Как сделать чистый кремний
Способы получения кремния чистотой > 99,0 масс % можно разделить на три основные группы: металлургический, электрохимический и химический [2].
В первом случае кремний получают восстановлением расплава SiO2 углеродом в электродуговых печах при температурах 1500-1800 оС. Процесс восстановления описывается уравнением: SiO2 + 2C = Si + 2CO. Получаемый технический кремний в соответствии с требованиями ГОСТ 2169 и ТУ 42-5-220 имеет марки: КРП, КРОО, КРО, КР1, КР3, КР2, в которых содержание кремния изменяется от 96,0 до 99,0% соответственно, а основными примесями являются Fe, Al, Ca. Выход достигает 80-85%.
Сравнительно небольшое количество кремния получают электрохимическим методом, в частности электролизом в расплавах LiF, KF, SiF4 или Na2SiF6, K2SiF6 [2]. В качестве анода применяются кремнемедные сплавы, а катоды изготавливают из Si. Содержание примесей в кремнии не превышает 10-4 масс.%.
В основе получения Si цинкотермическим восстановлением кремнийсодержащих соединений лежит реакция, предложеная Н.Н. Бекетовым: SiCl4(газ) + 2Zn = Si(тв) + 2ZnCl2(газ). Кремний получают в виде пленок и игольчатых кристаллов различной крупности. Этот метод в промышленности используется в СССР и фирмой "Дьюпон де Немур".
В лабораторных условиях опробовались способы получения кремния на основе реакций:
SiCl4 + Na = Si + 4NaCl
SiF4 + Na = Si + 4NaF
Выход по Si в этом случае достигал 96%.
В связи с возрастающей потребностью кремния для солнечных батарей появляется перспективность вновь использовать данный метод в промышленных масштабах.
К третьей группе относятся методы получения кремния, в которых технический кремний переводится в соединение (галогениды, силаны, и др.), позволяющее провести глубокую очистку, например, ректификацией, из которых затем получают высокочистый кремний.
Один из первых таких методов, нашедших сравнительно небольшое промышленное применение является йодидный метод, в основе которого лежит смещение равновесия реакции Si + 2I2 SiI4 вправо при изменении температур от 700 - 850оС (в низкотемпературной зоне реактора или отдельного реактора) и влево при температурах 1100 - 1200 оС (в высокотемпературной зоне). В ряде технологических схем предусмотрена очистка SiI4 перед разложением.
Рассмотрим два варианта метода. В первом используют ячейку, в которой совмещены синтез и разложение SiI4. В ячейку помещают исходный кремний и вводят некоторое количество йода. Ячейку нагревают до 700 - 850 оС. При этом кремний реагирует с йодом с образованием SiI4. Последний соприкасаясь с нитью, нагретой до 1100 - 1200 оС, разлагается с осаждением на ней кремния.
По второму варианту синтез и разложение тетройодида кремния осуществляют отдельно, а промежуточный продукт тетройодид кремния очищается от примесей в дистилляционной колонне.
Синтез тетройодида кремния может быть осуществлен в реакторе с кипящим слоем. Основой конструкции реактора является кварцевая труба, установленная вертикально в печи. Йод испаряется в стальном бойлере, обогреваемом до 330 оС горячим маслом. Образовавшийся SiI4 поступает в конденсатор-испаритель, а затем в кварцевую ректификационную вакуумную колонну. Очищенным SiI4 собирают в кварцевый сборник, помещаемый в испаритель. Испаренный SiI4 направляют в аппарат разложения, состоящий из вертикальной кварцевой трубки, установленной на верхней части сборника SiI4. Внутри трубки крепится кремниевый пруток, нагреваемый до 1100 оС токами высокой частоты. Выходящие от аппарата непрореагировавший SiI4 и продукт реакции йод конденсируются в вакуумном конденсаторе.
Помимо возможности получения кремния высокой чистоты, йодидный метод обладает еще одним важным достоинством - сравнительно высокой безопасностью. Однако высокая стоимость йода и сложность аппаратурного оформления сдерживает его широкое распространение.
Разработки технологий на основе моносилана начались в 70-х годах [1], когда повысился спрос на сверхчистый кремний для ИК-детекторов, и были реализованы после 1985 года фирмами Union Carbide и Komatsu Electronic Metals, Advanced Silicon Materials, MEMC Pasadena.
Химико-технологические системы с использованием силана (SiH4) имеют основные отличия в способах получения силана. Рассмотрим несколько примеров.
Получение поликристаллического полупроводникового кремния пиролизом SiH4. Процесс состоит из следующих основных стадий:
- получение силицида магния (Mg2Si), например, сплавлением технических кремния и магния (содержание основных веществ не менее 98%) в атмосфере водорода при 550 - 600оС:
- разложение силицида магния хлоридом аммония при -40 оС в
среде жидкого аммиака:
Mg2Si + NH4Cl = SiH4 + 2MgCl2 + 4NH3;
-очистка моносилана кремния ректификацией (остаточное
содержание примесей 10-7 - 10-8%);
-термическое разложение (пиролиз) моносилана при 850-1000 оС:
Необходимо отметить, что получаемый при пиролизе водород обладает высокой степенью чистоты и используется на первой стадии химико-технологического процесса или сопутствующих производствах.
Функциональная схема такого производства поликристаллического полупроводникового кремния приведена на рис.2.
Рис.2 Функциональная схема производства поликристаллического полупрводникового кремния пиролизом моносилана.
В схеме, показанной на рис.2 сырьем служат технический кремний, тетрахлорсилан(SiCl4) и водород. На первом этапе получают трихлорсилан(SiHCl3) по реакциям:
Si(техн) + SiCl4 + 2Н2 = 4SiHCl3,
H2 + SiCl4 = SiHCl3 + HCl.
Непрореагировавший SiCl4 после очистки возвращают в реактор синтеза SiHCl3.
Из трихлорсилана получают дихлорсилан:
4SiHCl3 = 2SiH2Cl2 + 2SiCl4,
а затем и моносилан:
2SiH2Cl2 = SiCl4 + SiH4.
Полученный на этих этапах SiCl4 выделяют, очищают и вновь используют.
Силан после предварительной очисткой или без нее подвергают термическому разложению.
Моносилан может быть получен в результате комплексного использования сырья при производстве суперфосфатных удобрений [1]. Так, при обработке фторида кальция (CaF2), содержащегося в сырье вместе с оксидом кремния, серной кислотой происходит образование тетрафторсилана (SiF4) через фторкремниевую кислоту (H2SiF6) по реакции:
H2SiF6 = SiF4 + 2HF.
Далее процесс получения моносилана протекает по реакции:
SiF4 + NaAlH4 = SiH4 + NaAlF4.
Моносилан подвергается комплексной очистке, включающей конденсацию, ректификацию. В данной схеме использован вариант гомогенного разложения очищенного моносилана с получением гранулированного кремния.
Рис.2 Функциональная схема производства поликристаллического полупрводникового кремния пиролизом моносилана
Кремний - неметаллический элемент IVa группы периодической таблицы Д.И. Менделеева. Второй после кислорода элемент по распространенности в земной коре.
В чистом виде в природе практически отсутствует. Чаще всего встречается в виде кремнезема - SiO2 - песок, песчаник, кварц, глина.
Кремниевая (силиконовая) долина
Регион в штате Калифорния (США), отличающийся большой плотностью высоко технологичных компаний, связанных с производством компьютеров и микропроцессоров.
Кремний является природным полупроводником, используется как основной материал для производства микросхем. Кремний ближе, чем вы думаете: внутри гаджета, которым вы пользуетесь ;)
Основное и возбужденное состояние кремния
При возбуждении атома кремния электроны на s-подуровне распариваются и один из них переходит на p-подуровень.
Природные соединения
- SiO2 - кварц, кремнезем, гранит, песчаник, песок, глина
- SiO2 с примесью Fe 3+ - цитрин
- SiO2 с примесью Fe 2+ и Fe 3+ - аметист
Получение
В промышленности кремний получают путем восстановления кремнезема в электрических печах, алюминотермией.
В лабораторных условиях мелкий белый песок прокаливают с магнием:
SiO2 + Mg → (t) MgO + Si
Химические свойства
При обычных условиях без нагревания кремний реагирует только со фтором.
При нагревании кремний вступает в реакции с остальными галогенами (Cl, Br, I), углеродом, кислородом. При очень высоких температурах (1200 °C) кремний с кислородом образует оксид кремния II - несолеобразующий оксид.
Si + O2 → (t = 1200 °C) SiO
В подобных реакциях кремния проявляет свои окислительные способности.
Ca + Si → Ca2Si (силицид кальция)
С целью травления (удаления поверхностного слоя материала) кремниевые изделия можно погружать в раствор щелочи.
Оксид кремния IV - SiO2
Оксид кремния IV имеет атомное строение, обладает высокой прочностью и твердостью. Плавится при температуре +1730 °C градусов.
В промышленности оксид кремния IV получают нагреванием кремния в атмосфере кислорода.
В лабораторных условиях проводят реакция силиката натрия с уксусной кислотой. Кремниевая кислота сразу же распадается на SiO2, который выпадает в осадок, и воду.
-
Реакции с кислотами
Химически SiO2 устойчив к действию кислот, однако вступает в реакцию с газообразным фтороводородом (газом) и плавиковой кислотой (жидкостью).
SiO2 является кислотным оксидом, соответствует кремниевой кислоте. Вступая в реакции с основными оксидами и щелочами, образует соли данной кислоты - силикаты.
Так как чаще всего кислотные оксиды с солями не реагируют, тем более необычной кажется реакция оксида кремния IV с карбонатами.
Кремниевая кислота
Слабая, малорастворимая в воде кислота. Ее соли носят название - силикаты.
Поскольку кремниевая кислота малорастворима, то банальной реакцией SiO2 с водой ее не получить. Эту задачу решают в две стадии через ее соли - силикаты.
Кремниевая кислота слабая, нестойкая, легко распадается на воду и оксид кремния IV.
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
В промышленности кремний получают, восстанавливая расплав SiO2 водородом. Возможна также очистка кремния за счет предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью [1] — кремний производится на заводах в г. Физические свойства
Кристаллическая структура кремния.
Кристаллическая решетка кремния кубическая гранецентрированная типа Файл:Зонная структура Si.jpg
Схематическое изображение зонной структуры кремния [1]
Электрофизические свойства
Элементарный кремний — типичный непрямозонный полупроводник. Ширина запрещенной зоны при комнатной температуре 1,12 эВ, а при Т = 0 К составляет 1,21 эВ [2] . Концентрация носителей заряда в кремнии с собственной проводимостью при комнатной температуре 1,5·10 16 м -3 . На электрофизические свойства кристаллического кремния большое влияние оказывают содержащиеся в нем микропримеси. Для получения монокристаллов кремния с дырочной проводимостью в кремний вводят добавки элементов III-й группы — бора, алюминия, галлия и индия, с электронной проводимостью — добавки элементов V-й группы — фосфора, мышьяка или сурьмы. Электрические свойства кремния можно варьировать, изменяя условия обработки монокристаллов, в частности, обрабатывая поверхность кремния различными химическими агентами.
Подвижность электронов 1400 см^2/(в*c).
Химические свойства
В соединениях кремний склонен проявлять фтором, при этом образуется летучий тетрафторид кремния SiF4. При нагревании до температуры 400—500°C кремний реагирует с кислородом с образованием хлором, бромом и иодом — с образованием соответствующих легко летучих тетрагалогенидов SiHal4.
Образующийся в этой реакции силан SiH4 содержит примесь и других силанов, в частности, азотом кремний при температуре около 1000 °C образует нитрид Si3N4, с бором — термически и химически стойкие углерода — магния типа Ca2Si, Mg2Si и др.) и металлоподобные (силициды переходных металлов). Силициды активных металлов разлагаются под действием кислот, силициды переходных металлов химически стойки и под действием кислот не разлагаются. Металлоподобные силициды имеют высокие температуры плавления (до 2000 °C). Наиболее часто образуются металлоподобные силициды составов MeSi, Me3Si2, Me2Si3, Me5Si3 и MeSi2. Металлоподобные силициды химически инертны, устойчивы к действию кислорода даже при высоких температурах.
При восстановлении SiO2 кремнием при высоких температурах образуется оксид кремния (II) SiO.
Для кремния характерно образование кремнийорганических соединений, в которых атомы кремния соединены в длинные цепочки за счет мостиковых атомов кислорода —О—, а к каждому атому кремния, кроме двух атомов О, присоединены еще два органических радикала R1 и R2 = CH3, C2H5, C6H5, CH2CH2CF3 и др.
Применение
Для некоторых организмов кремний является важным биогеным элементом. Он входит в состав опорных образований у растений и скелетных — у животных. В больших количествах кремний концентрируют морские организмы — диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь - подсемейства Бамбуков и Рисовидных, в том числе - рис посевной. Мышечная ткань человека содержит (1-2)·10 -2 % кремния, костная ткань — 17·10 -4 %, кровь — 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.
Соединения кремния относительно нетоксичны. Но очень опасно вдыхание См. также
Литература
- Самсонов. Г. В. Силициды и их использование в технике. Киев, Изд-во АН УССР, 1959. 204 стр. с илл.
- Алёшин Е.П., Алёшин Н.Е. Рис. Москва, 1993. 504 стр. 100 рис.
Примечания
- ↑ Р Смит., Полупроводники: Пер. с англ. — М.: Мир, 1982. — 560 с, ил.
- ↑ Зи С., Физика полупроводниковых приборов: В 2-х книгах. Кн. 1. Пер. с англ. — М.: Мир, 1984. — 456 с, ил.
Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Кремний. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .
Кремний (Si от лат. Silicium ) — элемент четырнадцатой группы (по старой классификации — главной подгруппы четвёртой группы), третьего периода периодической системы химических элементов с атомным номером 14. Атомная масса 28,085. Неметалл, второй по распространённости химический элемент в земной коре (после кислорода). Исключительно важен для современной электроники.
Содержание
- 1 История
- 2 Происхождение названия
- 3 Нахождение в природе
- 4 Изотопы и их применение
- 5 Получение
- 6 Физические свойства
- 6.1 Электрофизические свойства
- 7.1 Гибридизация
- 7.2 Малая активность кремния
- 7.3 Реакция с галогенами
- 7.4 Реакция с кислородом
- 7.5 Получение монооксида кремния
- 7.6 Получение силанов
- 7.7 Реакция с азотом и бором
- 7.8 Получение карборунда
- 7.9 Кремний растворяет многие металлы
- 7.10 Силициды
- 7.11 Некоторые кремнийорганические соединения
- 7.12 Травление кислотами
- 7.13 Травление щелочами
- 9.1 В организме человека
История
Существование кремния было предсказано Йёнсом Якобом Берцелиусом в 1810 году. Позже, в 1823 году он выделил аморфный кремний путём восстановления фторида SiF4 калием, подробно описал его химические свойства.
Впервые в чистом виде кремний был выделен в 1811 году французскими учёными Жозефом Луи Гей-Люссаком и Луи Жаком Тенаром.
Происхождение названия
Нахождение в природе
Содержание кремния в земной коре составляет по разным данным 27,6—29,5 % по массе. Таким образом, по распространённости в земной коре кремний занимает второе место после кислорода. Концентрация в морской воде 3 мг/л.
Чаще всего в природе кремний встречается в виде кремнезёма — соединений на основе диоксида кремния (IV) SiO2 (около 12 % массы земной коры). Основные минералы и горные породы, образуемые диоксидом кремния, — это песок (речной и кварцевый), кварц и кварциты, кремень, полевые шпаты. Вторую по распространённости в природе группу соединений кремния составляют силикаты и алюмосиликаты.
Отмечены единичные факты нахождения чистого кремния в самородном виде.
Изотопы и их применение
Кремний состоит из стабильных изотопов 28 Si (92,23 %), 29 Si (4,67 %) и 30 Si (3,10 %). Остальные изотопы являются радиоактивными.
Ядро 29 Si (как и протон) имеет ядерный спин I = 1/2 и все шире используется в спектроскопии ЯМР. 31 Si, образующийся при действии нейтронов на 30 Si, имеет период полураспада равный 2,62 ч. Его можно определить по характеристическому β-излучению, и он очень удобен для количественного определения кремния методом нейтронно-активационного анализа. Радиоактивный нуклид 32 Si имеет самый большой период полураспада (~170 лет) и является мягким (низкоэнергетическим) β-излучателем.
Получение
Свободный кремний получается при прокаливании мелкого белого песка (диоксида кремния) с магнием:
SiO2 + 2Mg ⟶ 2MgO + Si
При этом образуется аморфный кремний, имеющий вид бурого порошка.
В промышленности кремний технической чистоты получают, восстанавливая расплав SiO2 коксом при температуре около 1800 °C в рудотермических печах шахтного типа. Чистота полученного таким образом кремния может достигать 99,9 % (основные примеси — углерод, металлы).
Возможна дальнейшая очистка кремния от примесей.
- Очистка в лабораторных условиях может быть проведена путём предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают газообразный моносилан SiH4. Моносилан очищают ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C .
- Очистка кремния в промышленных масштабах осуществляется путём непосредственного хлорирования кремния. При этом образуются соединения состава SiCl4, SiHCl3 и SiH2Cl2. Их различными способами очищают от примесей (как правило, перегонкой и диспропорционированием) и на заключительном этапе восстанавливают чистым водородом при температурах от 900 до 1100 °C .
- Разрабатываются более дешёвые, чистые и эффективные промышленные технологии очистки кремния. На 2010 г. к таковым можно отнести технологии очистки кремния с использованием фтора (вместо хлора); технологии, предусматривающие дистилляцию монооксида кремния; технологии, основанные на вытравливании примесей, концентрирующихся на межкристаллитных границах.
Содержание примесей в доочищенном кремнии может быть снижено до 10 −8 —10 −6 % по массе. Более подробно вопросы получения сверхчистого кремния рассмотрены в статье Поликристаллический кремний.
Способ получения кремния в чистом виде разработан Николаем Николаевичем Бекетовым.
Физические свойства
Кристаллическая решётка кремния кубическая гранецентрированная типа алмаза, параметр а = 0,54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твёрдость кремния значительно меньше, чем алмаза. Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Он прозрачен для инфракрасного излучения начиная с длины волны 1,1 мкм. Собственная концентрация носителей заряда — 5,81⋅10 15 м −3 (для температуры 300 K).
Электрофизические свойства
Элементарный кремний в монокристаллической форме является непрямозонным полупроводником. Ширина запрещённой зоны при комнатной температуре составляет 1,12 эВ, а при Т = 0 К — 1,21 эВ. Концентрация собственных носителей заряда в кремнии при нормальных условиях составляет около 1,5⋅10 10 см −3 .
На электрофизические свойства кристаллического кремния большое влияние оказывают содержащиеся в нём примеси. Для получения кристаллов кремния с дырочной проводимостью в кремний вводят атомы элементов III группы, таких, как бор, алюминий, галлий, индий. Для получения кристаллов кремния с электронной проводимостью в кремний вводят атомы элементов V группы, таких, как фосфор, мышьяк, сурьма.
При создании электронных приборов на основе кремния используется преимущественно приповерхностный слой монокристалла (толщиной до десятков мкм), поэтому качество поверхности кристалла может оказывать существенное влияние на электрофизические свойства кремния и, соответственно, на свойства созданного электронного прибора. При создании некоторых приборов используется технология, модифицирующая поверхность монокристалла, например, обработка поверхности кремния различными химическими реагентами и её облучение.
- Диэлектрическая проницаемость: 12
- Подвижность электронов: 1200—1450 см²/(В·c).
- Подвижность дырок: 500 см²/(В·c).
- Ширина запрещённой зоны 1,21 эВ при 0 К.
- Время жизни свободных электронов: 5 нс — 10 мс
- Длина свободного пробега электронов: порядка 1 мм.
- Длина свободного пробега дырок: порядка 0,2—0,6 мм.
Все значения приведены для нормальных условий.
Химические свойства
Гибридизация
Подобно атомам углерода, для атомов кремния является характерным состояние sp 3 -гибридизации орбиталей. В связи с гибридизацией чистый кристаллический кремний образует алмазоподобную решётку, в которой кремний четырёхвалентен. В соединениях кремний обычно также проявляет себя как четырёхвалентный элемент со степенью окисления +4 или −4. Встречаются двухвалентные соединения кремния, например, оксид кремния (II) — SiO.
Малая активность кремния
При нормальных условиях кремний химически малоактивен и активно реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF4.
Реакция с галогенами
При нагревании до температуры свыше 400—500 °C кремний реагирует с хлором, бромом и иодом — с образованием соответствующих легко летучих тетрагалогенидов SiHal4 и, возможно, галогенидов более сложного состава.
Реакция с кислородом
При нагревании до температуры свыше 400—500 °C кремний реагирует с кислородом с образованием диоксида SiO2.
Процесс сопровождается увеличением толщины слоя диоксида на поверхности, скорость процесса окисления лимитируется диффузией атомарного кислорода сквозь плёнку диоксида.
Получение монооксида кремния
При восстановлении SiO2 кремнием при температурах свыше 1200 °C образуется оксид кремния (II) — SiO.
Si + SiO2 → t>1200oC 2SiO
Этот процесс постоянно наблюдается при производстве кристаллов кремния методами Чохральского, направленной кристаллизации, потому что в них используются контейнеры из диоксида кремния, как наименее загрязняющего кремний материала.
Получение силанов
С водородом кремний непосредственно не реагирует. Cоединения кремния с водородом — силаны с общей формулой SinH2 n+2 — получают косвенным путём. Моносилан SiH4 (его часто называют просто силаном) выделяется при взаимодействии силицидов металлов с растворами кислот, например:
Образующийся в этой реакции силан SiH4 содержит примесь и других силанов, в частности, дисилана Si2H6 и трисилана Si3H8 , в которых имеется цепочка из атомов кремния, связанных между собой одинарными связями ( −Si−Si−Si− ).
Реакция с азотом и бором
С азотом и бором кремний реагирует при температуре около 1000 °C , образуя соответственно нитрид Si3N4 и термически и химически стойкие бориды SiB3, SiB6 и SiB12.
Получение карборунда
При температурах свыше 1000 °C можно получить соединение кремния и его ближайшего аналога по таблице Менделеева — углерода — карбид кремния SiC (карборунд), который характеризуется высокой твёрдостью и низкой химической активностью.
Si + C → t>1000oC SiC
Карборунд широко используется как абразивный материал. При этом, что интересно, расплав кремния ( 1415 °C ) может длительное время контактировать с углеродом в виде крупных кусков плотноспечённого мелкозернистого графита изостатического прессования, практически не растворяя и никак не взаимодействуя с последним.
Кремний растворяет многие металлы
Нижележащие элементы 4-й группы (Ge, Sn, Pb) неограниченно растворимы в кремнии, как и большинство других металлов.
Силициды
При нагревании кремния с металлами могут образовываться их соединения — силициды.
Силициды можно подразделить на две группы: ионно-ковалентные (силициды щелочных, щелочноземельных металлов и магния типа Ca2Si, Mg2Si и др.) и металлоподобные (силициды переходных металлов). Силициды активных металлов разлагаются под действием кислот, силициды переходных металлов химически стойки и под действием кислот не разлагаются. Металлоподобные силициды имеют высокие температуры плавления (до 2000 °C ). Наиболее часто образуются металлоподобные силициды составов MeSi, Me3Si2, Me2Si3, Me5Si3 и MeSi2. Металлоподобные силициды химически инертны, устойчивы к действию кислорода даже при высоких температурах.
Особо следует отметить, что с железом кремний образует эвтектическую смесь, что позволяет спекать (сплавлять) эти материалы для образования ферросилициевой керамики при температурах, заметно меньших, чем температуры плавления железа и кремния.
Некоторые кремнийорганические соединения
Для кремния характерно образование кремнийорганических соединений, в которых атомы кремния соединены в длинные цепочки за счёт мостиковых атомов кислорода −O− , а к каждому атому кремния, кроме двух атомов O , присоединены ещё два органических радикала R1 и R2=CH3 , C2H5 , C6H5 , CH2CH2CF3 и др.
Травление кислотами
Для травления кремния наиболее широко используют смесь плавиковой и азотной кислот. Некоторые специальные травители предусматривают добавку хромового ангидрида и иных веществ. При травлении кислотный травильный раствор быстро разогревается до температуры кипения, при этом скорость травления многократно возрастает.
Травление щелочами
Для травления кремния могут использоваться водные растворы щёлочей. Травление кремния в щелочных растворах начинается при температуре раствора более 60 °C .
Применение
Микроконтроллер 1993 года с УФ стиранием памяти 62E40 европейской фирмы STMicroelectronics. За окошечком виден кристалл микросхемы — кремниевая подложка с выполненной на ней схемой.
Технический кремний находит следующие применения:
Сверхчистый кремний преимущественно используется для производства одиночных электронных приборов (нелинейные пассивные элементы электрических схем) и однокристальных микросхем. Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде кристаллического кремния являются основным сырьевым материалом для солнечной энергетики.
Монокристаллический кремний — помимо электроники и солнечной энергетики, используется для изготовления зеркал газовых лазеров.
Соединения металлов с кремнием — силициды — являются широко употребляемыми в промышленности (например, электронной и атомной) материалами с широким спектром полезных химических, электрических и ядерных свойств (устойчивость к окислению, нейтронам и др.). Силициды ряда элементов являются важными термоэлектрическими материалами.
Соединения кремния служат основой для производства стекла и цемента. Производством стекла и цемента занимается силикатная промышленность. Она также выпускает силикатную керамику — кирпич, фарфор, фаянс и изделия из них.
Широко известен силикатный клей, применяемый в строительстве как сиккатив, а в пиротехнике и в быту для склеивания бумаги.
Получили широкое распространение силиконовые масла и силиконы — материалы на основе кремнийорганических соединений.
Биологическая роль
Для некоторых организмов кремний является важным биогенным элементом. Он входит в состав опорных образований у растений и скелетных — у животных. В больших количествах кремний концентрируют морские организмы — диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь — подсемейства Бамбуков и Рисовидных, в том числе — рис посевной.
Кремний встречается во многих растениях, которые необходимы для правильного развития, но не было доказано, что это необходимо для развития всех видов. Обычно его присутствие повышает устойчивость к вредителям, особенно грибам, препятствует их проникновению в ткани растений, насыщенных кремнеземом. Точно так же в случае животных необходимость в кремнии была продемонстрирована для шестилучевых губок, но, хотя это происходит в телах всех животных, это, как правило, не оказывается необходимым для них. У позвоночных это происходит в больших количествах в волосах и перьях (например, овечья шерсть содержит 0,02—0,08 % SiO2 ). Мышечная ткань человека содержит (1—2)⋅10 −2 % кремния, костная ткань — 17⋅10 −4 % , кровь — 3,9 мг/л . С пищей в организм человека ежедневно поступает до 1 г кремния.
В организме человека
Доказано, что кремний имеет важное значение для здоровья человека, в частности, для ногтей, волос, костей и кожи. Исследования показывают, что женщины в пременопаузе с более высоким потреблением биодоступного кремния имеют более высокую плотность костной ткани, а также, что добавки кремния может увеличить объем и плотность кости у пациентов с остеопорозом.
Организм человека нуждается в 20—30 мг кремния в день. Беременным женщинам, людям после операций на костях и пожилым людям требуется более высокая доза, так как количество этого элемента в органах уменьшается с возрастом. Это происходит главным образом в соединительной ткани, из которой строятся сухожилия, слизистые оболочки, стенки кровеносных сосудов, клапаны сердца, кожа и костно-суставная система. Кремний удаляет токсичные вещества из клеток, предпочтительно воздействует на капилляры, герметизирует их, повышает прочность костной ткани, укрепляет защитные силы организма от инфекций, предотвращает преждевременное старение. Снимает раздражения и воспаления кожи, улучшая её общий вид и предотвращая вялость, уменьшает выпадение волос, ускоряет их рост, укрепляет ногти. Поскольку кремний участвует в формировании костной ткани, обеспечивая эластичность кровеносных сосудов, участвующих в поглощении кальция из рациона и роста волос и ногтей, его дефицит в организме человека может вызвать костные аномалии, общее замедление роста, бесплодие, отсутствие развития и остеопороз. Диоксид кремния в нормальных условиях всегда является твёрдым биоинертным, неразлагаемым веществом, склонным к образованию пыли, состоящей из частиц с острыми режущими кромками. Вредное действие диоксида кремния и большинства силицидов и силикатов основано на раздражающем и фиброгенном действии, на накоплении вещества в ткани лёгких, вызывающем тяжёлую болезнь — силикоз. Для защиты органов дыхания от пылевых частиц используются противопылевые респираторы. Тем не менее, даже при использовании средств индивидуальной защиты носоглотка, горло у людей, систематически работающих в условиях запыленности соединениями кремния и особенно монооксидом кремния, имеют признаки воспалительных процессов на слизистых оболочках. Нормы предельно допустимых концентраций по кремнию привязаны к содержанию пыли диоксида кремния в воздухе. Это связано с особенностями химии кремния:
Кремний — очень редкий минеральный вид из класса самородных элементов. На самом деле это удивительно, как редко химический элемент кремний, составляющий в связанном виде не менее 27,6% массы земной коры, встречается в природе в чистом виде. Но кремний прочно связывается с кислородом и почти всегда находится в виде кремнезёма – диоксида кремния, SiO2 (семейство кварца) или в составе силикатов (SiO4 4- ). Самородный кремний как минерал был найден в продуктах вулканических испарений и как мельчайшие включения в самородном золоте.
СТРУКТУРА
Кристаллическая решётка кремния кубическая гранецентрированная типа алмаза, параметр а = 0,54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твёрдость кремния значительно меньше, чем алмаза. Имеет объемную структуру. Ядра атомов вместе с электронами на внутренних оболочках обладают положительным зарядом 4, который уравновешивается отрицательными зарядами четырех электронов на внешней оболочке. Вместе с электронами соседних атомов они образуют ковалентные связи на кристаллической решетке. Таким образом, на внешней оболочке находятся четыре своих электрона и четыре электрона, заимствованные у четырех соседних атомов. При температуре абсолютного нуля все электроны внешних оболочек участвуют в ковалентных связях. При этом кремний является идеальными изолятором, так как не имеет свободных электронов, создающих проводимость.
СВОЙСТВА
Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Он прозрачен для инфракрасного излучения начиная с длины волны 1,1 мкм. Собственная концентрация носителей заряда — 5,81·10 15 м −3 (для температуры 300 K).Температура плавления 1415 °C, температура кипения 2680 °C, плотность 2,33 г/см 3 . Обладает полупроводниковыми свойствами, его сопротивление понижается при повышении температуры.
Аморфный кремний – порошок бурого цвета на основе сильно разупорядоченной алмазоподобной структуры. Обладает большей реакционной способностью, чем кристаллический кремний.
МОРФОЛОГИЯ
Чаще всего в природе кремний встречается в виде кремнезёма — соединений на основе диоксида кремния (IV) SiO2 (около 12 % массы земной коры). Основные минералы и горные породы, образуемые диоксидом кремния, — это песок (речной и кварцевый), кварц и кварциты, кремень, полевые шпаты. Вторую по распространённости в природе группу соединений кремния составляют силикаты и алюмосиликаты.
Отмечены единичные факты нахождения чистого кремния в самородном виде.
ПРОИСХОЖДЕНИЕ
Содержание кремния в земной коре составляет по разным данным 27,6—29,5 % по массе. Таким образом по распространённости в земной коре кремний занимает второе место после кислорода. Концентрация в морской воде 3 мг/л. Отмечены единичные факты нахождения чистого кремния в самородном виде – мельчайшие включения (наноиндивиды) в ийолитах Горячегорского щелочно-габброидного массива (Кузнецкий Алатау, Красноярский край); в Карелии и на Кольском п-ове (по мат. изучения Кольской сверхглубокой скважины); микроскопические кристаллы в фумаролах вулканов Толбачик и Кудрявый (Камчатка).
ПРИМЕНЕНИЕ
Сверхчистый кремний преимущественно используется для производства одиночных электронных приборов (нелинейные пассивные элементы электрических схем) и однокристальных микросхем. Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде кристаллического кремния являются основным сырьевым материалом для солнечной энергетики.
Монокристаллический кремний — помимо электроники и солнечной энергетики, используется для изготовления зеркал газовых лазеров.
Соединения металлов с кремнием — силициды — являются широко употребляемыми в промышленности (например, электронной и атомной) материалами с широким спектром полезных химических, электрических и ядерных свойств (устойчивость к окислению, нейтронам и др.). Силициды ряда элементов являются важными термоэлектрическими материалами.
Соединения кремния служат основой для производства стекла и цемента. Производством стекла и цемента занимается силикатная промышленность. Она также выпускает силикатную керамику — кирпич, фарфор, фаянс и изделия из них. Широко известен силикатный клей, применяемый в строительстве как сиккатив, а в пиротехнике и в быту для склеивания бумаги. Получили широкое распространение силиконовые масла и силиконы — материалы на основе кремнийорганических соединений.
Читайте также: