Как сделать чтобы фонарик работал в одном режиме
У многих имеются различные китайские фонарики, работающие от одной батарейки. Типа такого:
К сожалению, они весьма недолговечны. О том, как вернуть фонарик к жизни и о некоторых простых доработках, способных улучшить подобные фонари — я расскажу далее.
Самое слабое место у подобных фонарей — кнопка. У неё окисляются контакты, в результате чего фонарик начинает светить тускло, а затем, может вообще перестать включаться.
Первый признак — фонарь с нормальной батареей светит слабо, но если несколько раз пощёлкать кнопкой, яркость увеличивается.
Самый простой способ заставить такой фонарь светить — поступить следующим образом:
1. Берём тонкий многожильный провод, отрезаем одну жилку.
2. Накручиваем проводок на пружину.
3. Изгибаем провод, чтобы батарейка не порвала его. Провод должен слегка выступать
над закручивающейся частью фонарика.
4. Плотно закручиваем. Излишек провода обламываем (отрываем).
В результате, провод обеспечивает хороший контакт с минусовой частью батарейки и фонарик
засияет с должной яркостью. Разумеется, кнопка при таком ремонте остаётся не удел, поэтому
включение — выключение фонарика производится поворотом головной части.
Мой китаец так проработал пару месяцев. Если нужно поменять батарейку, заднюю часть фонаря
трогать не следует. Отворачиваем голову.
ВОССТАНАВЛИВАЕМ РАБОТОСПОСОБНОСТЬ КНОПКИ.
Сегодня я решил вернуть кнопку к жизни. Кнопка находится в пластиковом корпусе, который
просто впрессован в заднюю часть фонаря. В принципе, её можно вытолкнуть обратно, но я поступил немного иначе:
1. Делаем свёрлышком 2 мм пару отверстий на глубину 2-3 мм.
2. Теперь можно пинцетом выкрутить корпус с кнопкой.
3. Извлекаем кнопку.
4. Кнопка собрана без клея и защелок, поэтому её легко разобрать канцелярским ножиком.
На фото видно, что подвижный контакт окислился (круглая фигня в центре, похожая на кнопку).
Его можно почистить ластиком или мелкой шкуркой и собирать кнопку обратно, но я решил дополнительно облудить и эту часть, и неподвижные контакты.
1. Зачищаем мелкой шкуркой.
2. Облуживаем тонким слоем места отмеченные красным цветом. Протираем спиртом от флюса,
собираем кнопку.
3. Для увеличения надёжности, я припаял пружину к нижнему контакту кнопки.
4. Собираем всё обратно.
После ремонта, кнопка работает отлично. Конечно, олово тоже окисляется, но поскольку олово — довольно мягкий металл, я надеюсь, что окисная плёнка при работе кнопки будет
легко разрушаться. Недаром же на лампочках центральный контакт делают из олова.
УВЕЛИЧИВАЕМ ЯРКОСТЬ (для тех, кто немного разбирается в электронике).
Китайцы экономят на всём. Пара лишних деталек — увеличение себестоимости, поэтому не ставят.
Основная часть схемы (отмеченная зелёным) может быть различной. На одном-двух транзисторах или на специализированной микросхемке (у меня схема из двух деталей:
дроссель и микросхема с 3-мя ногами, похожая на транзистор). А вот на части отмеченной красным — экономят. Я добавил конденсатор и пару диодов 1n4148 параллельно (шотки у меня не нашлось). Яркость светодиода увеличилась процентов на 10-15.
1. Так выглядит светодиод в подобных китайцах. Сбоку видно, что внутри толстая и тонкая ножки. Тонкая ножка — это плюс. Ориентироваться нужно по этому признаку, потому что цвета проводов могут быть совершенно непредсказуемыми.
2. Так выглядит плата, к которой припаян светодиод (с обратной стороны). Зелёным цветом обозначена фольга. Провода, идущие от драйвера, припаивают к ножкам светодиода.
3. Острым ножом или треугольным надфилем разрезаем фольгу на плюсовой стороне светодиода.
Всю плату зашкуриваем, для снятия лака.
4. Припаиваем диоды и конденсатор. Диоды я взял из сломанного компьютерного блока питания, танталовый конденсатор выпаял из какого-то сгоревшего винчестера.
Плюсовой провод теперь нужно припаивать к площадке с диодами.
В результате, фонарик выдаёт (на глаз) 10-12 люмен (см. фото с хотспотами),
если судить по фениксу, который в минимальном режиме выдаёт 9 люмен.
Приветствую, %username%!
Это небольшой ликбез на тему сегодняшнего состояния отрасли портативного освещения.
Disclaimer
К показанным фонарям и остальному железу я отношения не имею. Их рекламой данный пост не является.
Поехали, начнем с современных светодиодов
Светодиоды
И так. Из всего многообразия в современных фонарях в 99% случаях стоят диоды Cree либо XP-G/XP-G2
либо XM-L/XM-l2.
Те, что с приставкой 2 построены на новой технологии SC³ и выдают в среднем на 10-20% больше света, чем те, что без нее.
В частности, один XP-G2 может выдавать ~500 люмен при ~5 ваттах. Это эквивалент 50ваттной лампы накаливания
А один XM-L2 примерно тысячу при десяти. Это уже 75-80ваттная лампочка.
При этом размер XP-G2/Nichia всего 3.45x3.45 мм. а XM-L2 5x5мм. Честно, я когда первый раз увидел XP-G, жарящий на всю катушку, не поверил своим глазам.
Драйверы
Всю эту мощь надо как то питать. Этим занимаются специальные LED драйверы, которые бывают линейные, импульсные, программируемые и еще куча других слов. Другими словами — DC-DC преобразователи с управлением по МК.
Например, на картинке выше — штучный экземпляр ручной работы, импульсный драйвер диаметром всего 17 мм, обеспечивающий постоянную яркость во время работы и с КПД около 95-97%. Разработка и сборка, кстати, Российско-Украинская )
и многое, многое другое.
Оптика
Тут всё и сложнее и проще. Типичный угол свечения для светодиодов — 120 градусов. К тому же, источник свечения — квадрат со стороной 3.45 или 5 мм.
Собрать их в узкий пучок можно, например линзой. Но, линзованные фонари негерметичны, не дают практически никакой засветки и в линзах теряется очень большая часть света. Флешаголики не одобряют )
Поэтому, если хочется качества и дальнобойности, то вам прямая дорога к фонарям с глубоким рефлектором, например тот же Thrunite catapult V3, с которым Тёма поедет в свою следующую экспедицию.
Если надо что то для повседневных нужд, то это уже больше дело вкуса. Есть и мятые рефлекторы и TIR оптика, можно получить практически любой угол хотспота/засветки.
Питание
Все серьезные фонари питаются литиевыми аккумуляторами формата 18650 (18мм диаметр, 65 мм длина). Они на сегодняшний день являются самыми технологически передовыми из всех. А так же не слишком сильно оттягивают карман
Например, Panasonic NCR18650B имеет на борту 3400mAh, Sanyo ZTA около 3000. Так же, начали появляться (те же Sanyo, Samsung, LG) аккумуляторы с максимальным напряжением заряда 4.35V вместо 4.2. Им нужны, соответственно, другие зарядники.
От одного 18650 хороший фонарь может выдавать 1000 нейтральных стабилизированных люмен в течение часа.
Add:
Забыл сказать, что есть 18650 как с встроенной защитой от переразряда (маленькая платка на плюсовом контакте) так и без нее. Если в фонаре такая защита встроена, то нет необходимости переплачивать за protected версии. Ну и иногда защищенные 18650 не влезают в фонарь, так что лучше заранее этот момент прояснить.
bonus
Аккумуляторы формата 18650 используются в повербанках, от которых можно питать телефон\планшет по USB. Например, вот такой на 4 аккумулятора
Умеет выдавать 2A и в случае использования 4х панасоников на 3400 его общая емкость будет около 13500 mAh
Если вам роднее формат AA/AAA, то из Ni-MH аккумуляторов лучшими считаются Sanyo Eneloop. У них очень низкий саморазряд и приличная ёмкость. Не такая, конечно, как у литиевых, но для EDC/домашнего дежурного использования вполне подойдет.
С одного не литиевого AA лучшие фонари снимают порядка 280 люмен. Такой, например как SC52w от Zebralight
Существуют и литиевые аккумуляторы формата AA(14500) но они распространены меньше и пойдут только в те фонари, где это отдельно оговорено.
Охлаждение
Модификации
Ну, то есть, под замену может пойти всё, кроме корпуса. Есть даже спец магазины, которые торгуют чисто корпусами\головами и т. п.
Так что, если дружите с паяльником, можете сами себе собрать фонарь под свои хотелки.
Советы
Типа стробоскопа и прочей хрени. У меня китайский vector optics.
Сначала включается средний режим, зате самый маленький, потом самый мощный, потом стробоскоп и ещё один непонятный моргунчик. Как это можно убрать, а то для охоты это хрень полная. Лишь бы один самый мощный включать. Зарание всем благодарен.
Не смог я до драйвера добраться, а подавать напругу напрямую на светодиод, я так понимаю тоже не есть гут.
Офф: какой знакомый корпус. а вот "Luxeon Star Q5 LED Bulb (white luminescence)" в сочетании с "440 Lumens, Q5 Bulb" просто порвало. Я что-то упустил в эотй жизни, да?
По теме: можете разобрать насколько сумеете и фото выложить? Глядишь, подскажем, куда дальше ковырять, чтоб драйвер вынуть. По-моему, в очень похожем трастфайре, мне драйвер выковыривали что-то отпаивая. Может, и тут так же.
ЗЫ: да, и город какой?) Сам не умею, но есть кого попросить. Ну или, опять же, вдруг тут кто поможет.
а вот "Luxeon Star Q5 LED Bulb (white luminescence)" в сочетании с "440 Lumens, Q5 Bulb" просто порвало.
ЗЫ: да, и город какой?) Сам не умею, но есть кого попросить. Ну или, опять же, вдруг тут кто поможет.
а вот и фотки.
hant1972 писал(а): quote:а вот "Luxeon Star Q5 LED Bulb (white luminescence)" в сочетании с "440 Lumens, Q5 Bulb" просто порвало.
Сколько реально люмен может выдать данный светодиод.
Ну вот это-то и вопрос. Если "Люксеон стар" - то ЛИБО это имеется в виду установка эмиттер на звездообразное основание, применявшееся в Люксеонах.. но по фото видим, что это не так. ЛИБО собственно Люксеон на звезде - но тогда это не Q5 (т.к. это разновидность (бин) диодов Cree). Собственно, это и насмешило.
Но даже если это и честный Q5, а не более низкий бин (что тоже не факт), то 400 люмен там не будет. Насколько помню - до 220 лм он отдать может.
По фото вроде похоже на Cree, бин по фото не определить всяко.
По разбору детали - неочевидно.. вероятно, надо отпаять диод, а потом смотреть, что и как под ним. Может быть, враспор задней внутренней шайбы острогубцами изнутри можно вывинтить. Впрочем, я недостаточно компетентен в этом.
Из хорошего - даже 200-220 люмен при таком отражателе дают приятную широкую засветку.
Скорее всего драйвер в гильзе удерживается металлическим кольцом, запрессованным(?) в корпус (2 фотка). Скорее всего без разрушения этого кольца драйвер извлечь не удастся, ИМХО. Ну можно попытаться выпаяв и сняв диод (может оказаться, что он приклеен термоклеем - придется повозиться) выбить драйвер вместе с кольцом через отверстия для проводов, но при этом велика вероятность повредить плату. Диод однозначно Cree XR, бин не ниже Q (точнее сказать не могу). Ну и конечно, 440 люмен - гон чистейшей воды. Реально не более 250.
Можно нагреть гильзу до 100-120 градусов, а кольцо взять в распор холодным инструментом и оно вылезет. Обычно так подшипники и прочую ерунду надевают. нагреют градусов до 200 и внатяг посадят, он остынет и все, фиг снимиш. Ааа и исче, самые простые драйвера со стробом на микроконтороллерах и там режимы это софт и никаким хардверным вмешательством (паяльником и мультиметром) их неубереш. Можно перепрограмировать микруху, ежели она это позволяет, хотя зачастую она прошивается однократно.
suschestwo : В этом случае этот типа драйвер заменяется на нормальный (ну или специально обученный резистор) и вуаля. Хотя назвать такое устройство драйвером у меня язык не поворачивается.
Для таких диодов микра драйвера безрежима стоит порядка 100-180 ре и обвязки на 50 ре мах, проблем, с учетом красоты на пару часов. Есть специализированные микры по 100 ре с регулировкой яркости диода подстоичным резистюком (5 деталек вместе с ней), норальный драйвер своими руками - свободно. Если могеш резист припаят к диоду, то и такой драйвер собереш немного помучившись (удовольствия получиш много больше), пожалейте нормальный диод, немучти его так!
suschestwo : Проблема в том, что для топикстартера (да и многих других участников этой конференции) это проблема, насколько я понял. Иначе он не задал бы этого вопроса. Ну а насчет "норальный драйвер своими руками - свободно" - не все так просто начиная от доступности комплектующих и оборудования и заканчивая навыками практической работы и теоретическими познаниями в проблемной области. Я бы сказал, что сделать драйвер лучше среднекитайского задача очень непростая для неспециалиста. А если учесть материальные затраты, то и очень недешевая. А еще не надо так торопиться и деать столько ашипкоф.
Ну начнем с того, что Zetex - не предел мечтаний. Прямо скажем наоборот. Снять с него больше 150 ма от 1в - нереально. от 3в если очень постараться можно снять 400. Это LowLevel простой и дешевый. Но даже на нем собрать и запустить драйвер не каждый сможет - все таки навыки и знания требуются. Ну например, платку под него сделать. Да и паять это все неопытному человеку тяжко. А стоить такой комплект будет ну никак не меньше 300р с доставкой. Опять же не всем это интересно да и время тоже не у всех есть. И вообще все это злостный оффтопик. Завязываю спорить.
sergVs - Вы правы, спорить тож небуду.
hant1972 - ну как вытащили электронику? Оч интересно, что в нутри.
Да нет пока, не до этого. Да и побаиваюсь если чесно. Сэлектроникой конечно знаком не понаслышке. В молодости много увлекался и собирал трансиверы, а сейчас уже не помню когда паяльник последний раз включал.
Рассказы, отчеты о различных технических решениях и путешествиях
Всем хорош китайский народный электропром, но пока не дотягивает до уровня мировых производителей. Яркий тому пример это карманные фонарики. Качественные, надежные, современные, но с приколами.
Конкретно вот фонарь Фаzа, именно так он и называется. Светит ярко, синего спектра в свете почти не видно, стоит не дорого (с батарейкой обошелся мне в 394 рубля). Три режима свечения: яркий, неяркий и строб. И все они включаются последовательно при каждом включении фонаря. То есть не как на том же Petzl — сначала самый яркий, а потом при повторном нажатии следующие режимы, а просто по цепочке. Включил — яркий, выключил, снова включил — уже неяркий, выключил, включаешь — строб.
Мне такое разнообразие режимов не нужно, достаточно одного яркого. Пришлось исключить лишние режимы.
Откручиваем голову фонарю и вынимаем блок преобразователя.
Шилом поддеваем контактную площадку и вытягиваем плату преобразователя.
Находим единственную микросхему выбора режимов, прогреваем две ножки, ближайшие к дросселю и капаем туда припоем так, чтобы он каплей соединил их вместе.
Собираем модуль обратно. Чтобы провода легко улеглись, плату преобразователя поворачиваем относительно корпуса на пару-тройку оборотов. Затем на верхней части корпуса делаем два диаметрально расположенных пропила. Это позволит надежно затянуть модуль при сборке фонаря (например, острыми губками мощного пинцета или бокорезами). После этого голова точно не открутится.
Собираем, проверяем, радуемся жизни.
Поработав около года, мой налобный фонарь LED Headlight XM-L T6 стал включаться через раз, а то и вообще отключаться без команды. Вскоре перестал включаться совсем.
Первым делом я подумал, что отходит аккумулятор в батарейном отсеке.
Сам бокс рассчитан на литий-ионные аккумуляторы типоразмера 18650 с платой защиты. А я использовал аккумуляторы без защиты и заряжал их универсальной зарядкой Turnigy Accucell 6 (аналог IMAX B6).
Поэтому пришлось нарастить контакты каплей припоя. Как известно, припой сплав мягкий и со временем напайка на контакте могла поистереться, а соединение с аккумулятором нарушиться.
Но, после проверки выяснилось, что причина неисправности кроется вовсе не в плохом контакте, а электронной начинке фонаря.
Любой ремонт начинается с диагностики и разборки. Разбирается фонарь легко. Вынимаем литиевый аккумулятор из батарейного отсека. Далее выкручиваем четыре шурупа.
Под поддоном для аккумуляторов смонтирована небольшая печатная плата.
На печатке всего десять элементов. Функцию управления выполняет миниатюрная микросхема в корпусе SOT-23-6 с маркировкой 819L 24 (U1). Как оказалось, это микросхема FM2819 - специализированный контроллер (не драйвер!) для светодиодов. Называть эту микросхему драйвером как-то язык не поворачивается.
Данная микросхема поддерживает четыре режима управления светодиодом, в том числе строб, от которого все хотят избавиться. Режимы переключаются циклически по команде с тактовой кнопки без фиксации.
Если бы мой фонарь не сломался, то о четвёртом режиме SOS, который активируется долгим нажатием кнопки (около 3 секунд), я бы и не узнал. Когда покупал, на странице продажи упоминалось только три режима.
Когда же стал изучать даташит на FM2819, то оказалось, что эта микросхема поддерживает четыре режима.
О микросхеме FM2819 я расскажу чуть позднее, а пока разберёмся, за что отвечают остальные элементы схемы.
Жёлтый керамический конденсатор запаян вместо родного, который отвалился, когда я разбирал корпус батарейного отсека. Судя по фото аналогичных фонарей ёмкость конденсатора, который установлен между выводом KEY и минусом "-" питания, может быть в довольно больших пределах. В моём был установлен чип-конденсатор на 10pF (100), а в других фонарях могут быть запаяны и на 10nF (103), и на 100nF (104), а то и вовсе отсутствовать.
Функцию силового ключа, который подаёт напряжение питания от литиевого аккумулятора на мощный светодиод, выполняет P-канальный MOSFET транзистор FDS9435A в корпусе SO-8. На фото видно, что на его корпусе указана сокращённая маркировка 9435A.
Плюс питания со стока транзистора FDS9435A подаётся на мощный светодиод не напрямую, а через три токоограничивающих резистора (R200 - 0,2 Ом; R500 - 0,5 Ом; 2R0 - 2 Ом). Они соединены параллельно. Их общее сопротивление меньше наименьшего сопротивления в цепи (т.е. меньше 0,2 Ом). Если посчитать, то оно равно 0,13 Ом.
О том, как соединять резисторы и рассчитывать их общее сопротивление я рассказывал тут.
Для подсветки тылового индикатора LED HEADLIGHT используется обычный SMD-светодиод красного цвета свечения. На плате обозначен, как LED. Он подсвечивает пластину из белого пластика.
Так как батарейный отсек находится с тыльной части головы, то в ночное время суток такой индикатор хорошо заметен.
Явно не помешает при велопрогулках и ходьбе вдоль дорожных трасс.
Через резистор в 100 Ом плюсовой вывод красного SMD-светодиода подключается к стоку MOSFET-транзистора FDS9435A. Таким образом, при включении фонаря напряжение поступает и на основной светодиод Cree XM-L T6 XLamp, и на маломощный SMD-светодиод красного цвета свечения.
С основными детальками разобрались. Теперь расскажу, что же сломалось.
При нажатии на кнопку включения фонаря было видно, что красный SMD светодиод начинает светить, но очень тускло. Работа светодиода соответствовала штатным режимам работы фонаря (максимальная яркость, низкая яркость и стробоскоп). Стало ясно, что управляющая микросхема U1 (FM2819) скорее всего исправна.
Раз она штатно реагирует на нажатие кнопки, то, возможно, проблема кроется в самой нагрузке – мощном белом светодиоде. Отпаяв провода, идущие на светодиод Cree XM-L T6, и подключив его к самодельному блоку питания, я убедился в его исправности.
Далее решил замерить напряжение на самой плате, чтобы узнать, где потерялись драгоценные вольты от аккумулятора.
При замерах оказалось, что в режиме максимальной яркости, на стоке транзистора FDS9435A всего 1,2V. Естественно, этого напряжения не хватало для питания мощного светодиода Cree XM-L T6, а вот красному SMD-светодиоду его было достаточно, чтобы его кристалл начал тускло светиться.
Стало ясно, что неисправен транзистор FDS9435A, который задействован в схеме как электронный ключ.
В замену транзистору ничего подбирать не стал, а купил оригинальный P-канальный PowerTrench MOSFET FDS9435A фирмы Fairchild. Вот его внешний вид.
Как видим, на этом транзисторе присутствует полная маркировка и отличительный знак фирмы Fairchild (F), выпустившей данный транзистор.
Сравнив оригинальный транзистор с тем, что установлен на плате, мне в голову закралась мысль о том, что в фонаре установлена подделка или менее мощный транзистор. Возможно, даже брак. Всё-таки фонарь не успел отслужить и года, а силовой элемент уже "отбросил копыта".
Цоколёвка транзистора FDS9435A выглядит следующим образом.
Как видим, внутри корпуса SO-8 находится всего лишь один транзистор. Выводы 5, 6, 7, 8 объединены и являются выводом стока (Drain). Выводы 1, 2, 3 также соединены вместе и являются истоком (Source). 4-ый вывод – это затвор (Gate). Именно на него приходит сигнал с управляющей микросхемы FM2819 (U1).
В качестве замены транзистору FDS9435A можно использовать APM9435, AO9435, SI9435. Всё это аналоги.
Выпаять транзистор можно как привычными методами, так и более экзотическими, например, сплавом Розе. Также можно применить метод грубой силы – подрезать ножом выводы, демонтировать корпус, а затем отпаять оставшиеся на плате выводы.
После замены транзистора FDS9435A налобный фонарь стал работать исправно.
На этом рассказ о ремонте закончен. Но, не будь я любопытным радиомехаником, то так и оставил бы всё, как есть. Работает и ладно. Но мне не давали покоя некоторые моменты.
Так как изначально я не знал, что микросхема с маркировкой 819L (24) это FM2819, то вооружившись осциллографом, я решил посмотреть, какой сигнал подаёт микросхема на затвор транзистора при разных режимах работы. Интересно же.
При включении первого режима на затвор транзистора FDS9435A с микросхемы FM2819 подаётся -3,4. 3,8V, которое практически соответствует напряжению на аккумуляторе (3,75. 3,8V). Естественно, на затвор транзистора подаётся отрицательное напряжение, так как он P-канальный.
При этом транзистор полностью открывается и напряжение на светодиоде Cree XM-L T6 достигает 3,4. 3,5V.
В режиме минимального свечения (1/4 яркости) на транзистор FDS9435A с микросхемы U1 приходит около 0,97V. Это если проводить замеры рядовым мультиметром без наворотов.
На самом же деле в этом режиме на транзистор приходит сигнал ШИМ (широтно-импульсная модуляция). Подключив щупы осциллографа между "+" питания и выводом затвора транзистора FDS9435A, я увидел вот такую картину.
Картинка ШИМ-сигнала на экране осциллографа (время/деление - 0,5; V/деление - 0,5). Время развёртки - mS (миллисекунды).
Так как на затвор поступает отрицательное напряжение, то "картинка" на экране осциллографа переворачивается. То есть сейчас на фото в центре экрана показан не импульс, а пауза между ними!
Сама пауза длится около 2,25 миллисекунд (mS) (4,5 деления по 0,5mS). В этот момент транзистор закрыт.
Затем транзистор открывается на 0,75 mS. При этом на светодиод XM-L T6 поступает напряжение. Амплитуда каждого импульса составляет 3V. А, как мы помним, мультиметром я намерил всего лишь 0,97V. В этом нет ничего удивительного, так как мультиметром я мерил постоянное напряжение.
Вот этот момент на экране осциллографа. Переключатель время/деление установил на 0,1, чтобы лучше определить длительность импульса. Транзистор открыт. Не забываем про то, что на затвор приходит минус "-". Импульс перевёрнут.
Теперь можно посчитать скважность импульсов (S).
S = (2,25mS + 0,75mS) / 0,75mS = 3mS / 0,75mS = 4. Где,
S - скважность (безразмерная величина);
Τ - период следования (миллисекунды, mS). В нашем случае период равен сумме включения (0,75 mS) и паузы (2,25 mS);
τ- длительность импульса (миллисекунды, mS). У нас это 0,75mS.
Также можно определить коэффициент заполнения (D), который в англоязычной среде называют Duty Cycle (часто встречается во всяких даташитах на электронные компоненты). Обычно он указывается в процентах %.
D = τ/Τ = 0,75/3 = 0,25 (25%). Таким образом, в режиме пониженной яркости светодиод включен лишь на четверть периода.
Когда делал подсчёты первый раз, то коэффициент заполнения у меня вышел 75%. Но потом, увидев в даташите на FM2819 строчку про режим 1/4 яркости, понял, что где-то облажался. Я просто перепутал паузу и длительность импульса местами, поскольку по привычке принял минус "-" на затворе за плюс "+". Поэтому и вышло всё наоборот.
В режиме "STROBE" мне не удалось посмотреть ШИМ сигнал, так как осциллограф аналоговый и довольно старый. Синхронизировать сигнал на экране и получить чёткое изображение импульсов мне не удалось, хотя было видно его наличие.
Типовая схема включения и цоколёвка микросхемы FM2819. Может, кому пригодится.
Не давали мне покоя и некоторые моменты, связанные с работой светодиода. Со светодиодными фонарями я раньше, как-то не имел дела, а тут захотелось разобраться.
Когда я полистал даташит на светодиод Cree XM-L T6, который установлен в фонаре, то понял, что номинал токоограничительного резистора маловат (0,13 Ом). Да, и на плате одно посадочное место под резистор было свободно.
Когда шерстил по интернетам в поисках информации о микросхеме FM2819, то видел фото нескольких печатных плат аналогичных фонарей. На одних были запаяны четыре резистора по 1 Ому, а на некоторых вообще SMD-резистор с маркировкой "0" (перемычка), что, на мой взгляд, вообще является преступлением.
Светодиод – это нелинейный элемент, и, поэтому, последовательно с ним необходимо включать токоограничивающий резистор.
Если заглянуть в даташит на светодиоды серии Cree XLamp XM-L, то можно обнаружить, что их максимальное напряжение питания составляет 3,5V, а номинальное 2,9V. При этом ток через светодиод может достигать величины в 3А. Вот график из даташита.
Номинальным током для таких светодиодов считается ток в 700 mA при напряжении в 2,9V.
Конкретно в моём фонаре ток через светодиод составил 1,2 A при напряжении на нём в 3,4. 3,5V, что явно многовато.
Чтобы уменьшить прямой ток через светодиод я запаял вместо прежних резисторов четыре новых номиналом в 2,4 Ом (типоразмер 1206). Получил общее сопротивление в 0,6 Ом (мощность рассеивания 0,125W * 4 = 0,5W).
После замены резисторов прямой ток через светодиод составил 800 mA при напряжении в 3,15V. Так светодиод будет работать при более мягком тепловом режиме, и, надеюсь, прослужит долго.
Поскольку резисторы типоразмера 1206 рассчитаны на мощность рассеивания в 1/8W (0,125 Вт), а в режиме максимальной яркости на четырёх токоограничивающих резисторах рассеивается мощность около 0,5Вт, то от них желательно отвести излишнее тепло.
Для этого зачистил от зелёного лака медный полигон рядом с резисторами и напаял на него каплю припоя. Такой приём частенько применяется на печатных платах бытовой электронной аппаратуры.
После доработки электронной начинки фонаря покрыл печатную плату лаком PLASTIK-71 (электроизоляционный акриловый лак) для защиты от конденсата и влаги.
При расчётах токоограничительного резистора я столкнулся с некоторыми тонкостями. За напряжение питания светодиода стоит принимать напряжение на стоке MOSFET транзистора. Дело в том, что на открытом канале MOSFET-транзистора теряется часть напряжения из-за сопротивления канала (R(ds)on).
Чем выше ток, тем большее напряжение "оседает" по пути Исток-Сток транзистора. У меня при токе в 1,2А оно составило 0,33V, а при 0,8А – 0,08V. Также часть напряжения падает на соединительных проводах, которые идут с клемм аккумулятора на плату (0,04V). Казалось бы, такая мелочь, а в сумме набегает 0,12V. Так как под нагрузкой напряжение на Li-ion аккумуляторе проседает до 3,67. 3,75V, то на стоке MOSFET'а уже 3,55. 3,63V.
Ещё 0,5. 0,52V гасит цепь из четырёх параллельных резисторов. В итоге на светодиод приходит напряжение в районе 3-ёх с небольшим вольт.
На момент написания этой статьи в продаже появилась обновлённая версия рассмотренного налобного фонаря. В нём уже встроена плата контроля заряда/разряда Li-ion аккумулятора, а также добавлен оптический датчик, который позволяет включать фонарь жестом ладони.
Читайте также: