Как работает антенна телевизионная
- Статьи
- Редакционные статьи
Предисловие
В цикле статей будет описан принцип работы, применение, реализация, а также составлены модели следующих типов антенн:
- Вибраторные антенны;
- Полосковые (patch) антенны;
- Антенные решетки;
- Антенны с бегущей волной (end-fire);
- Рупорные антенны;
- Зеркальные параболические антенны;
- Линзовые антенны;
- Вопросы согласования антенн с линиями питания.
Введение
Вся беспроводная передача данных основана на процессе распространения электромагнитного поля от источника в окружающее пространство. Антенна играет роль этого источника поля. Сам процесс излучения начинается с того, что под действием высокочастотных электромагнитных полей в излучающей системе (антенне) появляются сторонние токи и заряды. Токи и заряды в свою очередь подводятся от генератора по фидерному тракту (или фидера от слова "to feed" - питать).
Таким образом, в систему излучения электромагнитного поля входят: генератор колебаний, фидер и излучатель. Конечно, сам фидер и генератор непосредственно в излучении не участвуют (или точнее – не должны участвовать, если они правильно сконструированы), рисунок 1.
Рисунок 1 – Элементы системы излучения электромагнитного поля
Любая антенна обладает так называемым принципом "двойственности", который говорит о том, что любая антенна может быть как передающей (то есть преобразовывать волны линии передачи в расходящиеся волны окружающего пространства), так и приемной (осуществлять обратное преобразование).
Вне зависимости от реализации и вида антенны, она характеризуется следующими основными параметрами:
Диаграмма направленности (ДН). Это распределение напряженности (или энергии) поля в пространстве, показывает в каких направлениях и с какой мощностью излучает антенная система. Строится эта зависимость, как правило, в сферической системе координат. В зависимости от вида диаграммы (от того, насколько диаграмма "острая") различают изотропные антенны, слабонаправленные, высоконаправленные. От вида диаграммы направленности зависят такие важные характеристики антенны как коэффициент направленного действия (КНД) и коэффициент усилении (КУ). Ниже мы рассмотрим вид диаграммы направленности, а также КНД и КУ одной из самой простых антенн в разных плоскостях.
Коэффициент полезного действия антенны. Он должен быть достаточно высоким, а потери – малыми, именно по этой причине при реализации антенн используют металлические конструкции, обладающие высокой проводимостью и диэлектрики с малыми потерями.
Согласование линии передачи с нагрузкой. Так как и передающая и приемная антенны соединяются с линией питания, то ее входное сопротивление должно быть согласовано с волновым сопротивлением линии. Иначе будет возникать нежелательное возникновение отраженных волн, а наличие последних – это всегда уменьшение излучаемой мощности и источник дополнительных помех.
Вес и габариты. Ясно, что при реализации любого устройства нужно стремиться к получению его наименьших массогабаритных размеров, однако, отметим, что размеры антенны однозначно связаны с основной длиной волны, на которой работает антенна. Вообще в антенной технике не существует понятия "большая" и "маленькая" антенна. Размеры антенны принято характеризовать в длинах волн. Если а – это диаметр зеркала (например, зеркальной антенны), то ее размер можно записать так: это значит, что в диаметр зеркала укладывается 8 длин волн. Если такое зеркало работает в диапазоне 2.4 ГГц (длина волны 12,5 см), то его диаметр будет составлять 1 метр, а если это диапазон 900 МГц (длина волны 33 см) – то диаметр уже больше 2.5 метров.
Принцип работы передающей антенны
Рассмотрим принцип действия простейшего излучающего устройства. Если взять простую двухпроводную симметричную линию, то излучать в пространство она не будет, несмотря на то, что в ней текут токи высокой частоты, рисунок 2.
Рисунок 2 – Двухпроводная линия
Излучение будет отсутствовать за счет того, что токи I и I’ находятся в противофазе, что приводит их к взаимной компенсации. Для получения излучения можно развести концы двухпроводной линии, чтобы поля от токов I, I’ не могла компенсировать друг друга, рисунок 3.
Рисунок 3 – Разомкнутая двухпроводная линия
Такая антенна получила название симметричного вибратора. Распределение тока в вибраторе остается таким же, каким оно было на соответствующем участке двухпроводной линии. Для исследования поля, излученного антеннами из проводов, удобно представлять такую антенну в виде совокупности элементарных электрических вибраторов (ЭЭВ) малой длины (малой по сравнению с длиной волны). В пределах каждого такого элементарного вибратора амплитуду и фазу тока можно считать неизменными. В конечном итоге общее поле, излученное антенной, можно рассчитать как сумму полей, излученных отдельными элементарными вибраторами (в теории это называется принцип суперпозиции).
На практике ЭЭВ реализуется в виде диполя Герца. Это антенна является первым реализованным излучателем электромагнитных колебаний, рисунок 4.
Рисунок 4 – Диполь герца
Такой излучатель можно сделать, если на концах тонких проводов (длиной L, меньшей длины волны) установить проводящие тела с большой емкостью (например, металлические шары). Заряженные шары создают токи, которые значительно выше емкостных токов между проводами. Так обеспечивается равномерное распределение тока вдоль проводника. Отметим, что на практике диполь Герца практически не используется.
Характеристики антенны на примере симметричного вибратора
Ниже будет рассмотрена антенна (одна из самых простых в реализации) - симметричный вибратор. Назван он так потому, что напряженность поля (питающая проводник) подводится к его центру, а распределение тока по проводнику можно также считать симметричным. Сегодня существует большое количество программных пакетов, позволяющих производить электродинамических анализ различных устройств СВЧ и приборов оптического диапазона, среди них: FEKO, Microwave Studio, Ansys HFSS и др. Внешний вид и модель симметричного вибратора в программном пакете Ansys HFSS показана на рисунке 5.
Рисунок 5 – Симметричный вибратор
Cама антенна представляет собой развернутую двухпроводную линию, рассмотренную выше, в которой устанавливается режим стоячих волн.
В зависимости от того, какое отношение имеет длина вибратора L к длине волны λ, может формироваться различная геометрия диаграммы направленности. Для отношения 4L/λ=1 симметричный вибратор формирует диаграмму, показанную на рисунке 6:
Рисунок 6 – Трехмерная ДН симметричного вибратора длиной 4L/λ=2
Та же самая диаграмма, только нормированная и в вертикальной плоскости полярной системы координат:
Очевидно, что в горизонтальной плоскости диаграмма направленности будет иметь форму шара. Для наглядности вы можете себе представить, что посмотрите на трехмерный вид рисунка 6 сверху (на плоскость Phi).
Если отношение длины вибратора и длины волны 4L/λ=2, что соответствует увеличению частоты колебаний в 2 раза, то диаграмма направленности становится более "плоской" в вертикальной плоскости и как следствие имеет более высокий коэффициент усиления (примерно в 1.5 раза):
Рисунок 6 – Трехмерная ДН симметричного вибратора длиной 4L/λ=1
Дальнейшее увеличение частоты колебаний приводит к расщеплению диаграммы направленности:
Рисунок 7 – Расщепление диаграммы симметричного вибратора при увеличении частоты колебаний в 3 (слева) и 5 (справа) раз
Симметричный вибратор, несмотря на простоту, очень часто присутствует в качестве частей конструкции более сложных антенн. В заключении отметим, что все конструктивные реализации антенн создаются для того, чтобы создать направленность излучения в определенном направлении (или направлениях). Можно выделить два крупных класса способов реализации направленного излучения: это геометрическое воздействие на источник излучения (например, источник помещается в фокус параболоида или перед проводящим экраном) и воздействие токами, когда группа токов, сдвинутых по фазе, образуют суммарную направленную диаграмму (примером могут служить фазированные антенные решетки).
В дальнейшем будут рассмотрены различные модели антенн, перечисленных в аннотации.
ТВ антенна – это устройство для улучшения качества приема волн телевизионных каналов. Принятый с ее помощью сигнал передается на телевизор по коаксиальному кабелю, который обеспечивает минимальное искажение. Антенны могут использоваться для приема аналогового, цифрового либо спутникового сигнала, что зависит от их конструктивных особенностей. На данный момент на территории России самыми распространенными являются антенны аналогового телевидения. Его трансляцию ведет Останкинская башня, используя метровые и дециметровые волны.
Виды телевизионных антенн
Устройство является очень распространенным, поскольку практически ни один телевизор не сможет работать без антенны, за исключением тех, которые подключаются к кабельному телевидению. Различные населенные пункты имеют разную удаленность от ретранслятора. Одни дома могут быть расположены в сотнях километрах от них, а другие всего в нескольких шагах. Этот фактор напрямую влияет на мощность антенны, которая позволит принимать сигнал приемлемого качества, компенсируя удаленность.
Все ТВ антенны можно разделить на 3 категории:
- Комнатные.
- Уличные.
- Спутниковые.
Комнатная ТВ антенна
Эти устройства устанавливаются внутри помещения. Они самые дешевые, а кроме этого не требуют сложного монтажа. При выборе в их пользу не придется прокладывать коаксиальный кабель на улицу, проделывая сквозное отверстие в фасадной стене или раме окна. Огромным недостатком данной конструкции является слабый сигнал. В связи с этим их устанавливают только в зонах с расстоянием до 30 км от телецентра или ретранслятора. На более дальней дистанции получаемый сигнал будет иметь сильное искажение, что не позволит просматривать качественную картинку телепередач.
Комнатные антенны также могут оснащаться усилителем сигнала. Чем дальше от ретранслятора, тем более мощный усилитель потребуется. Данные устройства по конструкции разделяют на два вида:
- Стержневые.
- Рамочные.
Стержневые
Это самые слабые комнатные устройства. Они имеют 2 или 4 телескопических усов-вибраторов, которые и улавливают сигналы. Их длина обычно не превышает 1 м. Они подключаются к специальной подставке, которая внутри имеет согласующий трансформатор, передающий сигнал на коаксиальный кабель и дальше на телевизор. Использование такой конструкции имеет свои преимущества. Она легкая, а благодаря телескопическим усам может компактно складываться для транспортировки.
Если ретранслятор сигнала находится близко, усы можно сделать короткими, чтобы они не занимали полезное пространство. При отдаленности телебашни их высота ставится на максимум, что позволяет компенсировать расстояние. Зачастую стержневая ТВ антенна идет в комплекте с телевизором. Большинству она известна под народным названием «рожки». Такие антенны хорошо принимают волны в метровом диапазоне. Для проведения их настройки необходимо менять не только высоту, но и расстояние между усами, для чего предусматривается их крепление с помощью шарниров. Большим недостатком стержневой антенны является отсутствие универсальной настройки. Выставив положение усов для хорошего приема одного канала, второй начнет транслироваться на экране с помехами.
Рамочные
Более или менее совершенными являются устройства рамочного типа. Они улавливают сигналы в дециметровом диапазоне. Эти устройства имеют металлический контур, выполненный в виде рамки, которая закреплена на подставке. Такое оборудование все же лучше чем стержневое, но все равно далеко от идеала. Его не получится использовать при значительной удаленности от ретранслятора или телебашни.
Уличная ТВ антенна
Более мощными являются наружные антенны для приема телевизионного сигнала. Они устанавливаются на возвышении в зонах открытой видимости. Зачастую такие антенны можно увидеть на крышах многоэтажных домов. Жители частного сектора устанавливают их на вершине высокой металлической трубы зафиксированной вертикально. В этом случае обеспечивается возвышение на 10-15 м, что позволяет компенсировать искажение волн стенами домов и ветвями деревьев. Фактически, чем больше вокруг преград для сигнала, тем на более высокое расстояние необходимо поднять антенну.
Данные устройства бывают различной внешней конструкции, но все они разделяются на 2 вида по принципу действия:
- Активные.
- Пассивные.
Активная конструкция
Такая ТВ антенна имеет усилитель мощности, что позволяет принимать сигналы намного качественнее и компенсировать помехи. Подобные устройства выбираются в том случае, если ретранслятор находится далеко, а перед антенной имеются серьезные преграды рассеивающие сигналы, такие как дома, лесные массивы и линии электропередач. Также активное устройство потребуется, если установка ведется на низине, когда нет прямой видимости между источником трансляции и точкой приема.
Активные антенны могут передавать сигнал на несколько телевизоров. Для этого необходимо просто использовать специальный тройник для коаксиального кабеля. Применяемый у них усилитель требует отдельного источника питания. Для этого предусматривается понижающий блок на 12 вольт. Он подключается к коаксиальному кабелю у телевизора и подает напряжение к точке приема к усикам-вибраторам, возле которых находится скрытая в герметичном корпусе плата усилителя.
Пассивные устройства
Такие антенны стоят дешевле, но их можно выбирать только в том случае, если имеется прямая видимость без препятствий между точкой приема и оборудованием трансляции. В таких условиях использование усилителя не нужно. Жители отдельных домов могут проживать слишком близко к транслирующей башне, поэтому им нужна именно такая антенна. Но даже она может принимать сигнал с искажением от того, что он слишком сильный. В этом случае потребуется установка специального оборудования – аттенюатора. Он позволяет компенсировать этот недостаток, уменьшив силу сигнала до приемлемого для телевизора уровня.
Спутниковая антенна
Безусловно, самым лучшим оборудованием для получения телевизионного сигнала является спутниковая ТВ антенна. Она улавливает трансляцию не от расположенной на земле телебашни, а со спутника. Это массивная конструкция, которая стоит в разы дороже, чем уличные и тем более комнатные устройства. Антенна состоит из большой тарелки из металла окрашенной в белый цвет, которая выступает в роли экрана для фокусировки спутниковой трансляции. Попавшие на нее волны улавливаются конвертером, который выполнен в виде небольшой головки размером немного меньше кулака. Он настраивается на определенный спутник и принимает все телеканалы, которые тот передает. Количество конверторов на антенне отличается в зависимости от региона, но редко превышает 3 штуки.
Сигналы обычных трансляторов на земле и спутниковых отличаются, поэтому телевизор не может их воспринимать. В связи с этим между инвертором и телевизионным экраном устанавливается ресивер. Он представляет собой небольшое устройство, габариты которого немного меньше чем DVD приставки. Его задача заключается в трансформации спутникового сигнала в стандартный для телевизора.
Обычно, если в доме имеется два телевизора, то для каждого из них потребуется отдельная ТВ антенна, что обусловлено спецификой конвертера. При приеме одного канала со спутника он не может одновременно обрабатывать другой канал. Иными словами, если провести такое подключение, то все телевизоры будут показывать один телеканал.
Сравнительно недавно данная проблема была решена. Появились универсальные конвертеры, которые позволяют проводить подключение к двум телевизорам, сохранив возможность просмотра разных каналов. В их конструкции предусматривается два входа для подключения коаксиального кабеля. К сожалению, конструкция не идеальна. При выборе такого конвертера, будет использоваться одна ТВ антенна, но все равно к каждому телевизору потребуется подключить по ресиверу.
Спутниковые устройства передают на телевизор намного более качественный сигнал, чем наземные станции, поэтому пользуются большой популярностью, особенно в регионах, где трансляторы находится очень далеко. Даже вместе с очень сложным рельефом удастся смотреть телевизионные программы с идеальной картинкой, что было бы невозможно при использовании наружной антенны. Помехи при трансляции со спутника могут возникать только в случае сильной грозы или интенсивного снегопада.
Спутниковые антенны имеют массу преимуществ. Они безусловно лучше остальных видов, но у них имеется и недостаток. Помимо большей стоимости, они требуют квалифицированного обслуживания. Провести их установку самостоятельно вряд ли удастся, поскольку нужно изначально проверить качество сигнала и выставить тарелку в правильном направлении под нужным углом. Кроме этого, чтобы ресивер работал правильно, необходимо записать частоты каналов трансляции, которые периодически меняются. После прошивки можно будет просматривать все каналы на протяжении нескольких месяцев, после чего некоторые из них начнут исчезать, пока из сотен не останется всего несколько штук. Потребуется снова проводить перепрошивку. Сделать это самостоятельно сложно, потому что требуется специальный кабель и программное обеспечение с кодами каналов. Придется периодически обращаться в специализированные сервисные центры, услуги которых не бесплатны.
Если при нормальных погодных условиях спутниковая ТВ антенна начинает транслировать сигнал с помехами, то скорее всего это связано с отсутствием прямой видимости между тарелкой и спутником. Обычно это связано с разрастанием деревьев. Достаточно обрезать ветки и качество сигнала восстанавливается. Кроме этого, проблема может заключаться в изменение положения конвертера. При монтаже антенны он выставляется под правильным углом относительно расположение спутника. Если угол немного меняется, то качество приема искажается. Обычно во время сильного ветра плохо закрепленная тарелка может немного повернуться, буквально на несколько сантиметров. В этом случае требуется ее перенастройка. Это довольно сложно сделать без специального диагностического оборудования.
Новичку об основах в области экстремальных и чрезвычайных ситуаций, выживания, туризма. Также будет полезно рыбакам, охотникам и другим любителям природы и активного отдыха.
суббота, 19 декабря 2020 г.
Как работает антенна простыми словами
Если к выходу радиостанции подключить кусок провода, другой конец которого просто висит в воздухе, то в нём и будут бегать электроны. Бегающие электроны создают вокруг проводника магнитное поле, а на его конце электростатический потенциал, которые будут меняться с частотой, на которой работает радиостанция, то есть провод создаст радиоволну .
Анимированная схема дипольной антенны, излучающая радиоволны |
Один из проводников называют " излучающим " и подключают к центральной жиле кабеля, другой " противовесом " и подключают к оплётке кабеля.
Если расположить 2 куска провода каждый длиной 1/4 длины волны, один над другим, сопротивление такой антенны будет примерно 75 Ом, кроме того, она будет симметричная, то есть напрямую коаксиальным (не симметричным) кабелем её подключать не очень хорошая идея.
В укороченных антеннах часть провода скручивается в катушку. Т.е., например, для Си-Би радиостанций длина штыря равна 1/4 длины волны (2 метра 75 см на 27МГц), а длина штыря всего 2 метра, остаток находится в катушке, которая спрятана от непогоды в основании антенны.
Для штыря на машине - штырь это "излучатель", а кузов машины - это "противовес".
Провода короче или длиннее 1/4 длины волны будут обладать другим волновым сопротивлением. Если провода короче, то электроны будут успевать добежать до конца провода и хотеть бежать дальше, прежде чем их потянет обратно, соответственно они уткнуться в конец провода, поймут что там обрыв, то есть большое, бесконечное сопротивление и сопротивление всей антенны будет большим, тем больше, чем провод короче. Слишком длинный провод тоже будет работать не правильно, его сопротивление тоже будет выше, чем нужно.
Электрически короткую антенну сделать эффективной невозможно, она всегда проиграет электрической длине 1/4, электрически длинная антенна требует согласования по сопротивлению.
Разница "электрически короткой" от "физически короткой" в том, что можно скрутить в катушку провод достаточной длины, при этом физически катушка будет не такой длинной. Такая антенна будет достаточно эффективна, но на малом числе каналов и в любом случае проиграет штырю длиной 1/4 длины волны.
Ещё важно понимать, что от того, под каким углом друг к другу находятся проводники антенны, излучатель и противовес, тоже зависит не малое - её направленность (направление её излучения) и её волновое сопротивление.
Так же есть такое явление как коэффициент укорочения антенны . Это явление связано с тем, что проводники имеют толщину, а конец проводника ёмкость к окружающему пространству. Чем толще проводник антенны и чем выше частота на которой должна работать антенна, тем больше укорочение. Так же чем толще проводник из которого сделана антенна, тем она широкополоснее (больше каналов перекрывает).
Некоторые антенны соединяются с радиостанцией напрямую, а некоторые - с помощью кабеля, который называется фидером . Кабели бывают разного волнового сопротивления и разной конструкции.
Не нужно путать волновое сопротивление и омическое. Если тестером померить сопротивление кабеля то тестер покажет 1 Ом, хотя волновое сопротивление у этого кабеля может быть 75 Ом.
Волновое сопротивление коаксиального кабеля зависит от соотношения диаметров внутреннего проводника и внешнего проводника (у кабеля с волновым сопротивлением 50 Ом центральная жила толще чем у 75-ти Омного кабеля того же внешнего диаметра).
Антенны бывают:
- с горизонтальной поляризацией - проводники антенны расположен горизонтально
- с вертикальной поляризацией - проводники расположены вертикально
Кроме того, антенны могут быть:
- направленные - когда излучение и приём волн идёт в неком одном или нескольких направлениях.
- не направленные (с круговой диаграммой направленности) - когда радиоволны излучаются и принимаются равномерно со всех направлений.
Главное в статье, приблизительные расчёты:
- Длина волны = 300 / частота канала связи
- Минимальная длина эффективной антенны = длина волны / 2
Пример для 27,175 МГц:
300 / 27,175 = 11 метров 3 сантиметра длина волны.
Вся антенна для эффективной работы должна иметь длину 5 метров 51 сантиметр, соответственно излучающий проводник (или противовес) должны иметь длину 2 метра 75 сантиметров.
Основы антенн
Антенны используются для передачи и приема информации через изменения электромагнитных полей, которые окружают их. Данная статья представляет собой введение в теорию антенн для начинающих. В ней кратко рассматривается само понятие волны, падающая, отраженная и стоячая волны, КСВ, модуляция, дипольная антенна.
Краткая история электромагнетизма
Более 2600 лет назад (и, вероятно, еще раньше) древние греки обнаружили, что кусок янтаря, натёртый об мех, притягивает легкие предметы, например, перья. Примерно в то же время древние люди обнаружили магнитную руду, которая представляет собой куски намагниченной горной породы.
Потребовалось несколько сотен лет, чтобы определить, что существует два различных вида притяжения и отталкивания (магнитное и электрическое): одинаковые отталкиваются, а противоположные притягиваются. Затем прошло еще 2000 лет перед тем, как ученые впервые обнаружили, что эти два совершенно разных явления природы были неразрывно связаны между собой.
В начале девятнадцатого века Ханс Кристиан Эрстед помести провод перпендикулярно стрелке компаса и ничего не увидел. Но когда он повернул провод параллельно стрелке компаса и пропустил через него ток, стрелка отклонилась в одном направлении. Когда он пропустил ток через провод в противоположном направлении, стрелка компаса также отклонилась в противоположном направлении.
Ток, протекающий через проводник, расположенный перпендикулярно стрелке компаса, не вызывает ее движения
Стрелка компаса, расположенная параллельно проводнику, через который проходит ток. При изменении направления протекания тока на противоположное направление отклонение стрелки также меняется на противоположное.
Этот провод был первой передающей антенной, а компас был первым приемником. Ученые в то время просто не знали об этом.
Пока не очень элегантно, этот эксперимент дал подсказку о том, как работает вселенная – что заряды, двигающиеся через провод, создают магнитное поле, которое перпендекулярно проводу. (Ученые вскоре узнали, что это поле, окружающее проводник, имеет круглую форму, а не форму прямой, перпендикулярной проводнику.)
С помощью этой информации ученые смогли описать способы, с которыми электрические и магнитные поля взаимодействуют с электрическими зарядами, и сформировать основы понимания электромагнетизма.
Видео выше показывает, как нить лампы накаливания, работающей от переменного тока, изгибается между точками крепления при воздействии сильного магнитного поля.
Вскоре Никола Тесла в своей лаборатории без проводов зажег лампы, продемонстрировал первую игрушечную лодку с дистанционным управлением и создал систему переменного тока, которую сегодня мы используем по всему миру для передачи электрической энергии.
Менее чем через столетие после эксперимента Эрстеда, Гульельмо Маркони изобрел способ передачи первых беспроводных телеграфных сигналов через Атлантику.
И вот теперь, через два столетия после первого эксперимента с компасом, мы можем делать фотографии далеких планет и отправлять их через необъятный космос на устройства, которые мы можем держать в руках – и всё благодаря антеннам.
Фотография Плутона
Составные блоки
В нашей Вселенной действуют определенные правила. Люди обнаружили это тысячи лет назад, когда стали различать силу тяжести и способность одних объектов притягивать или отталкивать другие объекты. Затем люди обнаружили еще один набор правил притяжения и отталкивания, которые были полностью отделены от первого.
Люди разделили объекты по категориям и с помощью экспериментов определили, что положительный и отрицательный являются противоположными проявлениями свойства под названием «заряд», как и северный и южный полюса являются противоположными проявлениями чего-то под названием магнетизм, как и левая и правая руки являются двумя типами рук.
Изображение, показывающее зеркальную симметрию между электрическими зарядами, магнитными полюсами и руками
Что-то происходило в проводе Эрстеда независимо от того, была ли под ним стрелка компаса или нет. Это приводит к идее о неосязаемых электромагнитных полях, которые пронизывают Вселенную – и самые плотные материи, и вакуум. Каждый из наших объектов, отнесенных к категориям (+/-/N/S), влияет на пространство вокруг него и подвергается влиянию, если изменяется окружающее его поле.
Наложение волн (принцип суперпозиции)
Волны переносят энергию из одного места в другое.
Оставаясь нетронутым в течение длительного периода времени, поверхность воды в бассейне будет казаться плоской и неподвижной. Если побеспокоить воду в одном месте, молекулы воды побеспокоят соседние молекулы воды, которые побеспокоят соседние молекулы воды и так далее, пока волнение не дойдет до края бассейна.
Молекулы, которые начали цепь событий, остаются на месте, близкому их начальному расположению, но волнение достигнет края бассейна за секунды. Волны передают энергию без переноса вещества.
Одиночная волна в бассейне
Волны, как мы их описываем, это движение возмущения через среду. Одиночное начальное возмущение или миллион таких возмущений, к распространению возмущения приводит цепная реакция столкновений молекул в бассейне.
График распространения двух волн в бассейне
Когда две волны возмущают одну и ту же область пространства, их амплитуды будут складываться или вычитаться, создавая либо конструктивную, либо разрушающую интерференцию. Эта практика временного сложения или вычитания называется принципом суперпозиции.
График конструктивной интерференции волн
После того, как волны интерферируют в определенном месте, они продолжают движение в том же направлении и с той же скоростью, с какими они начали движение, так долго, пока они остаются в той же среде. Скорость и направление могут измениться, когда волна войдет в новую среду. Звуковые волны проходят через воздух, водные волны проходят через жидкости – вещества, через которые проходят волны, называются «средой».
Электромагнитные волны могут проходить через такие среды, как воздух и вода, или через пустоту космоса – они не требуют среды для распространения энергии из одного места в другое.
Отражение волны
При переходе волн из одной среды в другую часть их энергии передается, часть энергии отражается, а часть энергии рассеивается в окружающую среду.
Свойства материалов этих двух сред определяют соотношения передачи к отражению и рассеиванию. А также свойства материалов определяют, будет ли волна инвертироваться при отражении.
Передача и отражение энергии одиночного волнового импульса Непрерывная падающая волна (оранжевый) попадает на границу сред, где часть энергии отражается (светло-оранжевый), а часть энергии передается (темно-оранжевый)
Отражение и инверсия
Когда волны распространяются из одной среды в другую, часть падающей энергии отражается. В зависимости от свойств материалов сред волны могут инвертироваться при отражении.
Представьте себе длинную пружину, привязанную к столбу. Если вы слегка ударите пружину слева, возмущение распространится по всей длине пружины, пока оно не ударит столб; и в этот момент оно изменит направление и начнет распространяться назад к вам с другой стороны, справа. Это и есть инверсия.
Инверсия волны при отражении
Возьмите ту же самую пружину и привяжите ее к веревке, одетой петлей на столб. Если вы слегка ударите пружину слева, возмущение распространится по всей длине пружины, пока оно не ударит веревку; в этот момент оно изменит направление и начнет распространяться назад к вам с той же стороны, слева.
Отсутствие инверсии при отражении
Понимание отражения колебаний пружины поможет нам понять, что происходит внутри антенны.
Вот четыре ситуации, которые помогут проиллюстрировать понятия отражения и инверсии.
Инвертируется или нет волна при отражении, это определяется свойствами сред по обе стороны границы раздела.
Если волна инвертируется при отражении, и мы хотим получить конструктивную интерференцию в веревке, у нас должна быть веревка длиной, равной половине длины волны, полной длине волны или полутора длин волны и так далее: \(L = n <\lambda \over 2>\) , где n – целое положительное число.
Антенный резонанс основан на тех же принципах отражения и интерференции: выбирайте длину провода так, чтобы отраженная энергия могла интерферировать конструктивно, создавая больший сигнал, а, не уменьшая его.
Стоячие волны
Когда две волны одинаковой длины распространяются в одной среде, но в противоположных направлениях (изображены синим и оранжевым цветами в примерах ниже), они могут взаимодействовать и образовывать стоячую волну (изображена зеленым цветом в примерах ниже). Стоячие волны называются так потому, что в то время, как синие волны движутся влево, а оранжевые волны движутся вправо, зеленые стоячие волны не обладают никаким видимым движением в какую-либо сторону.
Падающая волна (оранжевая) и отраженная волна (синяя) объединяются, формируя стоячую волну (зеленая)
Стоячая волна возникает только при определенных условиях в среде, которые определяются режимом отражения и длиной падающей волны.
Коэффициент стоячей волны (КСВ, SWR)
Стоячие волны максимальной амплитуды возникают при очень точной комбинации частоты (или длины волны) и длины антенны.
К сожалению, нецелесообразно и фактически невозможно иметь антенны, которые обладают точной длиной, необходимой для формирования идеальной стоячей волны в требуемом диапазоне частот. К счастью, в этом нет необходимости. Антенна с одной фиксированной длиной может работать в небольшом диапазоне частот с небольшим, приемлемым уровнем расстройки.
Стоячие волны и напряжения в линии, показанные в течение периода колебаний
Длина антенны должна быть настроена для получения стоячей волны как можно более близкой к идеальной в центре рабочего диапазона частот.
Измерители КСВ (коэффициента стоячей волны) измеряют отношение передаваемой энергии к отраженной, и это отношение должно быть как можно ближе к 1:1.
Небольшие подстройки могут быть выполнены путем добавления в схему пассивных компонентов между оконечным каскадом усиления и антенной. Небольшие недостатки в настройке антенны могут вызвать появление разности потенциалов на конечном каскаде усиления, нагревание конечного участка передающей линии. Большой дисбаланс может вызвать подачу большой разности потенциалов обратно на схему передатчика, вызывая пробой диэлектрика, искрение и выход из строя оконечного усилителя.
Передача информации
Вероятно, наиболее известны два способа передачи информации: частотная модуляция (ЧМ, FM) и амплитудная модуляция (АМ, AM).
Частотная модуляция
При частотной модуляции информация передаются с помощью изменения частоты несущего колебания.
Частотная модуляция
Амплитудная модуляция
При амплитудной модуляции частота несущего колебания остается постоянной. Информация передается с помощью изменения амплитуды несущей.
Амплитудная модуляция
Дипольная антенна
Простая антенна, которая использует два одинаковых элемента, называется диполем. Самые короткие дипольные антенны работают с колебаниями, для которых длина антенны равна половине длины волны, и которые создают стоячие волны по всей длине антенны.
Стоячие волны в дипольной антенне
Изменяющиеся электрические поля вдоль длины антенны создают радиоволны, которые распространяются в направлениях от антенны.
Антенная, излучающая энергию
Антенны позволяют передавать и получать информацию, воздействуя и подвергаясь воздействию электромагнитных полей, пронизывающих вселенную. В следующей статье мы рассмотрим различные типы антенн, и как они работают.
Помимо свойств радиоволн, необходимо тщательно подбирать антенны, для достижения максимальных показателей при приеме/передаче сигнала.
Давайте ближе познакомимся с различными типами антенн и их предназначением.
Антенны — преобразуют энергию высокочастотного колебания от передатчика в электромагнитную волну, способную распространяться в пространстве. Или в случае приема, производит обратное преобразование — электромагнитную волну, в ВЧ колебания.
Диаграмма направленности — графическое представление коэффициента усиления антенны, в зависимости от ориентации антенны в пространстве.
Антенны
Симметричный вибратор
В простейшем случае состоит из двух токопроводящих отрезков, каждый из которых равен 1/4 длины волны.
Широко применяется для приема телевизионных передач, как самостоятельно, так и в составе комбинированных антенн.
Так, к примеру, если диапазон метровых волн телепередач проходит через отметку 200 МГц, то длина волны будет равна 1,5 м.
Каждый отрезок симметричного вибратора будет равен 0,375 метра.
Диаграмма направленности симметричного вибратора
В идеальных условиях, диаграмма направленности горизонтальной плоскости, представляет собой вытянутую восьмерку, расположенную перпендикулярно антенне. В вертикальной плоскости, диаграмма представляет собой окружность.
В реальных условиях, на горизонтальной диаграмме присутствуют четыре небольших лепестка, расположенных под углом 90 градусов друг к другу.
Из диаграммы можем сделать вывод о том, как располагать антенну, для достижения максимального усиления.
В случае не правильно подобранной длины вибратора, диаграмма направленности примет следующий вид:
Основное применение, в диапазонах коротких, метровых и дециметровых волн.
Несимметричный вибратор
Или попросту штыревая антенна, представляет из себя «половину» симметричного вибратора, установленного вертикально.
В качестве длины вибратора, применяют 1, 1/2 или 1/4 длины волны.
Диаграмма направленности следующая:
Представляет собой рассеченную вдоль «восьмерку». За счет того, что вторая половина «восьмерки» поглощается землей, коэффициент направленного действия у несимметричного вибратора в два раза больше, чем у симметричного, за счет того, что вся мощность излучается в более узком направлении.
Основное применение, в диапазонах ДВ, КВ, СВ, активно устанавливаются в качестве антенн на транспорте.
Наклонная V-образная
Конструкция не жесткая, собирается путем растягивания токопроводящих элемементов на кольях.
Имеет смещение диаграммы направленности в стороны противоположную острию буквы V
Применяется для связи в КВ диапазоне. Является штатной антенной военных радиостанций.
Антенна бегущей волны
Также имеет название — антенна наклонный луч.
Представляет из себя наклонную растяжку, длина которой в несколько раз больше длины волны. Высота подвеса антенны от 1 до 5 метров, в зависимости от диапазона работы.
Диаграмма направленности имеет ярко выраженный направленный лепесток, что говорит о хорошем усилении антенны.
Широко применяется в военных радиостанциях в КВ диапазоне.
В развернутом и свернутом состоянии выглядит так:
Антенна волновой канал
Здесь: 1 — фидер, 2 — рефлектор, 3 — директоры, 4 — активный вибратор.
Антенна с параллельными вибраторами и директорами, близкими к 0,5 длины волны, расположенными вдоль линии максимального излучения. Вибратор — активный, к нему подводятся ВЧ колебания, в директорах, наводятся ВЧ токи за счет поглощения ЭМ волны. Расстояние между рифлектором и директорами подпирается таким образом, чтобы при совпадении фаз ВЧ токов образовывался эффект бегущей волны.
За счет такой конструкции, антенна имеет явную направленность:
Рамочная антенна
Применяется для приема ТВ программ дециметрового диапазона.
Как разновидность — рамочная антенна с рефлектором:
Логопериодическая антенна
Свойства усиления большинства антенн сильно меняются в зависимости от длины волны. Одной из антенн, с постоянной диаграммой направленности на разных частотах, является ЛПА.
Отношение максимальной к минимальной длине волн для таких антенн превышает 10 — это довольно высокий коэффициент.
Такой эффект достигается применением разных по длине вибраторов, закрепленных на параллельных несущих.
Диаграмма направленности следующая:
Активно применяется в сотовой связи при строительстве репитеров, используя способность антенн, принимать сигналы сразу в нескольких частотных диапазонах: 900, 1800 и 2100 МГц.
Поляризация
Поляризация — это направленность вектора электрической составляющей электромагнитной волны в пространстве.
Различают: вертикальную, горизонтальную и круговую поляризацию.
Поляризация зависит от типа антенны и ее расположения.
К примеру, вертикально расположенный несимметричный вибратор, дает вертикальную поляризацию, а горизонтально расположенный — горизонтальную.
Антенны горизонтальной поляризации дают больший эффект, т.к. природные и индустриальные помехи, имеют в основном вертикальную поляризацию.
Горизонтально поляризованные волны, отражаются от препятствий менее интенсивно, чем вертикально.
При распространении вертикально поляризованных волн, земная поверхность поглощает на 25% меньше их энергии.
При прохождении ионосферы, происходит вращение плоскости поляризации, как следствие, на приемной стороне не совпадает вектор поляризации и КПД приемной части падает. Для решения проблемы, применяют круговую поляризацию.
Все эти факторы факторы следует учитывать при расчете радиолиний с максимальной эффективностью.
Читают сейчас
Редакторский дайджест
Присылаем лучшие статьи раз в месяц
Скоро на этот адрес придет письмо. Подтвердите подписку, если всё в силе.
- Скопировать ссылку
- ВКонтакте
- Telegram
Похожие публикации
- 22 декабря 2020 в 16:51
Самые необычные вышки сотовой связи — нестандартные решения стандартных задач
Сети 5G в России развернут на частотах для предыдущих поколений сотовой связи
Радиоволны из стратосферы: британский водородный БПЛА обеспечит регионы сотовой связью
Заказы
AdBlock похитил этот баннер, но баннеры не зубы — отрастут
Минуточку внимания
Комментарии 45
Ждем статью изготовление и упрощенный расчет антенн дома.
Интересная статья, но хотелось бы по больше практических знаний скажем для радио любителей и скажем готовые расчеты для типовых антенн для свободных(без лицензионных) частот 433/868/2400 МГц.
Тьфю, сам проглядел:
1- фидер, 2-рефлектор, 4 — активный вибратор, 3- директоры.
Странная нумерация на картинке :)
Куда самый узкий лепесток вытянут — туда основная мощща передатчика и бьёт
вопрос непонятен, потому и ответ такой: длина никак не подбирается, для fm-диапазон (88-108 МГц) достаточно длины проводника около 1м. А наушники служат антенной, т.к. просто заведены на УВЧ приёмника.
Когда-то интересовался телевизионными и УКВ-радиовещательными антеннами. Что-то не припомню, чтобы где-либо рекомендовались симметричные вибраторы общей длинной отличной от половины длинны волны. На картинке в статье изображен полуволновой разрезной вибратор, где четко указана его длина — λ/2, где λ-это длина волны.
Точно помню, как сам делал радиоантенну для УКВ радио на 88-107МГц, то брал за середину 100МГц, (с усилителем и приемником Т-7111 слушал рижские FM-радиостанции на удалении 150Км «в яме») общая длина вибратора получалась 1,5м (длина волны(м)=300/частота(МГц))
Нынче термин«Волновой канал» редко встречается, чаще такие антенны называют «яги» или Yagi.
Диаграммы симетричного вибратора, в зависимости от длины уса
КУ вы уже написали — 15 dBi
dBi — коэффициент усиления в децибелах по отношению к не направленной антенне (изотропной).
А выбирать готовую антенну нужно по следующим параметрам
1) Коэффициент усиления — чем больше тем лучше
2) Раскрыв главного лепестка в горизонтальной и вертикальной плоскости (указывается в градусах, направление максимально излучения). Тут выбирать исходя из задач и размещения, так же следует помнить, что чем уже луч — тем больше КУ.
3) Рабочая полоса частот (должна соответствовать полосе частот сигнала)
4) входное сопротивление антенны (должно быть точно равно выходному сопротивлению передатчика). В случае рассогласования входного и выходного сопротивлений, в лучшем случае снизится эффективность антенны, в худшем можно повредить выходные каскады передатчика.
Для Wi-Fi бытовых антенн последние два параметра по умолчанию согласованы с сетевыми картами (разве что диапазон придется выбрать 2,4 или 5 ГГц, но последний в Украине запрещен, не знаю как у вас). Так же следует помнить, что Wi-FI карта — это приемопередатчик и кроме антенны обращать внимание на мощность передатчика и чувствительность приемника (обычно задаются в dBm (дБм), чем больше первое и чем меньше второе — тем выше качество сигнала получится в итоге.
Читайте также: