Как называются программные системы компьютерного проектирования
Программное обеспечение для автоматизированного проектирования (или САПР) используется художниками-графиками, архитекторами, дизайнерами интерьеров, инженерами и многими другими при создании эскизов, технических чертежей, визуализаций для различных целей.
Генеральные подрядчики, строители, производители и смежные области используют эти возможности для представления готового проекта, а также для облегчения создания самого продукта. Термин «САПР для машиностроения» в нашей стране обычно используют в тех случаях, когда речь идет о пакетах программ, которые в англоязычной терминологии называются CAD/CAM/CAE. Другими словами, это ПО для автоматизированного проектирования (CAD), подготовки производства (CAM) и инженерного анализа (CAE). Существуют САПР и для других областей — разработки электронных приборов, строительного проектирования, но они имеют свою специфику.Идея автоматизировать проектирование зародилась в конце 50-х годов прошлого века, почти одновременно с появлением коммерческих компьютеров. А уже в начале 60 системы подготовки производства.
3D CAD дизайн позволяет манипулировать, извлекать 2D и отображать надежные технические данные в реалистичную модель. Павел Самута3D CAD дизайн позволяет манипулировать, извлекать и отображать надежные технические данные в реалистичную модель. В отличие от плоских чертежей и двумерных чертежей, опции 3D-рендеринга создают виртуальную среду, которая может быть представлена и даже изменена в режиме реального времени. Разумеется, не так уж сложно представить множество важных и разнообразных преимуществ таких рабочих моделей для ряда профессий.
Производители могут создавать виртуальные прототипы нового продукта и видеть его использование и потенциальные проблемы, не создавая физическое устройство. Павел СамутаНапример, архитекторы-проектировщики и их клиенты могут видеть, как может выглядеть проект, когда он полностью завершен до того, как фундамент заложен. Производители могут создавать виртуальные прототипы нового продукта и видеть его использование и потенциальные проблемы, не создавая физическое устройство. Инженеры могут создавать рабочие трехмерные модели инфраструктуры, которые города используют, чтобы в конечном итоге влиять на основные процессы принятия решений по построению новых дорожных развязок с учетом загруженности магистралей.
Все это, как говорится, не всегда было так. Во времена, предшествовавшие программному обеспечению для автоматизированного проектирования, рисовальщику и женщинам приходилось вручную чертить каждый эскиз и рабочий чертеж, независимо от того, насколько он утомителен (и он всегда был утомительным). Это забирало невероятно много времени и труда.
По истечении этого времени, но еще до появления компьютерного трехмерного моделирования, программное обеспечение для автоматизированного проектирования позволяло выполнять только базовые, фундаментальные, двумерные работы по рисованию.
Хотя это, безусловно, было полезным и улучшением по сравнению с нарисованными от руки методами, оно не заменяло необходимость завершения некоторого физического создания в процессе производства.
Учитывая, как далеко продвинулся этот процесс, стоит взглянуть на то, с чего он начался и как он попал туда, где он сейчас находится. Попутно полезно рассмотреть различные методы и процедуры, благодаря которым 3D CAD спроектировал инструмент, которым он является. Это обеспечивает дополнительный контекст и взгляд на то, как художники, дизайнеры и инженеры теперь делают свою работу более ценной и более эффективной одновременно.
Начало программного обеспечения для автоматизированного проектирования и 3D CAD проектирования восходит к середине двадцатого века. На самом деле, не стоит преуменьшать, что большая часть этого восходит к одному человеку, инженеру по имени Патрик Ханратти, отцу всего этого. В самом начале, когда он вышел из службы, и понятия не имел, что собирается делать, так как до этого его учили быть певцом. Его голосовые связки и легкие были повреждены в результате крушения B-29, в котором он выжил. Он должен был найти другую профессию. Одним из уроков, которые он должен был пройти, будучи стрелком с дистанционным управлением, был компьютерный курс. Компьютеры в те времена означали аналоговые компьютеры. Почти случайно обнаружил свою страсть к вычислительной технике и программированию, отвечая на вопросы газетных объявлений о поиске программистов в его родном городе Сан-Диего после возвращения из службы в ВВС во время корейской войны. Несмотря на отсутствие даже образования в колледже, Ханратти в 1954 году успешно начал карьеру программиста в авистроительной компании Convair. После того как Ханратти был нанят в подразделение Convair компании General Dynamic, он быстро освоил программирование, без какой-либо формальной подготовки. IBM 650 была первой машиной, на которой он работал. И параллельно с этим научился программировать Univac Scientific 1103-A от Сперри Рэнда.
Затем он перешел в компанию General Electric, которая опубликовала в газете объявление о том, что они создают компьютерную компанию в Фениксе, в 1957 году Патрик Дж. Ханратти где создал свой первый CAM-пакет PRONTO (Programme for Numerical Tooling Operations) это был язык системы CAM 2½ оси, который позволял программистам создавать движения инструмента для обработки деталей. Для управления машиной была изготовлена бумажная перфокарта, и она получила премию имени Джозефа Мари Жаккарда [в 1982 году от Общества числового контроля]. Позже - Machine Tool Director (MTD). Примерно в то же время Ханратти также начал работать в области компьютерной графики, что до того момента делали очень немногие.
Patrick Hanratty - пионер отрасли CAD/CAM, основатель компании Manufacturing and Consulting Services (MSC). Павел СамутаВ 1962 году Ханратти покинул GE, чтобы присоединиться к General Motors Corp. (Детройт), где он был частью команды в исследовательских лабораториях GM, расположенных в Техническом центре автопроизводителя (Уоррен, Мичиган). В GM Ханратти разработал графику для проекта GM DAC (Design Augmented by Computers), работая над экспериментальной обработкой, решая задачи, связанные с трех-, четырех- и пятиосевой обработкой поверхности.
Эта оригинальная программа САПР могла включать в себя адаптивную визуальную графику для пользователя, беспрецедентную разработку в вычислительной технике, пусть даже и двумерную по своей природе.
Первоначально система использовалась главным образом в автомобильной промышленности, и в конечном итоге она устарела, и на ее место пришла другая система.
В 1967 работал в Astronautics Corporation. После того, как Astronautics Corporation была поглощена McDonnel Douglas, из-за этого Ханратти начал свое собственное предприятие в 1970-х годах, чтобы создать и продать новое решение для разработки САПР.
В 1970 Ханратти основал собственную компанию Integrated Computer Systems ICS (позже перименованную в MSC) , где он и его команда разработали систему CAD / CAM для миникомпьютеров Redcor с использованием TPL (язык программирования). Несмотря на высокую оценку, программное обеспечение ICS INTERAPT не стало коммерческим успехом из-за узкой динамики реализации программного обеспечения и того факта, что Ханратти написал код на языке программирования, который на самом деле мало кто знал (это был его собственный, на самом деле), компания не просуществовала долго. В конце концов, Ханратти наконец-то добился коммерческого успеха в новой компании под названием Manufacturing and Consulting Services. Среди продуктов MSC такие известные системы как INTERART, ADAM, ANVILL. Его новое программное обеспечение называлось ADAM (Automated Drafting and Machining). которое в то время считалось единственной коммерчески доступной системой черчения и обработки, и оно учитывало интегративную и адаптивную систему для графического представления, технического рисования и производства.
Он написал программу на широко понятном и используемом языке программирования и создал ее для работы практически с любым доступным в то время вычислительным устройством, что, безусловно, помогло добиться благоприятного результата. С 1980-х годов пришли компьютерные терминалы UNIX, и весь ландшафт изменился. MCS продолжила разработку более механического САПР и программного обеспечения для производства, сначала с пакетом AD-2000, а затем с ПК и системами ANVIL CAD / CAM на базе UNIX. ANVIL был невероятно захватывающим продуктом в то время, потому что он действительно работал хорошо и преодолел ограничения, типичные для продуктов на базе ПК того времени. Тогда Ханратти был уже легендой. Он был блестящим и самоуверенным гением, который был в состоянии, когда он мог делать практически все, что хотел.
Поверхностные модели в программном обеспечении Ханратти ANVIL-5000 от MCS включали как каркасную, так и затененную версии. Павел СамутаОпираясь на новаторскую технологию, которая намного опережала остальную часть рынка, ANVIL-5000 реализовал согласованный пользовательский интерфейс для всех приложений, а также базу данных двойной точности для каркасных, поверхностных и твердотельных моделей и всех приложений, использующих эти данные. Одним из наиболее значительных дополнений стал новый дополнительный модуль моделирования твердых тел под названием OMNISOLIDS, в результате чего был получен один из первых пакетов CAD / CAM для плотной интеграции каркаса, поверхностей и твердых тел.
Многие наблюдатели говорят, 70% трехмерных механических CAD-систем восходят истоком к Ханратти и его программному коду ADAM.
Возможно, Ханратти начал целую область трехмерного графического интерфейса для дизайнеров и инженеров-механиков, но эта технология прошла долгий путь со времен расцвета 1970-х годов.
В результате начали появляться крупные коммерческие системы программного обеспечения для автоматизированного проектирования, такие как CATIA (сокращение от «автоматизированное трехмерное интерактивное приложение»), особенно в автомобильной и аэрокосмической областях.
Тем не менее, только после появления первоначального персонального компьютера IBM мир будет готов к широкому распространению программ САПР.
Возможно, однако, что ни один год не является более важным для программных решений для проектирования САПР, чем в 1982 году. В этом году группа программистов объединилась и создала компанию, известную как Autodesk. Год спустя они сделали свою флагманскую программу AutoCAD доступной всему миру, стоимостью всего 1 тыс. долл. Правда, в те времена ПК были 16-разрядными, и их мощности хватало лишь для двумерных построений — черчения и создания эскизов. Однако это не помешало новинке иметь огромный успех у пользователей.
Это был самый первый известный программный пакет для автоматизированного проектирования, созданный для компьютеров IBM, и снова поле изменилось навсегда.
Выпуск AutoCAD стал важным событием в развитии программного обеспечения для автоматизированного проектирования. У программистов в Autodesk была цель создать продукт, который бы делал почти все, что могли делать другие пакеты САПР в то время, при этом взимая небольшую часть расходов.
При этом Autodesk единолично изменила траекторию программирования САПР, а также коммерческой доступности и доступности в течение десятилетий. Тем не менее, почти все такие программы застряли в двух измерениях.
Программа, которая изменила ландшафт еще раз - и буквально дала миру дизайна другое измерение - была названа Pro / ENGINEER, созданной Parametric Technology Corporation.
Это было решение для автоматизированного проектирования, основанное на трехмерной геометрии и многофункциональных, основанных на значениях операциях для определения аспектов и узлов инженерных или конструкторских проектов. Программа на самом деле все еще используется на ПК Microsoft, хотя сейчас она называется Creo.
Pro / ENGINEER (Creo) также работал на компьютерных терминалах UNIX, поскольку персональные компьютеры не обладали достаточной вычислительной мощностью и скоростью, чтобы надежно использовать такое программное обеспечение, но это все еще было важным поворотным моментом. В конце концов, были выпущены две другие программы-единомышленники, ACIS и Parasolid, каждая из которых заложила основу для других программных пакетов для автоматизированного проектирования и графических решений.
Наиболее бурное развитие САПР происходило в 90-х годах, когда Intel выпустила процессор Pentium Pro, а Microsoft — систему Windows NT. Тогда на поле вышли новые игроки «средней весовой категории», которые заполнили нишу между дорогими продуктами, обладающими множеством функций, и программами типа AutoCAD. В результате сложилось существующее и поныне деление САПР на три класса: тяжелый, средний и легкий. Такая классификация возникла исторически, и хотя уже давно идут разговоры о том, что грани между классами постепенно стираются, они продолжают существовать, так как системы по-прежнему различаются и по цене, и по функциональным возможностям. Следует добавить, что кроме универсальных САПР также выпускаются и различные специализированные продукты, например, для инженерного анализа, расчета трубопроводов, анализа литья металлов, проектирования металлоконструкций и множества других конкретных задач.
Сегодня мир программного обеспечения для 3D-дизайна представляет собой виртуальную индустрию программ и графических пакетов, которые делают практически все, что может себе представить дизайнер или инженер. Вышеупомянутый Autodesk является лидером в области программ САПР, но есть и много других, некоторые из которых предназначены для более узких, более нишевых областей или интересов.
Вот несколько основных примеров современных решений для 3D CAD проектирования: Kompas 3D, 3ds Max, Blender, Cinema 4D, Rhino3D, SketchUp, Fusion 360 и SolidWorks. Хотите верьте, хотите нет, но на самом деле это все популярные решения в этой области, в зависимости от конкретных потребностей дизайнера или инженера.В настоящее время на рынке осталось лишь три САПР верхнего ценового класса — Unigraphics NX компании EDS, CATIA французской фирмы Dassault Systemes (которая продвигает ее вместе с IBM) и Pro/Engineer от РТС (Parametric Technology Corp.). Раньше мощных системы было больше, но после череды слияний и поглощений компаний, число пакетов сократилось. Упомянутые компании — лидеры в области САПР, а их продукты занимают львиную долю рынка в денежном выражении. Главная особенность «тяжелых» САПР — обширные функциональные возможности, высокая производительность и стабильность работы — все это результат длительного развития. Однако, эти системы немолоды — CATIA появилась в 1981 г., Pro/Engineer — в 1988 г., а Unigraphics NX, хотя и вышла в 2002 г., является результатом слияния двух весьма почтенных по возрасту систем — Unigraphics и I-Deas, полученных фирмой EDS в результате приобретения компаний Unigraphics и SDRC. Несмотря на то, что тяжелые системы стоят значительно дороже своих более «легких» собратьев (десятки тысяч долларов за одно рабочее место), затраты на их приобретение окупаются, особенно когда речь идет о сложном производстве, например машиностроении, двигателестроении, авиационной и аэрокосмической промышленности. Однако крупных клиентов, способных платить за САПР миллионы долларов не так много.
Некоторые из них даже совершенно бесплатны: Blender, Google SketchUp, MeshLab, BRL-CAD, K-3D, MakeHuman, OpenSCAD, что является довольно замечательным показателем того, как далеко продвинулась эта конкретная отрасль с момента ее появления.
Сейчас рынок развивается эволюционно: расширяются функциональные возможности продуктов, повышается производительность, упрощается использование. Но, возможно, вскоре нас ждет очередная революция. Аналитики из Cambashi считают, что это произойдет, когда поставщики САПР начнут использовать для хранения инженерных данных (чертежей, трехмерных моделей, списков материалов и т. д.) не файловые структуры, а стандартные базы данных SQL-типа. В результате инженерная информация станет структурированной, и управлять ею будет гораздо проще, чем теперь.
Работа, которую программы САПР способны обрабатывать и визуализировать, поистине замечательна, а в некоторых случаях просто захватывает дух. Павел СамутаРабота, которую эти программы способны обрабатывать и визуализировать, поистине замечательна, а в некоторых случаях просто захватывает дух. От архитектурных проектов и рабочих прототипов до интерактивной 3D-графики для развлекательных и медийных компаний, таких как стартап Kino-mo. Будь то дополнение к дому, новая линейка продуктов для производства или даже надежная и интерактивная видеоигра, программные решения для проектирования 3D CAD делают все это как никогда ранее.
CAD-системами (Computer-aided design) называется программное обеспечение, предназначенное для автоматизированного проектирования. Программный пакет, который призван создавать конструкторскую и технологическую документацию,3D модели и чертежи. Представляет собой организационно-техническую систему, состоящую из персонала и комплекса технических, программных и других средств автоматизации его деятельности. Также для обозначения подобных систем широко используется аббревиатура САПР.
Содержание
Производители проектных систем
Представленная в данном материале таблица представляет собой упорядоченный список производителей готовых программных решений в области систем проектирования, разработки и промышленного дизайна.
Особенности
Наряду с использованием систем автоматизации инженерных расчетов и анализа CAE в данное время, как правило, используются системы автоматизированного проектирования CAD (Computer-Aided Design). Сведения из CAD-систем поступают в CAM (Computer-aided manufacturing). Следует заметить, что английский термин «CAD» по отношению к промышленным системам имеет более узкое толкование, чем русский термин «САПР», поскольку в понятие «САПР», входит и CAD, и CAM, и CAE. Среди всех информационных технологий автоматизация проектирования занимает особое место. Прежде всего, автоматизация проектирования — это дисциплина синтетическая, так как в ее состав входят различные современные информационные технологии. Так, например, техническое обеспечение САПР базируется на эксплуатации вычислительных сетей и телекоммуникационных технологий, также САПР практикует использование персональных компьютеров и рабочих станций. Говоря о математическом обеспечении САПР, следует отметить разнообразие используемых методов: вычислительной математики, математического программирования, статистики, дискретной математики, искусственного интеллекта. Программные комплексы САПР можно сравнить с одними из самых сложных современных программных систем, в основе которых лежат такие операционные системы как Windows, Unix, и такие языки программирования как С, С++ и Java, а также современные CASE-технологии. Практически каждый инженер-разработчик должен обладать знаниями основ автоматизации проектирования и уметь работать со средствами САПР. Поскольку все проектные подразделения, офисы и конструкторские бюро оснащены компьютерами, работа конструктора таким инструментом как обычный кульман или расчеты с помощью логарифмической линейки стали неактуальны. Следовательно, предприятия, работающие без САПР или использующие ее в малой степени, становятся неконкурентоспособными, поскольку тратят на проектирование значительно больше времени и финансовых средств.
Типы САПР
- Математическое обеспечение САПР (МО) — этот вид подразумевает объединение математических методов, моделей и алгоритмов с целью выполнения проектирования)
- Лингвистическое обеспечение САПР (ЛО) — это обеспечение представляет собой выражение языками общения между проектировщиками и ЭВМ, языками обмена данными и языками программирования между техническими средствами САПР;
- Техническое обеспечение САПР (ТО) — сюда относятся периферийные устройства, ЭВМ, линии связи, обработка и вывод данных и т. д.;
- Информационное обеспечение САПР (ИО) — состоит из баз данных (БД), систем управления базами данных (СУБД) и других данных, которые используются при проектировании;
- Программное обеспечение САПР (ПО) — это, прежде всего компьютерные программы САПР;
- Методическое обеспечение (МетО) — включает в себя различного рода методики проектирования;
- Организационное обеспечение (ОО) — представляется штатными расписаниями, должностными инструкциями и другими документами, которые определяют работу проектного предприятия.
Структура САПР
Будучи одной из сложных систем, САПР состоит из двух подсистем: проектирующей и обслуживающей. Проектные процедуры выполняют проектирующие подсистемы . Подсистемы геометрического трехмерного моделирования механических объектов являются ярким примером проектирующих подсистем. С помощью обслуживающих подсистем осуществляется функционирование проектирующих подсистем, их единство, как правило, называют системной средой или оболочкой САПР. Характерными обслуживающими подсистемами считаются подсистемы управления процессом проектирования (DesPM — Design Process Management), управления проектными данными (PDM — Product Data Management). Диалоговая подсистема (ДП); СУБД; инструментальная подсистема; монитор — обеспечивающий взаимодействие всех подсистем и управление их выполнением — это обслуживающие подсистемы ПО. Диалоговая подсистема ПО дает возможность интерактивного взаимодействия пользователя САПР с управляющей и проектирующими подсистемами ПО, а также подготовку и корректирование первоначальных данных, ознакомление с результатами проектирующих подсистем, функционирующих в пакетном режиме.
Структура ПО САПР определяется следующими факторами:
- аспектами и уровнем создаваемых с помощью ПО описаний, проектируемых объектов и предметной областью;
- степенью автоматизации конкретных проектных операций и процедур;
- ресурсами, предоставленными для разработки ПО;
- архитектурой и составом технических средств, режимом функционирования.
Классификация САПР
САПР классифицируют по следующим принципам: целевому назначению, по приложению, масштабам и характеру базовой подсистемы. По целевому назначению выделяют САПР или подсистемы САПР, которые предоставляют различные аспекты проектирования. Таким образом, CAE/CAD/CAM системы появляются в составе MCAD:
- САПР-Ф или CAE (Computer Aided Engineering) системы. Здесь имеются в виду САПР функционального проектирования
- САПР-К — конструкторские САПР общего машиностроения, чаще всего их называют просто CAD-системами;
- САПР-Т — технологические САПР общего машиностроения — АСТПП (автоматизированные системы технологической подготовки производства) или системы CAМ (Computer Aided Manufacturing).
По приложениям самыми важными и широко используемыми считаются такие группы САПР как:
- Машиностроительные САПР или MCAD (Mechanical CAD) системы — это САПР для применения в отраслях общего машиностроения.
- ECAD (Electronic CAD) или EDA (Electronic Design Automation) системы — САПР для радиоэлектроники.
- САПР в области архитектуры и строительства.
Помимо этого, существует большое количество более специализированных САПР, или выделяемых в определенных группах, или являющихся самостоятельной ветвью в классификации. Это такие системы как: БИС-САПР (больших интегральных схем); САПР летательных аппаратов и САПР электрических машин. По масштабу определяют самостоятельные программно-методические комплексы (ПМК) САПР:
- Комплекс анализа прочности механических изделий в соответствии с методом конечных элементов (МКЭ)
- Комплекс анализа электронных схем;
- Системы ПМК;
- Системы с уникальными архитектурами программного (software) и технического (hardware) обеспечений.
Классификация по характеру базовой подсистемы
- САПР, которые направлены на приложения, где главной процедурой проектирования является конструирование, то есть определение пространственных форм и взаимного расположения объектов. Это САПР на базе машинной графики и математического моделирования. К данной группе систем относится большая часть графических ядер САПР в сфере машиностроения.
- САПР, ориентированные на приложения, в которых при достаточно простых математических расчетах перерабатывается большое количество данных. Это САПР на базе СУБД. Данные САПР главным образом встречаются в технико-экономических приложениях, например, В процессе проектирования бизнес-планов, объектов, подобных щитам управления в системах автоматики.
- Комплексные (интегрированные) САПР, которые включают в себя совокупность предыдущих видов подсистем. Типичными примерами комплексных САПР могут быть CAE/CAD/CAM-системы в машиностроении или САПР БИС. Таким образом, СУБД и подсистемы проектирования компонентов, принципиальных, логических и функциональных схем, топологии кристаллов, тестов для проверки годности изделий является составной частью САПР БИС. Для того, чтобы управлять такими сложными системами используют специализированные системные среды.
- САПР на базе определенного прикладного пакета. По сути это свободно используемые программно-методические комплексы, такие как, комплекс имитационного моделирования производственных процессов, комплекс синтеза и анализа систем автоматического управления, комплекс расчета прочности по методу конечных элементов и т. п. Как правило, данные САПР относятся к системам CAE. Например, программы логического проектирования на базе языка VHDL, математические пакеты типа MathCAD.
Развитие САПР
Одна из ключевых тем развития САПР - "облачные" вычисления: удаленная работа с данными, размещенными на удаленных серверах, с различных устройств, имеющих выход в интернет. На сегодняшний день облака очень существенно продвинулись в сегменте легких приложений и сервисов — преимущественно в потребительском секторе. Возможны два варианта интеграции. В первом случае в облако переносится вся инфраструктура инженерных служб, и соответственно необходимость в инженерном ПО, установленном на рабочем месте, исчезает вовсе. Во втором случае у конструктора по-прежнему остается графическая рабочая станция с установленной САПР, но при этом он получает из нее доступ к различным облачным сервисам, благодаря которым можно решать задачи, требующие весьма существенных ресурсов (например, проводить прочностной анализ). Осуществлять облачное взаимодействие возможно двумя способами: публично, когда доступ к серверу, расположенному у провайдера, открыт через интернет, и в частном порядке, когда сервер находится на предприятии и обращения к нему происходят по закрытой локальной сети. В России развитие облаков в области САПР сдерживается необходимостью соблюдать в очень многих проектах излишнюю секретность. Поэтому скорее всего именно частные облака станут в ближайшее время основным драйвером рынка. Облака — это не только новые технологии, но еще и возможность экспериментировать с новыми бизнес-моделями. [1]
Следующая важная тенденция — альтернативные ОС. Еще лет пять назад, когда заводились разговоры об альтернативе Microsoft Windows, речь, как правило, шла о Linux. Данная тема актуальна и сегодня: отечественная национальная программная платформа, по всей видимости, будет сделана на базе ядра Linux; к этой ОС растет интерес в области образования и в госструктурах (есть примеры успешного перехода). Однако теперь уже можно говорить о существенном потенциале операционной системы Google Chrome OS. И здесь упомянутый тренд смыкается с облачным трендом — ОС Google, как известно, не подразумевает установку приложений на локальном компьютере.
Немаловажную роль в продвижении этой ОС играет тенденция к уменьшению рыночной доли ПК. Очевидно, что если в облака перенести большинство громоздких и сложных вычислений, снижаются требования к аппаратному обеспечению и появляется возможность работать на любых устройствах. Например, на планшетах. В итоге разработчикам САПР-решений придется либо разрабатывать платформонезависимые решения (облачный вариант), либо делать их мультиплатформенными.
Следующая тема — `железо`. Здесь все опять же определяется неудовлетворенностью рынка решением монополиста — классической архитектурой Intel (темпами ее развития). В этой связи явно отмечается тренд на развитие архитектуры ARM. Ее сейчас поддерживает несколько производителей, среди которых одним из самых активных является компания Nvidia (Нвидиа). Пока данная архитектура активно применяется только в мобильных устройствах, но в ближайшее время, судя по всему, она перейдет и на стационарные ПК. Косвенно об этом свидетельствует тот факт, что будущая ОС Microsoft Windows 8 сможет работать и на ARM-архитектуре тоже (впервые не только на Intel).
Вторая тенденция — перенос существенной части вычислений с центрального процессора на графическое ядро. Данная тема относится скорее к области параллельных вычислений.
Еще один тренд - это рост рынка мобильных устройств. Наибольшее ускорение он получил в прошлом году с появлением iPad. Вначале, правда, казалось, что это устройство сугубо потребительское и в корпоративном секторе оно не будет применимо. Однако выяснилось, что оно вполне подходит для решения многих задач.
В секторе САПР сегодня многие сотрудники являются мобильными — работают на выезде, на удаленных строительных объектах, перемещаются по стране, трудятся дома. (Все это требует удобного мобильного устройства.)
Так или иначе за рубежом о том, что планшет скоро будет у каждого сотрудника инженерной службы, сегодня говорят как о свершившемся факте. Уже появились привлекательные для разработчиков мобильные платформы IOS Apple и Android Google, а также существенное количество САПР-приложений под них.
Сейчас весьма сложно сказать, уйдут ли через десять лет из нашего арсенала клавиатура и мышь. Но факт в том, что интерфейсы, ориентированные на работу с мультитач-экранами (пальцеориентированные), явно набирают популярность. В мобильных устройствах они уже практически стали стандартом. На сегодняшний день вполне понятно, что этот интерфейс более чем подходит для потребления информации. Так же ли он хорош для ее создания, для работы с САПР, сказать пока сложно. Для массового перехода к подобным интерфейсам до сих пор не хватает технологической базы. Сейчас на рынке просто не существует достаточно больших мультитач-панелей с необходимым для САПР разрешением.
Рынок САПР весьма консервативен. Даже замена одной такой системы на другую в рамках работы над одним проектом — задача довольно сложная. Что уж говорить о серьезной смене парадигмы, интерфейсов, поколений САПР. Поэтому данный рынок явно не входит в число лидеров технологической гонки — развитие есть, но очевидно не такое быстрое, как хотелось бы. Впрочем, в ближайшее десятилетие на предприятия придут инженеры, выросшие уже в эпоху интернета, новых технологий и мобильных устройств, и так или иначе они станут активно привносить на рынок элементы своей культуры.
САПР в строительстве
Цифровизация бизнеса затронула все его отрасли. В последнее десятилетие бум переживают решения для проектирования, инжиниринга и конструирования промышленных объектов. От советских кульманов проектировщики пришли к 3D-моделированию. Что цифровизация означает для этого сегмента, как помочь команде работать в едином пространстве и почему пока не удается окончательно избавиться от бумажных носителей, помогал разбираться генеральный директор компании AVEVA Алексей Лебедев.
Чтобы понять, что такое САПР и для чего он нужен в работе, узнаем, как расшифровывается аббревиатура программы – это система автоматизированного проектирования. В этой статье мы узнаем, как появилось и развивалось это программное обеспечение, какие возможности оно открывает для конструирования, и чем отличаются его разновидности.
История создания САПР
Англоязычный вариант названия – CAD, то есть Computer Aided Design. Изначально разработчики добивались плотного взаимодействия человеческих ресурсов и возможностей электронно-вычислительных машин. Путь достижения этой цели короток – существование платформ не длится и полвека. Условно весь период развития можно разбить на три части:
- 1970-е годы. В это время появилась уверенность, что проектирование теоретически подвергается компьютеризации. Сфера деятельности машины была невелика, в основном упор делался на возможности автоматического черчения. Такие программы получили название САЧ.
- 1980-е годы ознаменовались появлением микрокомпьютеров, поэтому все силы уходили на создание систем для них. Также этот период положил начало объемному 3D-моделированию с возможностью передачи данных.
- 1990-е годы окончили формирование базовых понятий САПРа и устранения ошибок и погрешностей. В частности, было убрано препятствие при передаче файла в одном формате на другую компьютерную систему. Когда производители пришли к единому образцу, применение платформы стало доступнее и популярнее.
С тех пор создатели только совершенствуют модели, укомплектовывают новыми функциями и облегчают работу с ними.
Можно назвать следующие ступени эволюции программы:
- работа с радиотехникой и электроникой на примитивном уровне в США, 50-е – начало 60-х годов;
- схематическое конструирование радиоэлектроники и интегральных схем в СССР, 60-е годы;
- первый шаг в развитии автоматизированного машиностроения – создание графической системы «Sketchpad» ученым Сазерлендом в 1963 г.;
- появление кривых линий и моделей неправильной формы – 1970 г.;
- в 1982 году увидел свет первый продукт компании «Autodesk» – AutoCAD, ставший первым и самым популярным САПРом для инженера.
С этого момента все производители программного обеспечения пытаются превзойти по качеству первоначальный вариант, нужно отметить, что качество некоторых аналогов Автокада уже завоевало почетное место на компьютерном рынке. Альтернативой распространенной платформе является продукт компании ZWSOFT – ZWCAD. Это новейшие технологии в сочетании с классикой систем автоматического проектирования: удобный дизайн, совместимость с форматами других программ, широкие возможности расчета, конструирования и проверки продукта в работе. Невысокая цена в сочетании с отличным качеством делает платформу востребованной во всем мире, тем более, что она переведена на многие языки. Компания предлагает возможность бесплатно протестировать пробный пакет, тем самым давая инженерам шанс «распробовать» аналог Автокада.
Мы много говорили о пользе автоматического проектирования, в чем именно она состоит?
Возможности и области применения САПР
Основная цель разработки платформы – это повышение эффективности труда инженеров с помощью обеспечения взаимодействия с электронно-вычислительными машинами. Оно достигается следующими факторами:
- облегчается процесс конструирования для сотрудников всех отраслей;
- уменьшаются сроки завершения проектов в целом;
- сокращается начальная стоимость работы проектирования за счет устранения издержек и оплаты многочасового труда работников;
- улучшается качество готового продукта и каждого отдельного этапа;
- практически убирается статья расходов на тестирование изделий и устранение погрешностей.
- Такой результат достигается за счет ряда достоинств автоматизации:
- обширная и доступная информационная база, заложенная в структуре программы;
- автоматический сбор и классификация всех сопутствующих документов;
- возможность системы параллельного конструирования и, соответственно, предоставления объема работ на текущий момент моделирования;
- заложенная в программе библиотека готовых решений;
- режим проверки и испытаний готового продукта путем математического моделирования;
- подбор и предложение максимально выгодных методов моделирования при минимизации расходов;
- сбор и классификация информации для наиболее выгодного управления предприятием.
Состав и структура САПР
Это обширная система, которая, не смотря на перевод, не полностью соответствует аббревиатуре CAD. В русскоязычный термин входят три базовых понятия:
- CAE (Computer-aided engineering) – программа инженерного анализа, осуществляющая расчет данных.
- CAD (Computer-Aided Design) – этап собственно проектирования и построения схем.
- CAM (Computer-aided manufacturing) – модуль по управлению результатами деятельности двух предыдущих устройств.
На деле все три технологии взаимодействуют и дают возможности в одной программе осуществлять полный цикл конструирования объектов любой сложности.
Для создания САПРа были привлечены технологии из разных сфер:
- основы телекоммуникаций;
- методы вычислительных сетей;
- широкое математическое обеспечение: от способов вычисления и статистики до элементов искусственного разума;
- компьютерные технологии для обслуживания популярных операционных систем и основных языков программирования.
Система автоматизированного проектирования САПР – это программа, которая базируется на двух основных подсистемах: проектирование и обслуживание. С помощью первой осуществляется само построение схем, чертежей. Вторая служит для управления первой.
Вот основные составляющие модули:
- Построение двумерных систем и геометрическое 3D-моделирование.
- DesPM – Design Process Management – управление процессом конструирования.
- PDM — Product Data Management – организация и оптимизация заложенных данных.
- Диалоговый модуль – дает возможность эффективного общения пользователя с программой.
- Совокупность технических средств – измерительные приборы и инвентарь для построения.
- Математическая база, включающая в себя алгоритмы решения проблем и функции преображения данных.
- Информационное обеспечение – энциклопедический набор знаний, к которому имеет доступ пользователь.
- Языковая надстройка с возможностью перевода текста.
- Базовая совокупность средств, необходимых при стандартных ситуациях проектирования.
Классификация САПР
Можно разделять все виды программ согласно следующим критериям:
- по отраслевому назначению;
- по цели использования;
- по масштабам;
- по форме основной подсистемы.
Разновидности ПО в зависимости от отрасли
- MCAD – mechanical CAD – это сфера машиностроения любой сложности: от ракетных установок и автомобилей до примитивного тостера;
- EDA или electronic CAD – это группа радиоэлектронных разработок, необходимая для разработки как целого проекта, так и его элементов: микросхем, плат и других деталей.
- AEC СAD или CAAD – программное обеспечение для архитекторов и строителей. Используется для возведения зданий, строительства дорог и элементов инфраструктуры любой сложности.
Классификация по цели использования
Она повторяет три составляющих классического САПРа:
- CAD – отвечает за проектирование и создание чертежей;
- CAE – модуль для автоматических подсчетов и аналитических процессов;
- CAM – подготовка производства и управление всей системой.
Они могут быть как воплощены в раздельных платформах, так и объединены в одной – это комбинированные программы. Также возможны надстройки с соответствующими функциями на базовой комплектации.
Отличия платформы по масштабу комплектации
Есть три типа, они характеризуются расположением от простого к сложному:
- Нижний уровень отвечает за конструкторскую документацию. Используется в различных сферах деятельности, когда нужно подготовить отчетную смету.
- Средний уровень отличается повышенным контролем за отчетность и возможностью построения 3D-моделей.
- Высший уровень обеспечивает наиболее широкий спектр возможностей, сопровождая процесс создания изделия любой сложности от расчетных манипуляций до момента тестирования.
Виды программного обеспечения САПР по характеру базовой комплектации
- На основе технической графической методики, двумерного и объемного моделирования. Они настроены на использование с целью проектирования объектов и взаимного расположения элементов схемы. Применяются в большинстве случаев в машиностроении.
- На Системе Управления Базой Данных. Такие платформы ориентированы на математические расчеты, использование формул и алгоритмов, оперирование большим количеством информации. Чаще всего используются для создания бизнес-проектов и экономических выкладок.
- На базе узкопрофильных модулей, необходимых для специализированных действий в той или иной сфере деятельности.
- Интегрированные программные обеспечения, включающие в себя все предыдущие виды. Они сложнее в управлении, но обеспечивают широкий охват возможностей.
Примеры САПР-программ: системы автоматизированного проектирования в действии
Расскажем о наиболее популярных платформах, их плюсах и минусах.
Автокад
Еще недавно он занимал первую позицию на рынке систем конструирования. Софт был разработан еще в 1982 году американскими учеными, он сразу стал популярным, тем более, что на тот момент был уникальным средством компьютерного моделирования. AutoCAD предлагает возможности для инженеров всех сфер, в ее комплектации есть как широкий спектр инструментов, так и специальные модули для узкой профилизации, чтобы не загромождать интерфейс. Таким образом, можно купить наиболее удобную для работы версию. Другой вопрос – в какую сумму это обойдется.
Являясь самой популярной программой во всем мире, Автокад переведен на 18 языков, в частности, на русский. Нашим специалистам понятно все, кроме необходимой инструкции по применению. В своем арсенале продукт имеет десятки разновидностей и тысячи надстроек и модулей. Почему же сейчас все чаще ищут аналог этой системы САПР?
У платформы есть как верные защитники, так и противники. Для первых все приписываемые минусы – это лишь результат недостаточного освоения программы. Вторая группа видит следующие минусы:
- Неудобная работа с таблицами. Привычные текстовые редакторы дают больше возможностей использовать этот примитивный способ передачи информации.
- Трудность в освоении софта: большой функционал не всегда пригождается каждому пользователю, однако, загромождает интерфейс и приводит к путанице.
- Невозможность корректного импортирования чертежей, выполненных в Автокаде, в другие ПО. Это не дает пользователем возможность продолжить работу с другого компьютера, на котором установлена другая система.
- Производители уделяют много времени и сил на создание новых надстроек, однако, интерфейс побочных модулей зачастую не проработан.
- Основным недостатком является завышенная ценовая политика. Для многих инженеров стоимость Автокада остается запредельной. Тем более редко его устанавливают студенты и начинающие проектировщики. Крупным компаниям тоже становится выгоднее покупать лицензии у производителей с хорошей системой корпоративных скидок.
Таким образом, появляется необходимость в поиске лучшего САПРа, который должен отвечать ряду требований:
- оптимальный расширенный функционал, не уступающий возможностям популярного продукта;
- приятный и удобный внешний вид, понятный интерфейс, удачное расположение инструментария;
- нетрудная система обретения лицензии и последующего продления;
- возможность обновлений и добавления профильных надстроек с расширенным специализированным комплектом функций;
- легкое импортирование из одной программы в другую, совместимость форматов редактирования;
- невысокая цена и система корпоративных скидок.
Какие платформы пришли на замену?
NanoCAD
Распространенный продукт российской компании NanoSoft. Большим плюсом является его родина, в связи с ней, Нанокад ориентирован на правила ГОСТа. Интерфейс остается полной имитацией работы в брендовом модуляторе. Соотносится с другими системами автоматического проектирования и легко импортируется за счет поддержания различных форматов. Имеет возможность доступа в библиотеку заготовленных схем и поддерживает обмен данными с системой NormaCS.
Из минусов выделяют нестабильную работу и частые сбои, долгую загрузку софта. И трудности при редактировании геометрии – затруднена работа со сплайнами и штриховками.
ZWCAD – лучший аналог Автокада
Компания ZWSOFT разработала программное обеспечение, которое обещает быть самым популярным на рынке систем автоматизированного проектирования. Продукт имеет следующие достоинства:
- Привычный интерфейс и удобное меню с грамотным переводом на русский язык сделает работу в ЗВКАДе удобной.
- Базовая комплектация имеет стандартный набор инструментов, необходимый для продуктивной деятельности инженера. Для узких специальностей компанией представлен ряд дополнительных модулей с расширенным функционалом.
- Полная совместимость с другими ПО, в том числе, с Автокадом. Популярные форматы сохранения чертежей и, как правило, отсутствие проблем с результатами разработок в других софтах.
- Поддержка как двумерных, так и трехмерных моделей.
- Низкая цена и возможность покупки пакета лицензий для локального пользования.
- Возможность протестировать демо-версию САПРа.
- Консультация специалистов при покупке программы.
ZWCAD подойдет для работ разного уровня сложности как специалистами, так и новичками, студентами.
Выбор хорошей системы автоматического проектирования зависит от личных пожеланий инженера. Эта программа, с которой он будет проводить каждый свой рабочий день. Поэтому необходимо внимательно разобраться с возможностями, которые предлагает платформа.
Компас
Отечественный продукт компании АСКОН изначально планировался как программа для 3D-моделирования. Со временем появились дополнения, позволяющие вести в нем и всю сопутствующую документацию. Он также выигрывает в том, что запрограммирован на соблюдение стандартов ГОСТ. Но софт имеет ряд минусов. Формат чертежей, выполненных в Компасе, не поддерживается прочими схожими платформами. А также имеет скудные возможности в оформлении текста.
Читайте также: