1.0-1.75 мВ/Гс, поэтому для получения точных результатов потребуется калибровка.
- Выходное напряжение: 1,0 – 4,0 В (при работе от 5 В): диапазон покрывается АЦП Arduino.
- Диапазон: минимум ± 650 Гс, обычно +/1 1000 Гс.
- Время отклика: 3 мкс, то есть можно проводить измерения с частотой в десятки кГц.
- Рабочий ток: 6-10 мА, достаточно немного для батарейки.
- Температурная ошибка: 0,1% на градус Цельсия. Вроде немного, однако отклонение на 0,1% даёт ошибку в 3 мТл.
Шаг 2: Требуемые материалы
- Линейный датчик Холла SS49E. €1 за 10 штук.
- Arduino Uno с доской для прототипирования или Arduino Nano без штырьков для портативного варианта.
- Монохромный OLED дисплей SSD1306 0.96” с интерфейсом I2C.
- Кнопка.
- Шариковая ручка или другая прочная трубка.
- 3 тонких провода чуть длиннее трубки.
- 12 см термоусадки диаметром 1,5 мм.
- Большая коробка Tic-Tac (18x46x83) или нечто похожее.
- Контакты для батарейки на 9 В.
- Выключатель.
Шаг 3: Первая версия – с использованием доски для прототипирования
Сначала всегда собирайте прототип, чтобы проверить работу всех компонентов и софта! Подключение видно на картинке: датчик Холла соединяется с контактами Arduino +5V, GND, A1 (слева направо). Дисплей соединяется с GND, +5V, A5, A4 (слева направо). Кнопка при нажатии должна замыкать землю и A0.
Код написан в Arduino IDE v. 1.8.10. Требуется установка библиотек Adafruit_SSD1306 и Adafruit_GFX.
Если всё сделано правильно, то дисплей должен выдавать значения DC и AC.
Шаг 4: Немного о коде
Если вам неинтересен код, эту часть можно пропустить.
Ключевая особенность кода состоит в том, что магнитное поле измеряется 2000 раз подряд. На это уходит 0,2 – 0,3 сек. Отслеживая сумму и квадрат суммы измерений, можно вычислять среднее и стандартное отклонения, которые выдаются как DC и AC. Усредняя по большому количеству измерений мы увеличиваем точность, теоретически на √2000 ≈ 45. Получается, что используя 10-битное АЦП, мы получаем точность 15-битного АЦП! И это имеет значение: 1 шаг АЦП – 4 мВ, то есть, ~ 0,3 мТл. Благодаря усреднению, мы уменьшаем ошибку от 0,3 мТл до 0,01 мТл.
В качестве бонуса мы получаем стандартное отклонение, определяя таким образом изменяющееся поле. Поле, колеблющееся с частотой 50 Гц проходит порядка 10 циклов за время измерения, поэтому можно измерить величину AC.
У меня после компиляции получилась следующая статистика: Sketch uses 16852 bytes (54%) of program storage space. Maximum is 30720 bytes. Global variables use 352 bytes (17%) of dynamic memory, leaving 1696 bytes for local variables. Maximum is 2048 bytes.
Большую часть места занимают библиотеки Adafruit, однако ещё полно места для добавления функциональности.
Шаг 5: Готовим зонд
Зонд лучше всего закреплять на конце узкой трубки: так его просто будет помещать и удерживать в узких местах. Подойдёт любая трубка из немагнитного материала. Мне идеально подошла старая шариковая ручка.
Подготовьте три тонких гибких провода чуть длиннее трубки. В моём кабеле логики в цветах проводов нет (оранжевый +5 В, красный 0 В, серый – сигнал), просто так мне их проще запомнить.
Чтобы использовать зонд с прототипом, припаяйте кусочки проводов на конец кабеля и заизолируйте их термоусадкой. Позже их можно отрезать и припаять провода прямо к Arduino.
Шаг 6: Собираем переносной прибор
Батарейка на 9В, OLED-экран и Arduino Nano с комфортом умещаются внутри большой коробки Tic-Tac. Её преимущество в прозрачности – экран легко читается, даже находясь внутри. Все фиксированные компоненты (зонд, выключатель и кнопка) ставятся на крышку, чтобы всё можно было вынимать из коробки для замены батареи или обновления кода.
Я никогда не любил батарейки на 9В – у них высокая цена и малая ёмкость. Но в моём супермаркете внезапно стали продавать их перезаряжаемую версию NiMH по €1, и я обнаружил, что их легко зарядить, если подать 11 В через резистор на 100 Ом и оставить на ночь. Я заказал себе дешёвые разъёмы для батареек, но мне их так и не прислали, поэтому я разобрал старую батарейку на 9 В, чтобы сделать из неё коннектор. Плюс батарейки на 9В в её компактности, и в том, что на ней хорошо работает Arduino при подключении её к Vin. На +5 В будет регулируемое напряжение в 5 В, которое понадобится для OLED и датчика Холла.
Датчик Холла, экран и кнопка подсоединяются так же, как было на прототипе. Добавляется только кнопка выключения, между батарейкой и Arduino.
Шаг 7: Калибровка
Калибровочная константа в коде соответствует числу, прописанному в документации (1,4 мВ/Гс), однако в документации разрешён диапазон этого значения (1.0-1.75 мВ/Гс). Чтобы получать точные результаты, нужно откалибровать зонд.
Самый простой способ получить магнитное поле хорошо определённой силы – использовать соленоид. Магнитная индукция поля соленоида равняется B = μ0 * n * I. Магнитная постоянная (или магнитная проницаемость вакуума) – это природная константа: μ0 = 1,2566 x 10 -6 Тл/м/А. Поле однородно и зависит только от плотности намотки n и тока I, которые можно измерить с погрешностью около 1%. Формула работает для соленоида бесконечной длины, однако служит очень хорошим приближением для поля в его центре, если соотношение его длины к диаметру превышает 10.
Чтобы собрать подходящий соленоид, возьмите полую цилиндрическую трубу, длина которой в 10 раз больше диаметра, и сделайте намотку из изолированного провода. Я использовал ПВХ-трубку с внешним диаметром 23 мм и сделал 566 витков, протянувшихся на 20,2 см, что даёт нам n = 28/см = 2800 / м. Длина провода 42 м, сопротивление – 10 Ом.
Подайте питание на катушку и измерьте ток мультиметром. Используйте либо регулируемый источник тока, либо переменный резистор, чтобы управлять током. Измерьте магнитное поле для разных значений тока и сравните показания.
Это простое устройство способно обнаруживать даже очень слабые электромагнитные поля. Относительная напряженность поля отображается в графическом виде на ЖК-индикаторе, дополнительно прибор сигнализирует звуковым зуммером и светодиодом (Рисунок 1).
Рисунок 1. | Внешний вид детектора электромагнитного поля. |
Схема соединений компонентов прибора в среде Fritzing изображена на Рисунке 2. (Схема в более высоком разрешении доступна для скачивания в разделе загрузок). Как видно на рисунке, схема очень проста и состоит из платы Arduino Nano, двустрочного ЖК-индикатора, зуммера, светодиода, переключателя и батареи питания 9 В.
Рисунок 2. | Принципиальная схема высокочувствительного детектора электромагнитного поля. |
Основой прибора является плата Arduino Nano. В качестве датчика используется отрезок медного провода диаметром 1.5 мм, но вы можете использовать любой тип провода. Чувствительность прибора можно регулировать программно (в исходном коде), а также путем изменения номинала резистора, включенного между землей и аналоговым входом A0. Можно предусмотреть в конструкции несколько резисторов и подключать их в схему с помощью переключателя. В авторском варианте с помощью переключателя выбирается один из двух резисторов и, соответственно, степень чувствительности прибора. Таким образом, прибор можно откалибровать, сравнивая его показания с промышленным решением.
Светодиод подключен к выходу D10, звуковой зуммер к выходу D9. ЖК индикатор 16×2 подключается к плате Arduino по параллельному 4-битному интерфейсу. Для регулировки контрастности индикатора используется подстроечный резистор.
Программная часть прибора (скетч Arduino) представляет собой комбинацию двух Arduino-проектов: из проекта измерителя уровня громкости на Arduino KTAudio используется часть для работы с ЖК-индикатором, а из проекта детектора электромагнитного поля Aaron ALAI EMF Detector используется часть для работы с сенсором. Автор внес некоторые коррективы для повышения стабильности работы устройства. Скетч доступен для скачивания в разделе загрузок.
На видео ниже видно, что прибор может легко обнаруживать электромагнитные поля, создаваемые скрытыми силовыми кабелями электрической сети в доме, даже если они не подключены к потребителю. Электромагнитное поле от старого ЭЛТ-монитора может быть обнаружено на расстоянии 3 м и более.
Оказывается, можно. И ниже я расскажу, как. Этот пост родился из моего ответа на вопрос, заданный на сайте Quora.
Речь пойдёт о квантовом вакууме. Так он выглядит в представлении художника.
Откуда вопрос?
Light is an electromagnetic particle. Can we deviate its path by applying electric or magnetic fields to it?
Свет — это электромагнитная частица. Можем ли мы изменить его траекторию, приложив электрическое или магнитное поле?
Вообще говоря, и на это указано в ответах на Quora, вопрос не совсем корректно сформулирован. Свет — это не частица, а волна или (корпускулярно-волновой дуализм!) поток частиц, квантов света — фотонов. Однако эта некорректность не отменяет самого вопроса. Действительно, если свет имеет электромагнитную природу, то почему бы нельзя было воздействовать на него электромагнитными полями?
Приблизительно так обычно изображается электромагнитная волна в учебных курсах.
Почему мне захотелось ответить на этот вопрос, так это потому, что он, на самом деле, имеет двойное дно. Есть ответ очевидный и ответ, который можно дать, только обладая определёнными знаниями, выходящими за рамки школьной программы.
Но сначала договоримся, что дальше речь пойдёт только о вакууме, поскольку на распространение света в среде можно оказывать влияние электрическим или магнитным полем опосредованно через воздействие на эту среду.
Очевидный ответ
Так вот, очевидный ответ: нет, нельзя. Почему нельзя, можно объяснять по-разному в зависимости от того, как представлять свет.
Уравнения Максвелла в вакууме в системе СИ
Если же описывать свет как поток частиц — фотонов — то ответ объясняется тем, что фотоны не обладают электрическим зарядом, а электромагнитные поля действуют только на заряженные частицы. Интересно, что эта ситуация уникальна для электромагнитного взаимодействия. Переносчики двух других фундаментальных взаимодействий, слабого и сильного, сами также могут принимать участие в переносимом ими взаимодействии.
Кто с кем взаимодействует в Стандартной модели.
Credit: Труш Виталий // Wikimedia Commons // CC-BY-SA 3.0
Например, согласно квантовой хромодинамике, сильное взаимодействие переносится глюонами. Они осуществляют взаимодействие между частицами, обладающими так называемым цветным зарядом — аналогом электрического заряда для сильного взаимодействия. При этом глюоны и сами обладают цветным зарядом и потому взаимодействуют и между собой, и с другими частицами с цветным зарядом.
Возвратимся, однако, к нашим баранам фотонам.
Неочевидный ответ
Выше я уже отметил, что очевидный ответ — это лишь первый слой. Давайте снимем и второй. Так вот, неочевидный ответ — да, на свет можно воздействовать внешними полями.
Эта возможность связана с тем, что согласно квантовой электродинамике вакуум, его ещё называют квантовым вакуумом, не является абсолютной пустотой. Более того, она наполнен так называемыми виртуальными частицами, известными также как квантовые флуктуации. Их можно представлять себе как рождающиеся на короткий промежуток времени и тут же аннигилирующие пары частицы и античастицы, в первую очередь электрона и позитрона.
Картинка, поясняющая идею квантовых флуктуаций.
Credit: universe-review.ca
Если вы помните школьный курс оптики, то дальнейшие рассуждения для вас должны быть очевидны. Действительно, мы знаем, что изменение диэлектрической проницаемости приводит к изменению коэффициента преломления и скорости света, а это, в свою очередь, приводит к преломлению и отражению света.
Этот эффект, конечно, очень слаб, и для его наблюдения требуются совершенно фантастические по величине поля. Кроме того, наблюдать преломление света в таких полях было бы очень сложно из-за его незначительности. Несмотря на это, сейчас уже всерьёз говорят о том, чтобы лет через 10–20 наблюдать влияние поляризации вакуума на распространение света в лаборатории.
Для генерации сверхсильных полей при этом предполагается использовать лазеры сверхвысокой пиковой мощности. На данный момент построены лазеры мощностью более 1 петаватта (пета- означает множитель 10 15 ), с их помощью было получено излучение, электрическое поле в котором достигает величины порядка 10 14 –10 15 вольт на метр. Это всего в 1000 раз меньше так называемого швингеровского предела, при котором и становятся заметны эффекты квантовой электродинамики в вакууме.
Однако для наблюдения эффекта необязательно достигать предела, достаточно полей в десятки раз слабее. А это значит, что уже через одно-два поколения сверхмощных лазеров — при мощностях порядка 100 петаватт — в лаборатории смогут изменить направление распространения света с помощью другого света, то есть с помощью электромагнитных полей. Измерять при этом, правда, будут не направление распространения, а поляризацию света. Дело в том, что вакуум в сверхсильном поле действует как двулучепреломляющая среда. Скорости волн с разной поляризацией в такой среде различны, поэтому при распространении в ней произвольно поляризованной волны, её поляризация будет изменяться и вот это изменение измерить значительно легче.
Читайте также: