Как сделать чип в домашних условиях
Большие дела начинаются с малого. Это высказывание справедливо для многих вещей, но в этой статье пойдет речь об изготовлении микропроцессоров, которыми нашпигованы самые разные бытовые приборы, что вас окружают, от смартфонов и до холодильников.
Содержание
Подготовка сырья
Компьютерные чипы сложнейшей структуры, способные производить мгновенные вычисления, рождаются огромных тиглях из кварцевого стекла, наполненных до краев песком, прошедшим многоступенчатую очистку.
Только после этого тигель с чистейшим электронным кремнием помещают в герметичную печь, которая наполнена аргоном. Конечно, можно было бы откачать из нее воздух, но создать идеальный вакуум на земле очень сложно, если не невозможно, а с химической точки зрения аргон дает практически тот же эффект. Этот инертный газ замещает кислород, защищая состав от окисления, а сам никак не реагирует с кремнием в тигле.
Только после этого бывший песок разогревается до 1420 градусов Цельсия, что всего на 6 градусов выше его точки плавления. Для этого используется графитовый нагреватель. Выбор материала, как и в случае с кварцем тигля, обусловлен тем, что графит не реагирует с кремнием и, следовательно, не может загрязнить материал будущего процессора.
В нагретый тигель опускается тонкий затравочный кристалл кремния, размером и формой напоминающий карандаш. Он должен запустить процесс кристаллизации. Дальнейшее можно воспроизвести в домашних условиях с раствором соли, сахара, лимонной кислоты или, например, медного купороса. Остывающий раствор начинает кристаллизироваться вокруг затравочной точки, образуя идеальную молекулярную решетку. Так выращивают кристаллы соли, так растет и кремний.
Затравочный кристалл кремния постепенно поднимают из тигля, со скоростью примерно полтора миллиметра в минуту, и с ним из раствора поднимается растущий монокристалл. Рост кристалла происходит медленно и на один тигель уходит в среднем 26 часов, так что производство работает круглосуточно.
Кристалл настолько прочен, что его вес может выдержать нить диаметром всего 3 миллиметра. Так что, готовую заготовку для процессоров вытягивают из тигля за тот самый затравочный кристалл.
После химического и рентгеноскопического исследования для проверки чистоты кристалла и правильности молекулярной решетки, заготовку помещают в установку для резки кремния. Она разделяет кристалл на пластины толщиной около 1 миллиметра при помощи проволочной пилы с алмазным напылением.
Конечно, не обходится без повреждений. Какой бы острой ни была пила, после нарезки, на поверхности пластин остаются микроскопические дефекты. Так что за нарезкой следует этап полировки.
Но даже после обработки в мощной шлифовальной машине пластины кремния ещё недостаточно гладкие, чтобы пустить их на производство микрочипов. Поэтому полировку повторяют снова и снова уже с использованием химических реагентов.
В чистой комнате
В 1958 году изобретателю интегральной микросхемы Джеку Кирби удалось совершить прорыв, разместить на своей схеме один транзистор. В наши дни число логических элементов микропроцессора перевалило за миллиард и продолжает удваиваться каждые два года в соответствие с законом Мура.
Работа с такими микроскопическими деталями ставит перед изготовителями чипов серьезный вызов, поскольку даже единственная пылинка может погубить будущее изделие. Поэтому цеха площадью в пару тысяч квадратных метров, полностью изолируют от внешнего мира, оснащают сложнейшими системами очистки и кондиционирования воздуха, делающими его 10000 раз чище, чем в хирургической палате.
Все специалисты, работающие в такой чистой комнате, не просто соблюдают стерильность, но и носят защитные костюмы из антистатических материалов, маски, перчатки. И все же, несмотря на все предосторожности, чтобы уменьшить риск брака, компании-производители процессоров стараются автоматизировать максимум операций, производимых в чистой комнате, возложив их на промышленных роботов.
Процессоры Intel восьмого поколения, известные под обозначением Coffee Lake, усеяны 14 нанометровыми транзисторами, AMD анонсировала второе поколение процессоров AMD Ryzen, известное под кодовым названием Pinnacle Ridge построенных на 12 нанометровых элементах. Новейшие видеокарты NVIDIA с архитектурой ядер Volta также построены по 12 нанометровой технологии. Система на чипе Qualcomm Snapdragon 835 еще миниатюрнее — всего 10 нанометров. Постоянно уменьшать размеры функциональных элементов процессора и, следовательно, увеличивать его производительность, удается благодаря совершенствованию технологии под названием фотолитография.
В общих чертах этот процесс можно описать следующим образом:
Сначала пластина кремния покрывается основой — материалом, которой должен будет стать частью будущей схемы, затем поверх равномерным слоем наносится химический реагент, чувствительный к свету. Этот состав выполнит всю работу, но суть позже.
Прежде из корпоративных архивов извлекается хранимая в строжайшем секрете подробная схема процессора. Ее нижний слой представляют в виде негатива и переносят на фотошаблон —защитную пластину, действующую подобно трафарету. Она значительно больше чипа, так что проходящий сквозь нее свет фокусируют при помощи сложной системы линз, уменьшая проецируемое изображение до нужного размера.
В тех местах, где свет не достигает кремния, пластина остается нетронутой, в освещенных он инициирует реакцию в химическом реагенте, меняющую его свойства. Затем будущий процессор обработают еще одним составом, и эти участки растворятся, оставив только те области, что не подвергались воздействию. Они-то и образуют токопроводящие логические элементы процессора.
После на пластину нанесут слой диэлектрика и поверх добавят новые компоненты процессора, опять же, при помощи фотолитографии.
Это завершающий этап обработки, после которого микрочипы проверяют на работоспособность. Несмотря на все меры предосторожности и многодневные усилия процент брака остается высок. Роботы выберут и вырежут из кремниевой пластины только 100% работоспособные чипы.
Они будут рассортированы по показателям энергоэффективности, токам, и максимальным рабочим частотам, получат различные обозначения и, в конечном счете, будут проданы по различной цене.
Последние штрихи
На пути к покупателям процессоры покидают чистую комнату и отправляются на сборочную линию, где готовую микросхему приклеивают на квадрат, называемый подложкой. Кристалл спаивается с ней в специальной печи при температуре 360 градусов Цельсия.
Затем чип накрывается крышкой. Она служит и для защиты все еще хрупкого кремния от повреждений и для отвода от него тепла. Вы наверняка хорошо ее себе представляете, именно к крышке будет прижиматься основание системы охлаждения, будь то кулер или теплообменник СВО (системы водяного охлаждения). Это не менее ответственный этап, чем предыдущий. Ведь от того, насколько хорошо крышка процессора отводит тепло от кристалла во многом зависит стабильность и скорость его работы, его будущая максимальная производительность.
Законченный микрочип промывают в растворе воды с растворителем, чтобы удалить лишний флюс и грязь, а затем проводят финальную проверку качества проделанной работы. Это могут быть как стресс-тесты производительности, как в чистой комнате, так и более суровые испытания. Так, чипы, предназначающиеся для работы в экстремальных условиях, например, в космической и военной отраслях, помещаются герметичные в корпуса из керамики и многократно тестируются при экстремальных температурах в вакуумных камерах.
Затем, в зависимости от назначения микропроцессора, он отправляется прямо в руки покупателей, а затем в сокеты материнских плат, или на другие заводы, где маленький кремниевый кристалл займет свое место на компьютерной плате видеокарты, космического спутника, умного холодильника, а может быть попадет в корпус смартфона.
"Кристалл настолько прочен, что его вес может выдержать нить диаметром всего 3 миллиметра"
Как понимать?
Читайте слитно со следующим предложением. 3мм кремниевой нити было бы достаточно, чтобы поднять весь кристалл, поэтому придумывать ничего не надо и вытащить его из тигля можно за тонкую заготовку, с которой он начал рост.
Для этого используется графический нагреватель.
Ошибочка, он ведь из графита, а не графики)
А я то лапух думал кремний в земле добывают) спасибо за статью!
P.S такой вот проц нашол на работе, продам не дорого)
Тигельный метод — метод Чохральского;
Трафареты — фотошаблоны;
Светочувствительный химический реагент — фоторезист;
Было бы неплохо привести банальный интегральный транзистор в разрезе.
На счет металлизации — сомневаюсь, что медь используют… серебро имеет самое малое сопротивление, что делает его лучшим проводником.
Наша электронная промышленность изготавливает микросхемы до сих пор на 150 мм пластинах… процент брака с пластин немыслимый, схемы передираются реверс-инженерингом и т.д.
все очень плохо господа, идите в микро(нано-)электронику, спасайте отрасль…
Уже лет 10 – 15 назад процессоры упёрлись в непреодолимый предел производительности: их рабочая тактовая частота редко превышает 3 ГГц. Ни уменьшение технологического процесса (14 нм., 10 нм., 7 нм., перспективные 3 нм. и менее), ни использование самых быстро переключающихся транзисторов в электро-схемах, ни увеличение напряжения, не дают ощутимой прибавки быстродействия современным процессорам…
Нынешний процессор – квадратная пластинка кристалла кремния размером в 2,5 сантиметров, на которую в несколько десятков тончайших строго упорядоченных слоёв нанесено примерно от 100 миллионов до 700 миллионов микроскопических транзисторов и других элементов электрической вычислительной системы.
Учитывая, что скорость электрического тока в проводнике – 300 тысяч километров секунду, тактовая частота процессора – 3 ГГц., все сигналы, обрабатываемые процессором, только двух видов: либо 1 (есть ток), либо 0 (нет тока), то за время одного такта электрический ток-сигнал успевает пройти расстояние всего лишь десять сантиметров. Если процессор – квадрат со сторонами 2,5 см., то по диагонали этот квадрат будет уже более 3,5 сантиметров. И если какому-либо из многочисленных электрических сигналов потребуется пройти из одного угла электрической цепи процессора в другой, то он может просто не успеть до начала следующего электрического такта процессора, учитывая, что электрическому сигналу нужно не только совершить множество транзисторных переходов коллектор-эмиттер-база с накоплениями нужных для срабатывания электрических зарядов, но ещё и пройти эти самые 3,5 сантиметров не по кратчайшей прямой линии, а по миллионам изгибов проводников, поворотов, обходов…
Но если какой-либо сигнал не успевает прийти из одной части процессора в другой, то процессор вынужден принудительно уменьшать тактовую частоту с рекордных для него 3 ГГц., уже только до 2 ГГц., или до 0,5 ГГц., и даже меньше, чтобы избежать ошибок при наслоениях следующего сигнала на незаконченный предшествующий, из-за чего компьютер зависает и требует остановки и полной перезагрузки.
Спрямление проводников между дальними транзисторами в плоском чипе не всегда возможно, так как, при высоких частотах электричества, любой относительно прямой провод становится мощной излучающей антенной, быстрой теряющей высокочастотный электрический ток, нарушающей электромагнитными помехами работу близко расположенных в процессоре соседних таких же проводников. Чтобы высокочастотные импульсы тока всё-таки доходили до отдалённых транзисторов в плоском процессоре, приходится увеличивать напряжение электрического тока в наиболее длинных проводниках тока, а часто и во всём процессоре, что приводит к его перегреву или даже к перегоранию и разрушению. Перегрев прямых проводников при передаче высокочастотных импульсов в процессоре частично снижается увеличением толщины этих проводников электричества, отведением сильно выделяющегося тепла в систему охлаждения и дополнительной многослойной термостойкой изоляцией с защитным экранированием всех соседних проводников и транзисторов.
Иногда в процессоре проще сделать большее количество изгибов тонких проводников, чтобы не повышать электрическое напряжение в них. Каждый короткий электрический импульс в проводе образует гребень высокочастотной электрической волны. Чтобы этот провод не стал излучающей антенной, его длина должна быть существенно короче длины волны электрического колебания (тактовой частоты). Если расстояние между транзисторами в высокочастотном процессоре большое, то их специально соединяют не кратчайшим прямым проводком, а длинным, но ломанным и зигзагообразным, со множеством поворотов. Тогда по существенно удлинённым проводкам каждый сигнал между транзисторами будет доходить со значительной задержкой, что приведёт к нежелательному общему снижению тактовой частоты процессора.
Кроме того, огромное количество близко расположенных параллельных и пересекающихся микроскопических проводков между транзисторами в процессоре в некоторых случаях могут образовывать пространственную катушку индуктивности с паразитными электрическими и магнитными токами, пластинки конденсатора, губительно накапливающие электрические заряды и затем выплёскивающие их в самый неподходящий момент, или соленоид, превращающий электричество в тепло, способное расплавить часть элементов процессора, и резисторы, которые своим сопротивлением при некоторых частотах тока также ведут к непредсказуемым побочным явлениям.
Чтобы уменьшить длину множества проводков электрического тока между транзисторами процессора, нужно радикально уменьшать расстояние между всеми транзисторами процессора и располагать их не на распластанной плоскости квадратного кристалла, а плотнее сгруппировать транзисторы в микроскопический плотный равносторонний объёмный кубик или даже в шарик.
На обычном кристалле 2,5х2,5=6,25 см 2 двухмерного процессора умещается около 125 миллионов транзисторов – в среднем по 11 180 транзисторов вдоль квадратного кристалла (447,2 на каждый миллиметр) и примерно по столько же транзисторов поперёк стандартного чипа. Но если эти транзисторы расположить компактнее – по пространственной форме ближе к трёхмерному и равностороннему кубу, то такие же 125 миллионов транзисторов, тех же размеров, легко уместятся в крохотный кубик, размером всего лишь 1,2х1,2х1,2 миллиметров, в каждой грани которого будет в среднем по 500 транзисторов в длину этого кубика, по 500 транзисторов в его ширину, и по 500 транзисторов в его высоту.
Расстояние между самыми дальними транзисторами в таком крохотном кубовидном процессоре не будет превышать двух миллиметров. А с учётом того, что между более плотно размещёнными транзисторами значительно сократится длина различных проводников со своими достаточно толстыми изоляторами, то между этими транзисторами освободится очень много места в таком кубике-процессоре, и транзисторы можно будет располагать ещё в несколько раз плотнее. Более того, с уменьшением расстояния между транзисторами в процессоре и с уменьшением электрического напряжения открываются большие возможности существенного уменьшения размеров не только проводков, но и самих транзисторов. Эти меры позволят увеличить рабочую тактовую частоту трёхмерного объёмного процессора в сотни раз по сравнению с плоской микросхемой, и отпадает надобность в её охлаждении.
Невероятное быстродействие компактного объёмного чипа ещё больше явит своё превосходство перед плоской микросхемой, если в объёмный микроскопический процессор вживить такую же объёмную компактную и быструю оперативную память.
Остаётся только заняться разработкой технологии изготовления компактных кубовидных чипов. На первых порах, вероятно, придётся использовать уже отработанные приёмы производства двухмерных плоских чипов, увеличивая на каждом крохотном кристалле количество слоёв в сотни и даже в тысячи раз.
пока ждал я значит запчасти на фен для станции, пользовался ей уже вовсю. нуачО?
очень чесались ручки попробовать отреболлить BGA чип =)))
много писать не буду, покажу этот процесс на фото.
кратко об этом.
современные схемотехнические решения влекут за собой плотность пайки почти невозможную для починки в домашних условиях. так и с BGA…( Ball Grid Array — массив шариков)
каждый шарик это электрический контакт чипа с платой. и очень нежелательно, когда это дело отрывается, либо наоборот спаивается вместе там, где не нужно.
размеры таких шариков могут быть очень небольшими…
суть проста. расскажу и покажу на примере чипа центрального процессора видеокарты.
видеокарта штука горячая, на неё ложится огромный труд по отрисовке кучи кадров на экране монитора в секунду.
это тяжело. чип греется. а олово на контактах в свою очередь тоже не холодным остаётся… так как чип видеокарты обычно большой, то неравномерность нагрева приводит к искажению геометрии платы, а следовательно отвалу чипа от платы. то есть шарики припоя тупо отрываются в некоторых местах от контактов… а это приводит к выходу из строя узла в целом. починить такую неисправность в домашних условиях практически невозможно. умельцы и ухари прожаривают такие чипы термофеном, заливая под чип какую нибудь жижу в виде спиртового раствора канифоли. в надежде, что отпаявшийся контакт вновь восстановится. но подобный "ремонт" является стрессом…иногда устройство поработает некоторое время, иногда вообще умирает от подобного рода экзекуции. правильный рецепт. это реболл — замена всех шариков на новые. а это вам не в духовке прогревать…
итак, взял я трупа для экспериментов( кстати умер после прожарки, смотрите на фото, после того, как я поднял чип с платы, отпаяв его, что под ним было) и попробовал перекатать шары.
очистил чип и плату от старого припоя
взял трафарет, закрепил на чипе и в каждую лунку положил по шарику припоя.
потом прогрел всё это дело до оплавления шариков
снял трафарет и уже чип припаял на плату…
времени у меня ушло… часов 5 примерно. естественно я не оживил эту видеокарту. там есть отвал чипа от подложки. когда феном прожаривали чип, вспучило плату чипа, оторвав кристалл кремния от его основания.
но некое представление о термопрофиле станции я получил. это опыт, который бесценнен =) хочу, очень хочу начать заниматься BGA пайкой. меня подобного рода занятие привлекает и завораживает. =)))
Комментарии 46
Ну вообще то не текстолитовая подложка чипа отваливается от платы, а кристалл от чипа. Он тоже паяется шарами и дорожками по меньше. Это происходит из за деградации металлов от времени и работы
Вообще то речь шла об отрыве шара припоя от подложки платы.
Но чипы умирают от отвала кристалла. Это все ерунда, что реболл помогает
Слишком категоричное заявление. Каждый случай частный.
Чтобы на время вернуть к жизни старую видяху, достаточно подуть 10 секунд на кристалл. Там на много легче плавится припой из за особенности конструкции. Из этого и следует, что отваливается кристалл от подложки. У меня тут есть статейка, где меняли проц на телеке, на самодельном нижнем подогреве semicon.su/samodelki/prostoj-podogrev-plat/
Ладно, я понял, что мы о разных вещах говорим.
как думаешь чисто феном перекатать можно пзу, купив с али сразу чип с шарами?
Думаю можно. Я бы смог, при нужде.
Но! Термопрофиль нужно соблюдать. Сначала феном равномерно прогреть всю плату. Градусов до 110, а дальше уже поднимать ПЗУ. Потом обратный процесс. С первого раза точно не получится, нужно руку набивать.
• устройство самостоятельно неоднократно перезагружается;
• изображения нет;
• устройство включается не с первого раза.
- Работы нужно проводить в хорошо вентилируемом помещении, так как испарения флюса при пайке могут причинить вред.
- В процессе реболлинга используются химикаты. Необходимо позаботиться о средствах личной защиты.
- Особую опасность для компонентов представляет статический заряд. Необходимо использовать антиэлектростатические вещества.
- Также следует помнить, что компонентам может нанести вред высокий уровень влажности, перепад температур и любое непредвиденное механическое воздействие.
Прежде всего, необходимо извлечь микросхему, которая находится в устройстве. Корпус нужно вскрыть аккуратно, чтобы ни в коем случае не повредить его. В ремонте нуждаются самые разные устройства: телефон, ноутбук, планшет, телевизор – поэтому хорошо бы иметь универсальный набор инструментов, который поможет осторожно вскрыть корпус любого из перечисленных устройств. Неудобно и ненадежно каждый раз выискивать что-то острое и подходящее из подручных средств, поэтому обратите внимание на специальные наборы инструментов для BGA реболлинга .
Вот здесь представлен самый полный такой набор на сегодняшний день. С ним не нужно будет изобретать велосипед, и мучиться, извлекая микросхему.
Демонтаж микросхемы
Реболлинг начинается с демонтажа микросхемы с платы. Ведь именно микросхема является объектом работы мастера. Демонтаж выполняется с помощью паяльной станции .
Выбор паяльных станций на рынке достаточно велик, и здесь можно растеряться. В идеале это должна быть инфракрасная паяльная станция с предметным столом, но на деле такой перфекционизм стоит достаточно дорого, и далеко не каждый мастер может позволить себе приобрести такую паяльную станцию. Поэтому чаще покупают что-то менее дорогое, но не менее эффективное. Например, можно остановиться на термовоздушной паяльной станции YIHUA-852D+ .
В ней есть все необходимое для выполнения качественной работы. В частности, в процессе пайки мастер сможет отслеживать текущую температуру паяльника и термофена на светодиодном дисплее.
Для паяльника предусмотрены жала двух типов, а термофен имеет три круглые насадки с разным диаметром сопел, что позволит изменять площадь обогреваемой поверхности.
В общем, эта паяльная станция достаточно популярна как среди любителей, так и среди профессионалов. Такая популярность вызвана, прежде всего, оптимальным соотношением цены и качества.
Во время демонтажа микросхема может потерять еще часть шариков, но этого может и не произойти. В принципе количество поврежденных шариков уже не важно, потому что следующий этап – это снятие шариковых выводов (деболлинг). Все оставшиеся шарики должны быть убраны, то есть мастер готовит место для нанесения новых шариков. Шариковые выводы удаляются с помощью паяльника. И здесь очень важно не повредить микросхему и не перегреть ее. Поэтому используя паяльную станцию YIHUA-852D+ , не забывайте поглядывать на дисплей, на котором отображается текущая температура.
Кроме паяльника с температурным контролем, Вам понадобится паяльный флюс, изопропиловые салфетки, плетенка, антистатический коврик, микроскоп и защитные очки.
Деболлинг
После того, как паяльник разогрет, и все необходимые меры защиты приняты, можно приступать к деболлингу.
Положив BGA-микросхему на антистатический коврик, равномерно нанесите на нее флюс. Важно, чтобы количество флюса было оптимальным. Если его будет недостаточно, то это затруднит процесс снятия шариков.
На флюс кладется плетенка, через нее паяльник прогревает и расплавляет шарики. Ни в коем случае не следует давить паяльником на шарики. Такими действиями можно повредить микросхему. Как только площадка для новых шариков готова, ее необходимо очистить изопропиловыми салфетками.
Проверка
Перед тем как наносить новые шарики, нужно проверить, не осталось ли каких-то частей от старых шариков, не возникли ли повреждения на микросхеме и хорошо ли очищена она после произведенных операций. Такая проверка должна выполняться с помощью микроскопа.
Лучше всего подойдет USB-микроскоп со стеклянными линзами, например, USB-микроскоп Supereyes B011 . Основная его особенность – сменный длиннофокусный объектив, который позволяет увеличить расстояние от линзы до микросхемы.
У многих других USB-микроскопов такого преимущества нет, а соответственно и нет такой высокой точности, позволяющей избежать искажений передаваемого на экран изображения. Этот микроскоп предназначен специально для пайки.
Но можно рассмотреть модель и подешевле, например, USB-микроскоп Supereyes B008 .
Это многофункциональный цифровой микроскоп, с помощью которого тоже можно эффективно проконтролировать состояние микросхемы.
Если после проверки были обнаружены остатки флюса на микросхеме, то от них обязательно нужно избавиться. Для этого можно использовать деионизованную (без ионов) воду и небольшую щетку. Потрите загрязненные места щеткой, промойте их, а потом просушите сухим воздухом. С помощью микроскопа выполните повторную проверку микросхемы.
Реболлинг
После того как изображение, передаваемое на экран компьютера с микроскопа, подтвердило, что все элементы шариковых выводов удалены, что микросхема не повреждена и полностью очищена, можно продолжить работы по ее восстановлению.
Для этого Вам понадобятся BGA-трафарет, держатель для трафарета, микроскоп, флюс, шарики припоя, пинцет и принадлежности для очистки (щетка, поддон). Трафарет – элемент в реболлинге необходимый.
Конечно, он должен подходить конкретно под данную микросхему. Поэтому, если Вы собираетесь заниматься реболлингом, то нужно приобрести сразу набор трафаретов , который позволит Вам выбрать то, что нужно для каждого конкретного случая.
Например, данный набор включает в себя 545 стальных трафаретов . Они хороши тем, что не теряют своей формы.
При выполнении реболлинга BGA прямого нагрева выбранный трафарет вставляется в держатель. Держатель , должен хорошо фиксировать трафарет. Например, можно использовать станцию для реболлинга .
К ее преимуществам относится надежность фиксации и хороший обзор микросхемы. Фактически микросхема в ней видна как на ладони. По специальной выемке выполняется движение двух упоров и пружины. Также конструкцией предусмотрены винты, которые обеспечивают ровную и надежную фиксацию трафарета. Ведь если трафарет помят и согнут, то качественно нанести на него шарики не получится.
Распределите по чистой поверхности микросхемы с помощью шприца флюс. Флюс наносится тонким слоем по всей контактной поверхности. Обратите внимание, чтобы слой флюса не был слишком толстым. При нагревании флюс начинает кипеть, и если его слишком много, то он просто выдавит шарики из трафарета. Если же флюса нанести слишком мало, то нормальной припайки не произойдет. Для равномерного распределения флюса используйте кисточку. Наложите трафарет на микросхему. Теперь все готово для нанесения шариков.
BGA шарики припоя продаются в банках. Обычно по 25 000 штук. Это оловянно-свинцовые шарики, которые и должны заменить удаленные и поврежденные. В каждый просвет трафарета помещается один шарик. Это важно и здесь нельзя ошибиться. Если случайно забыть припаять один шар, то потом это сделать будет очень трудно. Если же в одно отверстие трафарета попадет два шара, то они расплавятся и соединяться с соседними шарами, испортив всю работу.
Лучше всего действовать следующим образом. Всыпьте нужное количество шариков на трафарет и слегка раскачивайте его, пока шарики займут свои места. Шарикам, не вставшим на свои места, можно осторожно помочь с помощью зубочистки. После того как шарики установились на предназначенные для них места, полезно проконтролировать каждый шар и просвет под микроскопом.
Далее выполните пайку с помощью паяльной станции. Проверьте, чтобы все шарики расплавились. Аккуратно с помощью тонкого пинцета снимите трафарет с микросхемы. Для этого есть несколько секунд (не более 15 секунд с момента прекращения пайки), пока флюс не застыл. Если же опоздать, то придется разогревать микросхему вновь, чтобы добиться размягчения флюса. Далее микросхема моется, сушится и ее можно помещать на плату. Не забудьте, что после мойки опять нужен микроскоп, чтобы убедиться: все шары на своих местах, никаких царапин и повреждений, микросхема полностью очищена. После этого можно констатировать, что реболлинг прошел успешно.
BGA — это тип корпуса микросхем. Микросхема припаивается при помощи шариков к плате. Благодаря этому уменьшается площадь платы, и повышается компоновка в целом. Основные неисправности при этом это так называемый отвал микросхемы от платы. Поговорим поподробнее об основных способах накатки, трафаретах и процессе пайки.
Что такое микросхемы BGA
В зависимости от назначения и устройства микросхемы бывают разного размера, что в свою очередь влияет на диаметр и шаг шариков.
Например, мост от материнской платы компьютера и процессор от смартфона отличаются колоссально (еще меньше разве что шарики от процессора к подложке).
Так же BGA микросхемы часто покрывают компаундом в целях охлаждения, защиты от влаги и механического воздействия, однако при этом получается намного сложнее сделать замену такой микросхемы.
Что нужно для пайки BGA
Паяльная станция (фен и паяльник), припой (bga паста или шары), пинцет, изопропиловый спирт (или бензин калоша), оплетка для снятия припоя, термоскотч и трафареты. Еще понадобится нижний подогрев и инструменты для удаления компаунда с платы (химикаты, острые пинцеты и лезвия).
Какие бывают трафареты
Трафареты бывают очень разные.
Шаг между контактами, диаметры шариков и их уникальное расположение могут потребовать свой уникальный рисунок. Иногда они продаются как отдельно друг от друга, так и в сборке. Например, для iPhone разных моделей продаются прямоугольные трафареты сборники, где есть все необходимые рисунки.
На фотографии сверху расположен трафарет для процессора iPhone. Он универсален, и отлично подойдет для MTK процессоров.
Универсальные трафареты подходят только в том случае, если шаг и диаметр шариков совпадает и нет хаотичного расположения. То есть, контакты должны быть прямолинейными, но если контакты находятся чуть-чуть не по прямой линии, то тут такие трафареты не особо помогут. Специализированные же имеют рисунок, и ими легче наносить шарики.
Однако не всегда в наличии есть нужный трафарет и его отдельно приходится заказывать. Так же есть и 3D трафареты, которые очень удобно крепятся. Есть как одиночные трафареты, так и на одном листе все сразу.
Еще к трафаретам предъявляются высокие требования качества. Они не должны быть гнутыми, мятыми, иметь большие царапины, резко гнуться от небольшого нагрева. Также имеет значение качество отверстий. Они должны быть строго по рисунку BGA, одинаковых размеров и без перекосов.
Припой
Есть два основных типа припоя для накатки шаров.
Паяльная паста
Паяльная паста — это тоже самое, что и обычный припой с флюсом. Только она имеет пастообразную форму.
В этой пасте содержится флюс и микроскопические шарики из припоя.
Преимущества пасты:
- Пасту удобно наносить на трафарет;
- Не требует много места для хранения;
- Можно использовать на любом трафарете;
- Позволяет восстанавливать оторванные контакты на микросхеме и плате
Недостатки пасты:
- Шары получаются не одинаковых размеров;
- Паста со временем высыхает (можно, конечно, разбавить с другим флюсом, но у нее уже не будет прежних свойств);
- Шары можно получить только с использованием трафаретов;
- Большой расход для крупно габаритных микросхем.
Из популярных — можно использовать пасту от производителя Mechanic. Самые ходовые и популярные — это XG30 и XG50. Продается в небольших баночках (есть разные размеры) и шприцах.
Температура плавления от 180 ℃. Хранится при температура от 0 ℃ до +10℃. Кстати, шарики в этой пасте начинаются с диаметром от 25 микрон (а в некоторых баночках и от 20). Такой диаметр шариков в домашних условиях трудно сделать, поэтому самодельные пасты уступают заводским.
Готовые шарики
Готовые шарики продаются разных диаметров. Бывают как 0,15 мм, так и 1 мм.
Преимущества готовых шаров:
- Их проще паять, чем паяльную пасту (именно паять, а не наносить);
- Возможность нанесение шаров без трафарета (каждый шарик отдельно припаивается на микросхему);
- Одинаковые размеры шаров, по сравнению с пастой;
- Лишние шарики после накатки можно использовать повторно/
Недостатки готовых шаров:
- Нужно покупать много шариков разных диаметров, поэтому итоговая стоимость будет выше, по сравнению с пастой;
- Неудобное нанесение шариков на трафарет, их нужно перебирать и отсеивать лишнее;
- Требуется дополнительный флюс.
Выбор зависит в целом от потребностей и навыков. Кому-то проще будет с пастой. А при ремонте ПК, пасты будет мало, поэтому шары будут экономичнее. Все зависит от ситуации.
Какой паяльный флюс выбрать для BGA
Лучше всего подойдет пастообразный или гелевый флюс. Не пытайтесь паять жидкой канифолью или жиром. Канифоль и жир слабо распределяют температуру по шарикам, и еще начинают кипеть при нагреве. А это большой риск, поскольку микросхема может подскочить из-за большого парообразования. И в таком случае шарики слипнуться.
К тому же, спирто-канифоль будет негативно влиять на контакты под микросхемой.
Из бюджетных вариантов подойдет RMA 223 или его высококачественные клоны. Не покупайте дешевые подделки, которые стоят меньше 4$. Они плохо смачивают припой.
Отечественный вариант флюса для BGA — Interflux (интерфлюкс) IF 8300.
Если позволяет бюджет, то можно попробовать Martin HT00.0017.
Накатка шаров
При накатке шаров необходимо использовать чистый и ровный трафарет (особенно при пайке пастой).
Пример гнутого и грязного трафарета. Он не подойдет для накатки.
Если вы будете использовать гнутый и не ровный трафарет во время накатки шаров с помощью паяльной пасты, то весь припой слипнется под трафаретом. Это бесполезно.
Сама микросхема очищается от старых шаров, но не под корень, чтобы было легче установить ее на трафарет. Трафарет нужно установить ровно, чтобы все контактные площадки было видно через трафарет, без перекосов.
Пайка небольшой BGA eMMC микросхемы
Чистим микросхему изопропанолом. Ее контакты должны быть ровными. Если есть припой — удалите паяльников. Микросхему и трафарет во время пайки надо класть только на салфетки или деревянные дощечки. Металлическая поверхность будет впитывать в себя тепло, а деревянная, бумажная или воздушная нет.
Чем крепить микросхему к трафарету
Есть несколько вариантов. Первый — это термоскотч. Он быстро крепится, не оставляет после себя много клея и не экранирует высокую температуру. Из недостатков — быстро отклеивается и не надежно крепится по сравнению с алюминиевым термоскотчем скотчем.
Алюминиевый скотч надежно крепится к плате, но оставляет после себя много клея и экранирует температуру.
С одной стороны, алюминиевый лучше крепится, с другой быстрее и практичнее использовать обычный термоскотч. Начните учится с алюминиевого, пробуйте разные варианты.
Нанесение пасты
Пасту наносим обычной зубочисткой или лопаткой. Можно использовать ватные палочки, но они впитывают в себя много пасты.
На поверхности трафарета не должны оставаться большие комки припоя, иначе они слипнуться и придется их отпаивать.
Придерживание трафарета
Если во время нагрева трафарет начинает гнуться, и не получается нанести шары, то его нужно придерживать пинцетом.
Давить нужно не сильно, небольшим давлением. Нагреваем трафарет сначала до 100 °C, затем увеличиваем до температуры плавления пасты. Обычно это от 200 до 260 °C. Шарики должны сформироваться постепенно. Если быстро повысите температуру — флюс в паяльной пасте начнет кипеть и припой выпрыгнет с трафарета. Придется начинать все заново
Стекло и тачскрин
Также можно использовать стекло или тачскрин, чтобы придерживать трафарет.
Если перепады температур и давление буду высокими, то стекло может треснуть и лопнуть. Будьте осторожней и внимательны, используйте защитные очки.
Как снять микросхему с трафарета
Нельзя резко снимать микросхему с трафарета, гнуть его или выковыривать. Можно погнуть трафарет или сорвать BGA контакты. Если не получается снять микросхему, посмотрите на сторону отверстий. Припой на лицевой стороне не должен слипнуться с трафаретом. Попробуйте почистить трафарет с микросхемой изопропанолом или бензином Калоша щеткой несколько раз.
Далее, нагрейте микросхему до 120 °C в течении 30 секунд. Микросхему можно снимать пинцетом и только слегка разогнув трафарет, без резких движений.
Видео с примером
На видео используется другая микросхема, и пайка без пинцета.
Перекатываем шары на южном мосте
На этой микросхеме сначала нужно восстановить контакты.
Восстановление контактов
Наносим паяльную пасту тонким слоем и начинаем греть феном с 100 °C, плавно повышая до 200 °C.
И паяльная паста начинает зауживать контакты микро шариками. Почему не паяльником и обычным припоем? Они хуже подойдут для такой работы. Фен равномерно нагревает контакты, и микро шарики не слипаются сразу в большой комок припоя. А остальной припой убираем паяльником.
Один из участков восстановлен.
Таким образом проходим по всем контактам. После восстановления и удаления лишнего припоя чистим контакты изопропанолом и ватой.
Еще один способ крепления
Микросхема большая, поэтому трафарет одиночный. Для одиночных трафаретов есть специальный крепеж. Это каретка с двумя фиксаторами и пружина. Крепится шестигранником.
Фиксируем микросхему в крепеже и ровняем ее согласно шагу трафарета.
Нанесение пасты и пайка
Наносим паяльную пасту равномерно по всей площади.
На контактах микросхемы должно быть достаточно пасты, без дефицита и без перебора.
Круговыми движениями прогреваем трафарет сначала до 100 °C. Плавно повышаем температуру и одного края медленно нагреваем до 200 — 250 °C. Постепенно паста начнет превращаться в припой.
Чистим трафарет изопропанолом, чтобы разбавить флюс. Снова нагреваем трафарет до 100 °C в течении 20 секунд.
При помощи лезвия аккуратно поддеваем трафарет без резких движений со всех сторон и он сам отлипнет от южного моста (микросхемы).
Чистим микросхему от ненужных шариков и флюса. Теперь осталось подравнять шарики. Наносим флюс каплями по всей площади.
Нагреваем микросхему и шарики начинают равномерно распределяться на своих местах. После этого снова чистим микросхему от флюса.
Крепим трафарет к микросхеме и проверяем качество и наличие шариков.
Результат пайки.
Немного о нижнем подогреве
Далее, микросхема припаивается к плате. Такие массивные BGA детали трудно припаять к плате только с помощью фена. Мастера в сервисных центрах используют нижний подогрев. Он помогает разогреть плату. Обычно используются инфракрасные паяльные станции для пайки материнских плат.
Несмотря на то, что мобильные BGA микросхемы можно паять только феном, для уменьшения риска плохой пайки или отрыва контактов, мастера также используют нижний подогрев. Он меньше, чем для материнских плат, но не менее эффективен.
Готовые шары и способ нанесения
Отличается от пасты способом нанесения. Нанесите на микросхему флюс. Он нужен для того, чтобы склеить микросхему и трафарет на время пайки. И затем положите в контейнер трафарет с приклееной микросхемой и насыпьте шарики нужного диаметра. Зубочисткой распределите шарики и удалите лишние.
Пайка аналогична пасте.
Что такое компаунд и как его удалить с платы
Компаунд — это смола, которая позволяет увеличить прочность платы и уменьшить температуру работы микросхем. Также спасает плату при попадании влаги
Если нужно перепаять микросхему, компаунд придется удалить. Его наносят по разному. Производители могут нанести по краям контактов с SMD деталями. А могут и залить полностью.
Чем удалить смолу с платы
Можно удалить механически. Для этого нагреваем плату феном до 150 °C и зубочисткой или металлическим пинцетом снимаем кусочки компаунда с платы. Не всегда получается так сделать.
Еще можно попробовать химические растворители. Обычно продаются в магазине запчастей для мобильных телефонов.
А чтобы выпаять микросхему, у которой под контактами компаунд, нужен режущий пинцет. Процедура пайки аналогично обычной, но в этот раз нужно срезать компаунд.
BGA пайка процессора на примере планшета
Планшет загружался через раз. При давлении на процессор проходит экран загрузки, но процент зарядки 0%. Смена аккумулятора и попытки прошить аппарат ни к чему не привели. Так же режим инженера не доступен.
Возле процессора есть много рассыпухи, лучше закрыть ее плотным алюминиевым скотчем, чтобы случайно не сдуть.
Выпайка процессора
Обязательно нужно сфотографировать место пайки, чтобы не было проблем определить в какой стороне находится ключ. Сначала место пайки прогревается 100 — 150 °C на максимальном потоке воздуха. Где-то после минуты постепенно увеличиваем температуру. 200 °C, 250 °C и потолок 310 °C — 320 °C. При температурах от 250 пытаемся аккуратно пинцетом покачивать процессор. Если он стоит на мертво, то ждем еще (или увеличиваем температуру, но не больше 320 °C). Когда процессор от одного прикосновения пинцета пошатывается, то время снимать его. В данном случае все защищено фольгой, то риск задеть рассыпуху минимален, поэтому пинцетом можно откинуть его на плату.
Убираем припой
Лучше не использовать оплетку, дабы избежать повреждения маски. При помощи паяльника и немного припоя на жале (для разбавки припоя с тем, что на плате) легкими и не резкими движениями проходим по площадкам. Естественно перед этим наносим флюс на плату. Та же процедура и с самим процессором. Важно не перегреть его и не сорвать пятак.
Кстати, после выпайки обнаружилось, что на нескольких контактах был отвал процессора от платы. Так как слой меди был на процессоре целый, то удалось заново залудить оторванные контакты с шарами.
Реболлинг процессора
Реболлинг — это перепайка микросхемы. Это не замена старой на новую, по сути обновляются шарики на микросхеме для лучшего контакта с платой.
При помощи паяльной пасты и трафарета наносим новые шарики на процессор.
Температура пайки значительно ниже. 180 °C — 200 °C. Закрепляем процессор на трафарет при помощи все того же алюминиевого скотча.
После трафарета чистим процессор и наносим немного флюса. Затем снова греем его, чтобы шары точнее встали на свои места и лучше расплавились. Чистить после этой процедуры.
Затем, перед установкой, на плату ровным слоем наносим флюс. При помощи лопаток или зубочисток распределяем его равномерно, чтобы все контакты хорошо пропаялись и процессор не поплыл.
Ставим процессор по ключу и позиционируем его края. Так как вокруг много скотча это не составит особого труда. После этого также сначала греем плату на 100 — 150 °C, затем увеличиваем до 200 °C — 230 °C и аккуратно пытаемся пинцетом прикоснуться дабы убедиться, расплавился припой или нет. Если сделать это резко, то придется повторять все заново т.к. шары слипнуться.
Планшет начал включаться уже и без давления на процессор, однако после загрузки он выключался на 0%. Только теперь уже можно войти в режим инженера и попытаться сбросить планшет. После сброса аппарат включился нормально и показывает процесс зарядки, остаток и перестал отключаться.
Теперь нужно тщательно проверить все его функции. Камера, звук, микрофон, Wi-Fi, тачскрин.
Видео по теме
Альтернативная пайка BGA микросхем
Очень интересно видео. Способ накатки шаров паяльником без трафарета.
Читайте также: