Как сделать чтобы длительности импульсов получаемых на правом и левом транзисторах были различными
Начинаю готовиться к статье про функциональные генераторы, и решила сперва сделать подборку схем генераторов прямоугольных импульсов, так как они зачастую входят в состав функциональных генераторов, да и вообще полезны в хозяйстве.
Начнем с классики, а именно с мультивибраторов.
Симметричный мультивибратор на транзисторах
Принцип работы состоит в переходе из одного нестабильного состояния (Q1 закрыт, Q2 открыт) в другое (Q1 открыт, Q2 закрыт).
Начнем с первого состояния: Q1 закрыт, Q2 открыт .
Конденсатор С1 быстро заряжается идет через "меньший" резистор R4 и базовый переход Q2. Одновременно с этим через открытый Q2 через "больший" резистор R2 медленно разряжается C2, отрицательное напряжение на котором держит в запертом состоянии Q1.
В процессе дальнейшего перезаряда С2 на базе Q1 появляется уже положительное, отпирающее напряжение, и Q1 начинает открываться. Ток через него возрастает, снижается напряжение на коллекторе Q1 и базе Q2, что вызывает его запирание.
Напряжение на коллекторе Q2 увеличивается и через конденсатор C2 еще сильнее открывает Q1.
Процесс открывания Q1 ускоряет запирание Q2, и процесс происходит практически лавинообразно, и переход из одного состояния в другое происходит очень быстро.
В общем, транзисторы периодически друг друга открывают и закрывают.
Теперь немного о расчете элементов .
Период состоит из двух частей t1 и t2, зависящих от сопротивлений R2, R3 и емкостей C1, C2:
t1 = 0,7 x R3 x C1;
t2 = 0,7 x R2 x C2
Для примера, в схеме на картинке выше период равен t1 + t2 = 2*0,7*22 кОм*0,1 мкФ = 3,08 мс.
Если разобраться, вся электроника состоит из большого числа отдельных кирпичиков. Это транзисторы, диоды, резисторы, конденсаторы, индуктивные элементы. А уже из этих кирпичиков можно сложить всё, что угодно.
Одной из очень известных и часто применяющихся в электронике схем, является симметричный мультивибратор, который представляет собой электронное устройство вырабатывающее (генерирующее) колебания по форме, приближающиеся к прямоугольной.
Мультивибратор собирается на двух транзисторах или логических схемах с дополнительными элементами. По сути это двухкаскадный усилитель с цепью положительной обратной связи (ПОС). Это значит, что выход второго каскада соединён через конденсатор со входом первого каскада. В результате усилитель за счёт положительной обратной связи превращается в генератор.
Для того чтобы мультивибратор начал генерировать импульсы достаточно подключить напряжение питания. Мультивибраторы могут быть симметричными и несимметричными.
На рисунке представлена схема симметричного мультивибратора.
В симметричном мультивибраторе номиналы элементов каждого из двух плеч абсолютно одинаковы: R1=R4, R2=R3, C1=C2. Если посмотреть на осциллограмму выходного сигнала симметричного мультивибратора, то легко заметить, что прямоугольные импульсы и паузы между ними одинаковы по времени. t импульса (tи) = t паузы (tп). Резисторы в коллекторных цепях транзисторов не влияют на параметры импульсов, и их номинал подбирается в зависимости от типа применяемого транзистора.
Частота следования импульсов такого мультивибратора легко высчитывается по несложной формуле:
,где f - частота в герцах (Гц), С - ёмкость в микрофарадах (мкФ) и R - сопротивление в килоомах (кОм). Например: С = 0,02 мкФ, R = 39 кОм. Подставляем в формулу, выполняем действия и получаем частоту в звуковом диапазоне приблизительно равную 1000 Гц, а точнее 897,4 Гц.
Основными характеристиками импульсного сигнала принято считать следующие параметры:
Частота. Единица измерения (Гц) Герц. 1 Гц – одно колебание в секунду. Частоты, воспринимаемые человеческим ухом, находятся в диапазоне 20 Гц – 20 кГц.
Длительность импульса. Измеряется в долях секунды: мили, микро, нано, пико и так далее.
Амплитуда. В рассматриваемом мультивибраторе регулировка амплитуды не предусмотрена. В профессиональных приборах используется и ступенчатая и плавная регулировка амплитуды.
Скважность. Отношение периода (Т) к длительности импульса (t). Если длина импульса равна 0,5 периода, то скважность равна двум.
Исходя из вышеприведенной формулы, легко рассчитать мультивибратор практически на любую частоту за исключением высоких и сверхвысоких частот. Там действуют несколько другие физические принципы.
Для того чтобы мультивибратор выдавал несколько дискретных частот достаточно поставить двухсекционный переключатель и пять шесть конденсаторов разной ёмкости, естественно одинаковые в каждом плече и с помощью переключателя выбирать необходимую частоту. Резисторы R2, R3 так же влияют на частоту и скважность и их можно сделать переменными. Вот ещё одна схема мультивибратора с подстройкой частоты переключения.
Уменьшение сопротивления резисторов R2 и R4 меньше определённой величины зависящей от типа применяемых транзисторов может вызвать срыв генерации и мультивибратор работать не будет, поэтому последовательно с резисторами R2 и R4 можно подключить переменный резистор R3, которым можно подобрат частоту переключений мультивибратора.
Практическое применение симметричного мультивибратора очень обширно. Импульсная вычислительная техника, радиоизмерительная аппаратура при производстве бытовой техники. Очень много уникальной медицинской техники построено на схемах, в основе которых лежит тот самый мультивибратор.
Благодаря исключительной простоте и невысокой стоимости мультивибратор нашёл широкое применение в детских игрушках. Вот пример обычной мигалки на светодиодах.
При указанных на схеме величинах электролитических конденсаторов С1, С2 и резисторов R2, R3 частота импульсов будет 2,5 Гц, а значит, светодиоды будут вспыхивать примерно два раза в секунду. Можно использовать схему, предложенную выше и включить переменный резистор совместно с резисторами R2, R3. Благодаря этому можно будет посмотреть, как будет изменяться частота вспышек светодиодов при изменении сопротивления переменного резистора. Можно поставить конденсаторы разных номиналов и наблюдать за результатом.
Будучи ещё школьником, я собирал на мультивибраторе переключатель ёлочных гирлянд. Всё получилось, но вот когда подключил гирлянды, то мой приборчик стал переключать их с очень высокой частотой. Из-за этого в соседней комнате телевизор стал показывать с дикими помехами, а электромагнитное реле в схеме трещало, как из пулемёта. Было и радостно (работает же!) и немного страшновато. Родители переполошились ненашутку.
Такая досадная промашка со слишком частым переключением не давала мне покоя. И схему проверял, и конденсаторы по номиналу были те, что надо. Не учёл я лишь одного.
Электролитические конденсаторы были очень старые и высохли. Ёмкость их была небольшая и совсем не соответствовала той, что была указана на их корпусе. Из-за низкой ёмкости мультивибратор и работал на более высокой частоте и слишком часто переключал гирлянды.
Приборов, которыми можно было бы измерить ёмкость конденсаторов в то время у меня не было. Да и тестером пользовался стрелочным, а не современным цифровым мультиметром.
Поэтому, если ваш мультивибратор выдаёт завышенную частоту, то первым делом проверяйте электролитические конденсаторы. Благо, сейчас можно за небольшие деньги купить универсальный тестер радиокомпонентов, которым можно измерить ёмкость конденсатора.
В системах передачи информации для ослабления влияния случайных флуктуаций, а также для управления в устройствах автоматики нередко требуется из коротких импульсов получать более широкие, определенной длительности.
Эта задача легко реализуется с помощью ждущего мультивибратора (одновибратора). Одновибратор является триггерной схемой, которая генерирует одиночный импульс под действием внешнего управляющего сигнала. При этом
подразумевается, что формируемый импульс превышает длительность запускающего.
Рис. 1.9 Формирователь широкого импульса с использованием триггера Шмитта
Как правило, применяют один из двух методов формирования импульса:
аналоговый или цифровой. Наиболее простым является аналоговый - используется процесс перезаряда конденсатора. Пример такой схемы показан на рис. 1.9. Для правильной работы данного одновибратора необходимо, чтобы дли тельность входного запускающего импульса была достаточно большой, чтобы конденсатор успел полностью разрядиться. После окончания запускающего импульса конденсатор заряжается через резистор до величины напряжения питания. При этом, как только напряжение достигнет U пор - элемент D2.1 переключится. В этом случае длительность выходного импульса (t и ) зависит от номиналов установленных емкости и резистора во времязадающей цепи. Упрощенная формула позволяет ориентировочно рассчитать длительность импульса:
где Е - напряжение питания схемы;
U пор - уровень используемого порога, рис. 1.10, для переключения элемента.
С учетом разброса значений напряжения порога переключения (U пор ) длительность импульса может принимать значения от t мин =0,4RC до t мax =1,11RC. Обычно в одновибраторах используются ЛЭ из одного корпуса (кристалла). В этом случае разброс Unop оказывается незначительным и можно принять t и =0,69RC. Это соотношение используется для определения длительности импульса в большинстве схем, рис. 1.11. 1.18. Эпюры напряжения поясняют процессы формирования выходного импульса. Схемы, показанные на одном рисунке, являются аналогичными по логике работы и имеют ту же самую диаграм му напряжений в контрольных точках.
В отличие от простейшего варианта (рис 1.9) схемы, приведенные на рис. 1.11. 1.14 не чувствительны к длительности входного импульса, из-за чего
Рис. 1.10. Области допустимых уровней сигнала на входе МОП микросхем
Рис. 1.11. Одновибратор с одной времязадающей цепью
Рис. 1.12. Одновибратор на основе RS-триггера
Рис. 1.13. Одновибратор по фронту входного сигнала
Рис. 1.14. Одновибратор
наиболее широко применяются в аппаратуре. Схемам, рис. 1.9, 1.15. 1.17, присуще свойство перезапуска, т. е. если во время формирования выходного импульса появляется очередной запускающий, то отсчет длительности формируемого импульса начнется заново от момента окончания последнего запускающего.
Применяемые в схемах диоды ускоряют процесс перезаряда емкости, что уменьшает возможности возникновения импульсных помех на выходе ЛЭ.
Чтобы выходное сопротивление ЛЭ не сказывалось на точности расчета, а также не перегружался выход, резистор R1 должен быть номиналом не менее 10. 20 кОм. Чтобы пренебречь при расчетах емкостью монтажа, минимальная
емкость С1 может быть 200. 600 пФ. Для получения высокой температурной стабильности временного интервала номинал R1 должен быть 5 мкФ. Использование электролитических конденсаторов увеличивает нестабильность временного интервала.
Для уменьшения влияния разброса значений Unop на длительность формируемого импульса можно воспользоваться схемами с двумя времязадающими цепями (рис. 1. 18). Если постоянные времени обеих времязадающих цепей
Рис. 1. 15. Формирователи импульса после окончания действия
запускающего сигнала
одинаковы, то при максимальном разбросе значений Unop от 0, 33Uпит до 0,69Uпит изменение длительности формируемого импульса не превышает 9%.
Выполнение одновибраторов на RS-триггере, рис. 1. 19 и 1. 20, дает возможность иметь два раздельных входа запуска (по переднему фронту импульса), а также сразу получать на выходах прямой импульс и импульс с инверсией. Еще одним преимуществом одновибраторов на RS-триггерах является возможность осуществлять запуск от медленно меняющегося входного напряжения.
Рис 1.16 Формирователи импульсов
Рис 1.17 Формирователи импульсов
Длительность подаваемых на вход S запускающих импульсов должна быть меньше формируемого (режим, когда на входах S и R одновременно присутствует лог. "1", является запрещенным). На входе С длительность запускающего импульса может быть любой. Диод VD1 ускоряет разряд конденсатора через выход триггера и позволяет увеличить частоту запускающих импульсов (его применение уменьшает время восстановления схемы). Длительность формируемых им пульсов составляет приблизительно t и =0,69R1C1. Минимальное значение
Рис. 1.18 Одновибраторы с двумя времязадающими цепями
Рис. 1.19. Ждущие мультивибраторы:
а) на D-триггере; б) на JK-триггере,
в) с повышенной стабильностью при изменении питания
сопротивления R1 ограничено максимально допустимым выходным током триггера Его можно менять в пределах 20 кОм. 10 МОм, при этом длительность импульса будет меняться в 500 раз. Одновременное изменение значений R1 и С1 позволяет регулировать длительности импульсов в пределах четырех порядков.
Рис 1 20. Ждущие мультивибраторы с увеличенной крутизной выходных
импульсов- а) на D-триггере; б) на JK-триггере
Рис 121. Ждущий мультивибратор с повышенной стабильностью
Схема на рис. 1.19в обеспечивает более стабильные импульсы при изменении питающего напряжения (аналогичную схему можно собрать и на JK-триггерах).
Для увеличения крутизны спадов выходных импульсов применяют схемы показанные на рис. 1.20, но в них конденсаторы С1 должны быть неполярными.
При этом длительность генерируемого импульса при тех же значениях RC-цепи, что и в схемах на рис. 1.18, получается примерно в 2 раза больше.
Лучшую стабильность при изменении напряжения питания по сравнению с представленными на рис. 1.19 вариантами обеспечивает схема одновибратора на двух триггерах, рис 1. 21. Кроме того, в этом случае подключение нагрузки не влияет на длительность генерируемых импульсов. Схема состоит из двух одновибраторов, имеющих общий вход запуска, но вырабатывающих на независимых выходах импульсы разной длительности. Импульсы на выходе 5 почти не будут зависеть от напряжения питания
Рис. 1. 22 Схемы формирователей задержанного импульса .
Длительность формируемого сигнала (t и , Q=1) задается соответствующей внешней RC-цепью: t и =0,5RC для С>0,01 мкФ. Более точно определить позволяет приводимая в справочнике [Л8] диаграмма.
Рис. 1. 23 Ждущий мультивибратор на триггере с возможностью перезапуска .
Рис. 1. 24 Ждущий мультивибратор с возможностью перезапуска .
Если требуется иметь перезапуск одновибратора на триггере, в случае прихода очередного входного импульса во время формирования интервала, то схема на рис. 1. 23 позволяет увеличить длительность выходного импульса за
счет начала отсчета с момента окончания запускающего сигнала. Аналогичная схема приведена на рис. 1. 24. Когда на входе действует лог. "0", конденсатор заряжен до величины напряжения питания (лог. "1"). При поступлении запускающего импульса с длительностью, достаточной для разряда конденсатора, триггер перебросится и генерирует импульс. Длительность этого импульса, после окончания действия входного сигнала, определяется необходимым временем для заряда конденсатора до уровня лог. "1".
Схема (рис. 1.25), в отличии от вышеприведенной, позволяет получить более крутые фронты у сигнала на выходах триггера Второе преимущество этой схемы заключается в том, что по окончании вырабатываемого импульса конденсатор быстро разряжается через диод от уровня U пор вместо дозаряда до уровня питания (Е) Из-за этого следующий запускающий импульс может быть значительно короче, при сохранении нулевого времени восстановления
Рис. 1.25 Ждущий мультивибратор с повышенной крутизной фронта
выходных импульсов .
Второй метод получения импульса нужной длительности связан с использованием счетчиков - цифровых одновибраторов Их применяют, когда временной интервал должен быть очень большим или предъявляют высокие требования к стабильности формируемого интервала В этом случае минимальная получаемая длительность ограничена только быстродействием используемых элементов, а максимальная длительность может быть любой (в отличие от схем, использующих RC-цепи).
Принцип работы цифрового одновибратора основан на включении триггера входным сигналом и отключении через временной интервал, определяемый коэффициентом пересчета счетчика. Использование в одновибраторе счетчи-
ков с переключаемым коэффициентом деления, рис. 1.26, позволяет получить импульс любой длительности. Микросхема 564ИЕ 15 состоит из пяти вычитающих счетчиков, модули пересчета которых программируются параллельной загрузкой данных в двоичном коде. На загрузку чисел в счетчики требуется три такта, поэтому можно устанавливать коэффициент деления N>3 [Л2].
При работе цифрового одновибратора с кварцевым автогенератором тактовой частоты обеспечивается более высокая стабильность длительности выходного импульса, что позволяет их применять в измерительных приборах .
Мультивибратор был описан Икклзом и Джорданом в 1918 году.
Мультивибратор является одним из самых распространённых генераторов импульсов прямоугольной формы, представляющий собой двухкаскадный резистивный усилитель с глубокой положительной обратной связью. В электронной технике используются самые различные варианты схем мультивибраторов, которые различаются между собой по типу используемых элементов (ламповые, транзисторные, тиристорные, микроэлектронные и так далее), режиму работы (автоколебательный, ждущие синхронизации), видам связи между усилительными элементами, способам регулировки длительности и частоты генерируемых импульсов и так далее.
Отнесение мультивибратора к классу автогенераторов оправдано лишь при автоколебательном режиме его работы. В ждущем режиме мультивибратор вырабатывает импульсы только тогда, когда на его вход поступают синхронизирующие сигналы. Режим синхронизации отличается от автоколебательного тем, что в этом режиме с помощью внешнего управляющего (синхронизирующего) колебания удаётся подстроить частоту колебаний мультивибратора под частоту синхронизирующего напряжения или сделать кратной ей (захват частоты) для автоколебательных мультивибраторов.
Симметричным мультивибратор называют при попарном равенстве сопротивлений резисторов R1 и R4, R2 и R3, ёмкостей конденсаторов C1 и C2, а также параметров транзисторов Q1 и Q2.
Симметричный мультивибратор генерирует прямоугольные колебания со скважностью 2 "типа меандр", то есть сигнал, в течение периода которого длительность импульса и длительность паузы одинакова.
Существуют три типа схем мультивибратора в зависимости от режима работы:
- нестабильный, или автоколебательный: схема самопроизвольно переходит из одного состояния в другое. При этом не обязателен сигнал синхронизации, если не требуется захват частоты;
- моностабильный: одно из состояний является стабильным, но другое состояния неустойчиво (переходное). Мультивибратор на некоторое время, определяемое параметрами его компонентов переходит в неустойчивое состояние под действием запускающего импульса. Затем возвращается в устойчивое состояния до прихода очередного запускающего импульса. Такие мультивибраторы используются для формирования импульса с фиксированной длительностью, не зависящей от длительности запускающего импульса. Такой тип мультивобраторов иногда, в литературе, называют одновибраторы или ждущие мультивибраторы.
- бистабильный: схема устойчива в любом состоянии. Схема может быть переключена из одного состояния в другое с помощью внешних импульсов. Такие устройства называют триггерами, название "мультивибратор" не совсем корректно, так как двусмысленно.
Приведенная схема мультивибратора на двух транзисторах сейчас почти не применяется, так как имеет плохие частотные свойства и не очень крутые фронты, что ограничивает частоту его генерации до единиц МГц. На более высоких частотах оба транзистора запираются и для восстановления работы устройство надо перезапускать, что во многих случаях неприемлемо.
Содержание
Принцип действия
Схема может находиться в одном из двух нестабильных состояний и периодически переходит из одного в другое и обратно. Фаза перехода очень короткая благодаря положительной обратной связи между каскадами усиления.
Состояние 1: Q1 закрыт, Q2 открыт и насыщен, C1 быстро заряжается базовым током Q2 через R1 и Q2, после чего при полностью заряженном C1 (полярность заряда указана на схеме) через R1 не течет ток, напряжение на C1 равно (ток базы Q2)* R2, а на коллекторе Q1 — питанию.
Напряжение на коллекторе Q2 невелико (падение на насыщенном транзисторе).
C2, заряженный ранее в предыдущем состоянии 2 (полярность по схеме), начинает медленно разряжаться через открытый Q2 и R3. Пока он не разрядился, напряжение на базе Q1 = (небольшое напряжение на коллекторе Q2) — (большое напряжение на C2) — то есть отрицательное напряжение, наглухо запирающее транзистор.
Состояние 2: то же в зеркальном отражении (Q1 открыт и насыщен, Q2 закрыт).
Переход из состояния в состояние: в состоянии 1 C2 разряжается, отрицательное напряжение на нём уменьшается, а напряжение на базе Q1 — растет. Через довольно длительное время оно достигнет ноля. Разрядившись полностью, С2 начинает заряжаться в обратную сторону, пока напряжение на базе Q1 не достигнет примерно 0,6 В.
Это приведет к началу открытия Q1, появлению коллекторного тока через R1 и Q1 и падению напряжения на коллекторе Q1 (падение на R1). Так как C1 заряжен и быстро разрядиться не может, это приводит к падению напряжения на базе Q2 и началу закрытия Q2.
Закрытие Q2 приводит к снижению коллекторного тока и росту напряжения на коллекторе (уменьшение падения на R4). В сочетании с перезаряженным C2 это ещё более повышает напряжение на базе Q1. Эта положительная обратная связь приводит к насыщению Q1 и полному закрытию Q2.
Такое состояние (состояние 2) поддерживается в течение времени разряда C1 через открытый Q1 и R2.
Таким образом, постоянная времени одного плеча есть С1 * R2, второго — C2 * R3. Это дает длительность импульсов и пауз.
Также эти пары подбираются так, чтобы падение напряжения на резисторе в условиях протекания через него тока базы было бы большим, сравнимым с питанием.
R1 и R4 подбираются на много меньшие, чем R3 и R2, чтобы зарядка конденсаторов через R1 и R4 была быстрее, чем разрядка через R3 и R2. Чем больше будет время зарядки конденсаторов, тем положе окажутся фронты импульсов. Но отношения R3/R1 и R2/R4 не должны быть больше, чем коэффициенты усиления соответствующих транзисторов, иначе транзисторы не будут открываться полностью.
Частота мультивибратора
Длительность одной из двух частей периода равна
Длительность периода из двух частей равна:
В особом случае когда
Выходные формы импульса
Выходное напряжение имеет форму, приблизительно квадратной формы волны. Считается ниже транзистора Q1. В состоянии 1 , Q2 база-эмиттер в обратном направлении и конденсатор С1 "отцепленный" от земли. Выходное напряжение включенного транзистора Q1 быстро меняется от высокого(пределы: более 1кВ) к низкому(пределы: до 250 В), так как это низко-резистивного выход, то загружается высокий импеданс нагрузки (последовательно соединенных конденсаторов С1 и высокоомных базу резистор R2). Во время состояния 2 , Q2 база-эмиттер в прямом смещением и конденсатор С1 "подключили" к земле. Выходное напряжение выключенного транзистора Q1 изменяется экспоненциально от низкого до высокого, так как это относительно высокий резистивный выход, то загружается низкий импеданс нагрузки (емкость C1). Это для выходного напряжения R 1 C 1 интегрирующей цепи. Чтобы приблизиться к необходимой площади сигнала,нужно, чтобы ток коллектора резисторов был ниже сопротивления. База резисторов должна быть достаточно низкой, чтобы насытить транзисторы в конце восстановления (R B Начальное питание
Однако, если схема временного хранения и с высокой базы, длиннее, чем требуется для полной зарядки конденсаторов, то схема будет оставаться в стабильном состоянии, как с базы на 0,6 В, и коллекторы на 0 В, и оба конденсатора разряжаются до -0,6 В. Это может произойти при запуске без внешнего вмешательства, если R и С и очень мало.
Защитные компоненты
Хотя это и не основополагающее значение для работы схемы, диоды соединенные последовательно с базой или эмиттером транзисторов необходимы, чтобы предотвратить переход база-эмиттер, их гонят в обратном направлении пробоя, когда напряжение питания превышает V EB напряжение пробоя, как правило, около 5 -10 вольт для кремниевых транзисторов общего назначения.
Мультивибратор на операционном усилителе
Конденсатор С и резисторы R1, R2 образуют интегрирующую RC-цепь: при заряде конденсатора открыт диод V1, ток проходит через R1, при разряде - открыт V2, ток идет через R2. Источником напряжения E является входная цепь ОУ. Компаратор выполнен на ОУ с положительной обратной связью через цепь R3R4. При переключении компаратора на его выходе происходит коммутация цепей заряда и разряда конденсатора C, т.е. ОУ выполняет сразу несколько функций: источника напряжений разряда и заряда конденсатора, компаратора и ключа.
Читайте также: