Как перезагрузить poe
- Бренды
- Беспроводное оборудование
- Комплектующие
- Маршрутизаторы
- Сетевые коммутаторы
- Устройства Powerline
- VoIP оборудование
- Видеонаблюдение
- IPTV приставки
- Умный дом
- Компьютерная техника
Ajax Systems
Alfa Network
Edge-Core
Edimax
Escene
GAOKE
HPE Aruba Networks
Info-Sys
ITElite
Keenetic
LigoWave
Mercusys
Точки доступа
Контроллеры для точек доступа
Wi-Fi антенны
Материнские платы
Радиокарты
Беспроводные USB адаптеры
Усилитель сигнала Wi-Fi (репитер)
GPS-трекеры
Блоки питания, РОЕ, инжекторы
Грозозащита
Кабель UTP, FTP, коннекторы
Патч-корды
Патч-Панели
Сетевые компоненты и инструмент
Корпуса
Крепежная фурнитура
Переходники и кабели USB, HDMI, DVI, SATA, 3RCA
Пигтейлы
Удлинители и сетевые фильтры
SFP, SFP+ - модули/патч-корды/DAC-кабель
Неуправляемые коммутаторы
Управляемые коммутаторы
IP телефоны
VoIP шлюзы
IP-ATC
Аксессуары для VoIP-оборудования
IP-камеры
Регистраторы
Аксессуары для видеонаблюдения
Видеодомофоны
Аналоговые видеокамеры
Контроллеры для умного дома
Датчики
Сетевые карты и адаптеры
Принт-серверы
Сетевые накопители (NAS, DAS)
USB-концентраторы
Универсальные внешние аккумуляторы
В очередной раз фирма MikroTik порадовала нас своим новшеством, а именно — возможностью подавать POE-питание на локальные порты устройства с током потребления до 500 мА на порт.
Рис.1. Interface List.
В этой статье мы рассмотрим, как используя данную возможность сделать перезагрузку зависшего устройства, подключенного и получающего питание от RB750UP.
Бывают редкие ситуации, когда то или иное оборудование в силу то ли программной несовершенности, то ли от еще каких-либо причин перестаёт отвечать на запросы и не выполняет возложенных на него задач. В таких ситуациях приходится просто перезагружать данное устройство по питанию.
А что делать, если нет возможности постоянно «мониторить» такие устройства вручную, но и отказаться от них тоже нет возможности?
Допустим, что к нашему MikroTik-у подключено одно такое устройство.
192.168.88.1 — локальный адрес MikroTik (по умолчанию);
192.168.88.100 — наше устройство (находится в нашей локальной сети) подключено к 4-му порту (ether4-slave-local).
Рис.2. Script List.
Имя скрипта PING_TEST_POE
:local PINGCOUNT 5;
:local PINGIP "192.168.88.100";
:local POEINTERFACE "ether4-slave-local";
:log info message="PINGTEST START";
:local PINGRESULT [/ping $PINGIP count=$PINGCOUNT];
:if ($PINGRESULT > 0) do=
:log info message="PINGTEST OK";
:log info message="PINGTEST $POEINTERFACE POE OFF";
/interface ethernet set ether4-slave-local poe-out=off;
:log info message="PINGTEST $POEINTERFACE POE ON";
/interface ethernet set ether4-slave-local poe-out=on;
:log info message="PINGTEST END";
Создаём переменные и присваиваем им значения
:local - имя переменной, значение;
:local PINGCOUNT 5; - количество посылаемых пингов;
:local PINGIP "192.168.88.100"; - адрес нашего устройства;
:local POEINTERFACE "ether4-slave-local"; - интерфейс, на котором мы будем управлять питанием;
:log info message="PINGTEST START"; - пишем в лог PINGTEST START;
:local PINGRESULT [/ping $PINGIP count=$PINGCOUNT]; - пингуем наш адрес и результат заносим в переменную PINGRESULT;
:if ($PINGRESULT > 0) do= - анализируем переменную PINGRESULT, если отсутствуют ошибки, то пишем в лог:
:log info message="PINGTEST OK"; PINGTEST OK
> else= - если наше устройство не отвечает, то:
:log info message="PINGTEST $POEINTERFACE POE OFF"; - пишем в лог PINGTEST $POEINTERFACE POE OFF и.
/interface ethernet set ether4-slave-local poe-out=off; - выключаем POE для нашего устройства (на 4-м порту)
:delay 10; - выжидаем 10 секунд;
:log info message="PINGTEST $POEINTERFACE POE ON"; - пишем в лог PINGTEST $POEINTERFACE POE ON и.
/interface ethernet set ether4-slave-local poe-out=on; - включаем POE для нашего устройства (на 4-м порту)
:delay 10; - выжидаем 10 секунд, поскольку включение POE происходит не сразу
:log info message="PINGTEST END"; - пишем в лог PINGTEST END
Если мы запустим скрипт, то увидим, что скрипт будет оставлять информацию в лог:
Если устройство функционирует нормально:
Рис.3. Устройство функционирует нормально.
Если оно не отвечает на пинги:
Рис.4. Устройство не отвечает на пинги.
Ну и для достижения состояния «полной автоматизации» нам нужно, чтобы скрипт запускался периодически и проверял наше устройство. Для этого обратимся к планировщику (System-Scheduler).
Рис.5. Планировщик.
Итак, что мы видим:
Name - наглядное имя задачи;
Interval -период в 10 мин (ЧЧ:ММ:СС);
On Event: «/system script run PING_TEST_POE» - собственно выполняемое действие, запуск нашего скрипта.
Для чего это нужно?
Как писал поэт Владимир Маяковский: «Если звезды зажигаются, значит это кому-нибудь нужно». Ниже приводятся преимущества использования данной технологии.
Подключение устройств в труднодоступных местах
Например, на рабочем месте пользователя предусмотрены только две розетки: для монитора и системного блока. Часто такие требования возникают не из-за ошибки в планировании, а диктуются отраслевыми, региональными и другим стандартами ИТ-безопасности, пожарной безопасности, охраны труда и так далее.
Другой пример — если видеокамера или точка доступа закреплена под потолком, туда бывает сложно протянуть ещё и провод питания.
Управление по питанию
Вторая польза заключается в том, что PoE позволяет управлять устройством по питанию, например, временно отключать, включать или выполнять перезапуск (при зависании, обновлении или другой необходимости).
Это удобно, если приходится работать удалённо, или, когда устройства находятся в труднодоступных местах.
Особенно это полезно при работе с точками доступа, которые могут находиться на значительном расстоянии или вообще скрыты где-нибудь над фальшь-потолком.
Примечание. Практически все современные точки доступа от Zyxel поддерживают PoE
и в том числе новые модели с поддержкой Wi-Fi 6: как самые «бюджетные» NWA110AX так и более продвинутые WAX650S и WAX510D
Рисунок 1. Двухдиапазонная точка доступа 802.11ax (Wi-Fi 6) NWA110AX.
Упрощение обслуживания
Помимо удобства эксплуатации, применение PoE позволяет снять головную боль в плане закупки и ремонта адаптеров питания, обеспечения пользователей розетками, например, через приобретение PDU (проще говоря, «переносок-разветвителей). Меньше узлов — меньше точек отказа — меньше звонков в техподдержку.
Электробезопасность
Кто бы что ни говорил, а 220 Вольт — это много. Это больно бьёт, это убивает. А вот 57 вольт, что является максимумом для PoE — тоже неприятно опасно, но уже не так сильно. В некоторых организациях для того, чтобы сисадмин выполнял работу ещё и электрика — нужен специальный допуск. Регламентируется это всё теми же отраслевыми и региональными стандартами. А с PoE — ничего такого отродясь не знали. Слаботочка — она и есть слаботочка.
Эстетика
Техническому персоналу что в первую очередь нужно? Лишь бы работало. Но некоторым особенно продвинутым «товарищам» нужно, чтобы это было еще и «красиво». Например, чтобы «лишние» провода не свисали. Или чтобы всё одного цвета было. А PoE избавляет от этих самый «лишних» проводников. Особенно чувствительны к этому разного рода проверяющие, комиссии и «большое начальство».
Терминология: End-span и Mid-Span
End-span — устройство обеспечивающее подачу электропитания от начала кабельной
линии.
Классический пример: коммутатор IP телефонии обеспечивает электропитание небольшой сети стационарных телефонов в пределах офиса.
Другой пример — система видеонаблюдения на небольшом складе, где видеокамеры получает электропитание от коммутатора через PoE
Обычно в таких системах не предусмотрено дополнительных устройств для усиления питающего сигнала.
Mid-span — когда питающее устройство, подключается не с начала кабельной линии, а дополнительно между коммутатором и конечным устройством. Например, питание видеокамеры через инжектор, который включается после коммутатора в промежуточном кроссовом шкафу.
Ещё немного терминологии:
- PSE (Power Source Equipment) — питающее оборудование.
- PD (Powered Device) — питаемое устройство.
Ну и напоследок ответ на вопрос: какие устройства выбрать?
Выбор питающего устройства
Когда говорят о выборе устройства-источника для питания PoE, имеют в виду end-span, и обычно это коммутатор. Коммутатор — самый используемый вариант, они применяются и в IP телефонии, и видеонаблюдении, и при развешивании точек доступа, и при расстановке всевозможных датчиков охранных систем, контроллеров СКУД и так далее.
Тут важно учитывать несколько факторов:
- Совместимость сверху вниз. То есть более современное устройство, поддерживающее последний стандарт IEEE 802.3bt может использоваться для подключения и питания более старых устройств. А вот наоборот — нет.
- Удаленность PD (питаемых устройств). Помимо длины, которая есть «здесь и сейчас», стоит задуматься о будущем. Например, если будет расширяться складская территория, или намечается переезд офиса. Лучше заложить некоторый запас характеристик «на перспективу».
- Управление устройствами. Помимо варианта ««зайти» на коммутатор и вручную выключить-включить питание», существуют и другие возможности управления, например, с использованием протокола LLDP для видеокамер.
- Защита от импульсных перенапряжений (УЗИП) и других вредных факторов.
У Zyxel есть коммутаторы, которые советуют всем указанным выше требованиям. Это модели новой серии GS1350. Мы уже писали о них ранее Данная серия изначально позиционировалась как «Смарт-управляемые коммутаторы для систем видеонаблюдения» Однако они без проблем применяются и для других случаев, например, для питания телефонов, точек доступа и других устройств с PoE.
Рисунок 4. Специализированный управляемый коммутатор PoE GS1350-26HP.
Неуправляемые коммутаторы серии GS1300 также являются неплохим выбором. Подборку специализированных коммутаторов от Zyxel можно посмотреть на рисунке 5.
Рисунок 5. Модельный ряд управляемых и неуправляемых коммутаторов с поддержкой PoE от Zyxel.
Выбор устройства-потребителя
Обычно при выборе конечных устройств ориентируются на их потребительские характеристики, например, на качество картинки при выборе видеокамеры, поддержке Wi-Fi стандартов при выборе точек доступа и так далее.
Однако электропитание также накладывает свой отпечаток. Имеет смысл учитывать следующие факторы:
- Экономичность устройства.
- Возможности управления.
- Цена и качество.
Важно! Несмотря на заявленную совместимость сверху вниз не стоит 100% уповать на эту возможность. В хорошем проекте источник питания и потребители должны поддерживать один стандарт, желательно самый актуальный, иметь полную совместимость, приобретаться в расчёте на использование новых технологий, например, Wi-Fi 6. Переделка целого куска инфраструктуры, гордо именуемая «модернизацией», чаще всего обходится дороже, чем некоторые дополнительные затраты на этапе внедрения.
Стандарты PoE
Для новичков может возникнуть некоторая путаница. Существует 3 поколения
стандарта:
Первое поколение PoE (стандарт IEEE 802.3af) обеспечивает питание до 15,4 Вт постоянного тока для каждого подключенного устройства.
Второе поколение стандарт IEEE 802.3at, также называемое PoE+ может выдавать мощность до 30 Вт для каждого устройства. Данный стандарт используется для питания более «прожорливых» потребителей, например, камер видеонаблюдения Pan-Tilt-Zoom (PTZ) и беспроводных точек доступа 11n.
Для простоты восприятия основные отличия сведены в таблицу:
Параметры | PoE | PoE+ |
---|---|---|
Напряжения постоянного тока на питаемом устройстве | от 36 до 57 V (номинальное 48V) | от 42,5 до 57 V |
Напряжение, выдаваемого источником | от 44 до 57 V | от 50 до 57 V |
Максимальная мощность PoE источника | 15,4 Вт | 30 Вт |
Максимальная мощность, получаемая PoE потребителем | 12,95 Вт | 25,50 Вт |
Максимальный ток | 350 mA | 600 mA |
Максимальное сопротивление кабеля | 20 Ом (для cat.3) | 12,5 Ом (для cat.5) |
Классы питания | 0-3 | 0-4 |
Третье поколение описано стандартом IEEE 802.3bt.
Устройства, третьего поколения PoE позволяют обеспечить электропитание мощностью до 51 Вт по одному кабелю.
Примечание. Для питания устройств с использованием технологий стандарта IEEE 802.3bt. задействованы все восемь проводников кабеля современной витой пары (кат. 5 и выше), в то время как для первых двух поколений можно обойтись только четырьмя.
Если говорить о совместимости, то устройства PoE обратно совместимы — более мощное питающее устройство стандарта 802.3bt может использоваться для более старых потребителей PoE и PoE+ (802.3af, и 802.3at).
Может питающее устройство понять, какое подключили клиентское устройство: с PoE или без?
Если речь идёт об End-span, например, о коммутаторе, все происходит не просто, а очень просто. Источник питания, например, коммутатор с портами PoE включает подачу питания для данного порта только в том случае, если подключенное устройство (например, точка доступа) поддерживает технологию PoE.
Как это работает?
- В начале выполняется проверка: поддерживает ли устройство-клиент питание через PoE. Подается напряжение от 2,8 до 10Bольт, определяется входное сопротивление. В случае, когда полученные результаты можно признать удовлетворительными для питания чрез PoE, питающее устройство переходит к следующему этапу.
- Питающее устройство определяет требуемую мощность для питания устройства-клиента, для последующего управления этой мощностью. В зависимости от уровня потребления устройствам присваивается класс: от 0 до 4.
Однако если речь идёт о недорогих устройствах Mid-Span, включаемых после обычного сетевого оборудования (без PoE), здесь всё не так радужно. В таких случаях обычно в линию подаётся постоянное питание с фиксированными параметрами, а проверка на предмет: «Какое устройство находится на другом конце линии?», — не производится.
Что такое защиты от импульсных перенапряжений (УЗИП)?
В любой протяженной электрической цепи существует угроза возникновения краткосрочных импульсов, вызванных накоплением заряда (увеличения разности потенциала — перенапряжения) с последующим разрядом. Ниже приводятся причины возникновения коротких импульсов перенапряжений.
- Удар молнии поблизости от объекта, в том числе в молниеотвод вызывает электрический импульс и электромагнитное возмущение, что создает наведенную ЭДС в кабеле.
- Накопление статического электричества, вызванное ионизацией воздуха и другими внешними явлениями, приводит к появлению импульсов статического напряжения, способных вывести из строя оборудование.
- Перенапряжения вследствие коммутаций и переключений оборудования, например, коммутация патчкордов в кроссовой, включение дополнительных устройств питания, включение и отключение мощной нагрузки приводит к возникновению переходных процессов в электрических цепях с резкими скачками напряжения импульсного характера, что может привести к выходу из строя оборудования.
Примечание. Из-за ряда причин: удар молнии поблизости от объекта во время грозы, а также ионизации воздуха и накопления атмосферного электричества перед грозой такой вид защиты иногда называют «грозозащита». Не следует путать данный термин с термином «молниезащита» — то есть с защитой от непосредственного удара молнии.
Для предотвращения подобных угроз применяются устройства защиты от импульсных перенапряжений (УЗИП). Существует два варианта защиты (УЗИП): приобретение и установка внешних устройств и встраивание защиты в устройства с PoE.
Перезагрузка по PoE или power-cycle-ping на Mikrotik
Итак, у нас есть PoE-коммутатор/маршрутизатор Mikrotik, к которому подключены и от которого запитаны некоторые устройства, имеющие склонность к зависанию (IP-камеры, телефоны, другие маршрутизаторы и т.п.). Обладая разумной степенью ленивости, мы, конечно же, не хотим перезагружать эти устройства руками, отключая их от PoE-коммутатора, к тому же этот процесс желательно вообще автоматизировать. К счастью, разработчики из Mikrotik, вероятно, тоже склонны к разумной лени, и ввели в RouterOS 6.33 функцию power-cycle-ping. Рассмотрим ее подробнее.
- Во-первых, power-cycle-ping умеет мониторить доступность подключенных устройств по ICMP, ARP и MAC, причем поддерживается как IPv4, так и IPv6.
- Во-вторых, power-cycle-ping умеет отключать подачу питания на порт PoE, чтобы устройство выключилось, и возвращать его обратно, чтобы оно включилось. При этом не требуется написание каких бы то ни было скриптов - все сделает сама RouterOS, только скажите ей, по каким правилам эту перезагрузку выполнять.
- В-третьих, этих правил в power-cycle-ping может быть 2: если устройство недоступно (не отвечает на пинги), или по прошествии определенного времени.
Управлять power-cycle-ping можно как из консоли, так и из графического интерфейса.
Консольный вариант:
/interface ethernet poe set LAN4 power-cycle-ping-enabled=yes power-cycle-ping-address=10.20.30.40 power-cycle-ping-timeout=60s power-cycle-interval=24h
Разберемся с синтаксисом:
Графический интерфейс:
Таким образом в RouterOS 6.33, помимо багфиксов, мы получили очень неплохой инструмент, упрощающий управление нашими сетевыми ресурсами.
А что делать, когда нужно подключить устройства без поддержки PoE, а розетки для адаптера электропитания не предусмотрено?
Для таких ситуаций служит Passive PoE с использованием PoE сплиттера.
В этом случае источник питания не опрашивает подключенное устройство и не согласовывает его мощность. Питание просто подается по свободным проводникам витой пары при помощи PoE сплиттера.
PoE сплиттер разделяет поступающий по витой паре сигнал на данные и питание (12В-24В). Таким образом становится возможным подать питание и интегрировать в существующую инфраструктуру устройство без поддержки PoE. При данном способе подключения необходимо тщательно подбирать мощность источника питания, и его потребителя.
Какие минусы у PoE?
Более высокая стоимость устройств
Действительно, стоит дороже. Особенно если брать более или менее проверенное оборудование, а не полагаться на «авось», покупая «недорогие NoName решения».
С другой стороны, принцип «подороже — значит получше» работает не всегда. Поэтому охотиться за дорогим брендом имеет смысл, только если существуют дополнительные требования (есть список «разрешенного оборудования»).
Но даже при высокой цене на оборудование с PoE, его цена может быть гораздо ниже, чем организация «с нуля» дополнительной разветвлённой кабельной системы для электропитания удалённых устройств.
Падение мощности
При передаче низковольтного сигнала по тоненьким проволочкам КПД, скажем так, будет не очень. Чем дальше от питающего устройства, тем меньше электрической мощности останется для питания потребителей. Остальное тратится на сопротивление и нагрев проводов. С местным питанием (не PoE) дело обстоит проще. Сунул блок питания в розетку «и пошла энергия, пошла…»
Требования к квалификации персонала
Скажем так, хотя применение PoE не требует великих знаний, кое-какие детали
освоить нужно. Информацию по данному вопросу найти можно без особого труда, хотя, если человек ни разу не работал с данной технологией, он столкнется с некоторой разрозненностью и фрагментацией учебного материала.
Mikrotik
При наличии двух сертификатов (MTCNA и MTCRE) мой взор в первую очередь пал на Mikrotik. Выбор у данного производителя моделей с индексом P небольшой, например, вот эта.
ИМХО, слишком малый набор настроек. Что будет, если камера задумалась и пропустила пару пингов? — в ребут!
А если камера просто сдохла? Микротик будет каждую минуту её отрубать.
В моей практике было большое количество брака у CCR по блоку питания. А какой смысл в PoE коммутаторе, если он имеет высокий риск сдохнуть по питанию через полгода.
К тому же я не нашёл информации, что Микротик умеет работать с проводами длиной хотя бы 150+ метров…
Какие устройства поддерживаются?
В качестве питающих устройств могут выступать:
- коммутаторы,
- маршрутизаторы,
- и другое сетевое оборудование.
В качестве клиентских устройств могут использоваться:
- проводные телефоны,
- видеокамеры,
- точки доступа,
- различные датчики и другое периферийное оборудование.
Существуют также устройства для интеграции с оборудованием, не поддерживающим
PoE.
PoE на расстоянии 200+ метров. Мониторинг и автоматический перезапуск PoE клиентов
В моей практике запитать устройство и получить с него картинку на значительном удалении от свитча оказалось не самой простой задачей. Особенно когда от одной железки отходят сети к нескольким камерам на разном удалении.
Любое маломальски сложное устройство периодически виснет. Что-то реже, а что-то чаще, и это догма. Чаще всего это решается… верно… вот этим:
И если с другой стороны трубки не окажется нужных рук, придется отрывать свою пятую точку от стула и идти/ехать/лететь к устройству.
Особо неприятно, если этот девайс где-нибудь под крышей или на столбе… или в удаленном офисе.
Экономия — главный бич удаленного администрирования. Иногда насяльника-ма находит на алиэкспрессе камеру/свитч/роутер и объяснить почему эта железка стоит 700 рублей, а так которую предлагаешь больше 5к бывает непосильной задачей. Особенно, если это устройство уже в наличии и к тебе обращаются по принципу «а чего это оно у нас не работает?». Клиент всегда прав, особенно когда звонит, как можно реже. А это значит то, что это самое китайское г***о плохое устройство должно обладать некой самостоятельностью и желательно «пинаться» автоматически еще до того, как клиент это заметит.
Ситуацию готовы спасти управляемые PoE коммутаторы, благо на рынке они представлены в огромном количестве.
И тут проблема номер Раз: кем или вернее, чем осуществлять мониторинг, чтобы в случае «залипания» устройства push`ить команду сброса питания на порту PoE-свитча. Поднимание и настраивание сервера – это дополнительные телодвижения и железо.
Допустим, у меня на объекте: всего 15 видеокамер, видеорегистратор и… всё. При этом 7 находятся на расстоянии менее 100 м, еще 5 до 150, и еще 3 на расстоянии в 200 м. Надо упростить инфраструктуру так, чтобы на этот объект приезжать только с профилактикой.
Решение достаточно простое – наличие PoE свитча, который умеет мониторить камеры и сбрасывать питание на порту, а также «дотягивается» по кабелю на расстояние 200+ метров «без единого разрыва».
А если наоборот? Необходимо подключить PD (клиентское устройство с PoE) к обычному сетевому оборудованию?
Для питания клиентских устройств с PoE, можно использовать PoE инжектор, который и предназначен для подачи в сетевой кабель дополнительного электропитания.
PoE инжектор имеет на входе разъём RJ45 и разъем для подключения к источнику питания. На выходе у него единственный разъем RJ45 с PoE.
PoE инжектор принимает стандартный сетевой сигнал и приводит «инъекцию» электропитания в линию для сетевого подключения, что позволяет подключить на выходе устройство c PoE.
Рисунок 2. Zyxel PoE инжектор PoE12-HP
Какие требования к кабелю?
Для подключения при питании через PoE используется витая пара не ниже cat.5e.
Важно. Проводники должны быть медными, а не омедненными, толщиной не менее 0,51 мм (24 AWG). Сопротивление в проводниках не должно превышать 9,38Ом/100 м.
Обычно на практике рекомендуют не использовать кабели длиной более 75м, хотя стандарты 802.3af и 802.3at говорят о поддержке 100м. В случае с Passive PoE практические рекомендации носят ещё более пессимистичный характер — реальная длина кабеля для нормальной работы не должна превышать 60м.
Однако специальные коммутаторы, например, управляемые GS1350 Extended Range Essentials могут поддерживать устройства на расстоянии 250м при скорости 10Mb/s.
Рисунок 3. Иллюстрация работы Extended Range.
Технология PoE в вопросах и ответах
В статье в популярной форме вопрос-ответ рассказывается о ключевых моментах при использовании питания посредством PoE (Power over Ethernet). Приводятся различия между стандартами, даётся информация о защите устройств от импульсов перенапряжений и о других полезных вещах.
Полезные ссылки
Специальные управляемые коммутаторы серии GS1350 и неуправляемые GS1300 на сайте Zyxel
Что такое PoE?
PoE (Power over Ethernet) — технология подачи электропитания на клиентское устройство через витую пару стандарта Ethernet (обычно используется кабель cat.5. c разъемами RJ45). Один и тот же кабель используется и для передачи данных и для питания устройства.
Zyxel
При изучении представителей конкурирующих вендоров наткнулся на Хабре. Свитч от Zyxel серии GS1350. Стоит ощутимо дороже Микротика, но при этом мною проблем у Zyxel со «слабыми» блоками питания замечено не было.
Зуксель позиционирует свитчи GS1350 как, созданные специально для систем видеонаблюдения. Коммутаторы определяют, что камера «залипла» и перезагружают ее по питанию.
Метод определения зависания
До того, как я начал знакомиться с этим устройством, я представлял себе, что свитч анализирует тип трафика и как только видеопоток заканчивается — свитч сбрасывает питание…
Но все оказалось намного проще.
«Auto PD Recovery» может работать в двух режимах:
- LLDP, то есть устройство само предоставляет информацию о себе, если, конечно, устройство поддерживает. LLDP ответ пришел — значит железка «жива». Если ответа нет – принудительно «режем» питание и ждем отклика.
- Ping. Куда проще? Пингуем — Нет ответа — Ребутаем!
Только я не понял: в чём ТУТ специализация на видеокамерах?
Таким способом можно мониторить любое сетевое устройство. Даже то, которое не поддерживает PoE.
В случае зависания гаджета, коммутатор сбросит питание на порту и в логах мы увидим примерно это:
Максимальная длина кабеля.
Применение в этих коммутаторах режима Extended range позволяет увеличить максимальное расстояние до запитываемых устройство до 250 метров.
Мы привыкли к любому рекламному проспекту относиться скептически.
Я обжал два конца новой бухты (305 метров) и воткнул один в камеру, а другой в свитч. Камера не взлетела… Вроде бы ожидаемо ^_^
Посидел, почесал тыкву – зашел в настройки, поставил галочку «Extended range», и… секунд десять молчания – барабанная дробь… камера заработала! На 305 МЕТРАХ!
Таким образом, свитч GS1350 серии дотянулся не на 250 заявленных, а аж на 305 метров!
Правда, возможно, чит кроется еще и в качестве кабеля:
Rexant FTP Cat.6 и обошёлся почти 12к рублей
Если требуется бОльшая длина, можно состыковать несколько отрезков кабеля через какой-нибудь повторитель. Так же на конце можно подключить ещё одни poe свитч для подключения нескольких устройств.
Например, через UPVEL UP-215SGE (На сколько надёжный — не проверял. Просто попался в руки.) Он сам питается по PoE и запитывает устройства по PoE.
Но это отдельная тема под конкретные условия так, как требует проектирования с учетом всех факторов.
При включении опции «Extended range» порт автоматически установит протокол 802.3at и задаёт бюджет мощности в 33W.
Но стоит расставить приоритеты на случай, когда все потребители начнут активно кушать… Порты с низким приоритетом, в случае дефицита мощности на свитче, получат запрашиваемые мощности в последнюю очередь.
Грозозащита
Второй вопрос при расположении девайсов на свежем воздухе — защита от перепадов напряжения.
Значение ESD/Surge Protection:
ESD – 15 кВ / 8 кВ (Air/Contact);
Surge – 4 кВ (Ethernet Port).
Примечание. ESD – защита от электростатического напряжения, Surge –
защита от перенапряжения. Если возникнет статический разряд в воздухе до 15
киловольт, или 8 кВ электростатики при близком контакте, или временный скачок
напряжения до 4 киловольт — коммутатор имеет хорошие шансы пережить подобные
неприятности.
Ну и на корпусе есть куда прицепить заземление.
Надеюсь, мне этого проверять не придётся ^_^
Continuous PoE
Подаёт питание даже если устройство не отвечает. По умолчанию эта опция включена. Не забывайте проверить эту опцию перед обновлением прошивок на камерах. Иначе может быть неприятно…
Cisco like CLI
Для любителей консолей, а так же для автоматизации настройки, можно воспользоваться привычной CLI в стиле Cisco.
Если Вы не используете, например, telnet/snmp и другие протоколы, то рекомендую их выключить для повышения безопасности устройства.
Не без ложки дёгтя.
На коммутаторе есть пункт меню «Cloud Management»
Но при попытке заригистрироваться получаем это
На данный момент поддержка данных устройств на Nebula пока не включена. Производитель обещает их добавить в 2020 году. При этом обновлять прошивку свитча не надо будет!
Заключение
Zyxel GS1350 пока единственный коммутатор, который удовлетворил мои запросы:
- управляемый со стандартным набором функционала
- длина кабеля 200+ метров без стыков
- мониторинг и перезагрузка PoE потребителей
- простота и гибкость конфигурирования.
Желающих обсудить статью приглашаю в Telegram на мною созданные чаты:
1. @zyxelru — Тематический чат по Zyxel
2. @router_os — Тематический чат по Mikrotik
Читайте также: