Как называется маленький самолет с вентилятором
Мечта о покорении воздушного пространства человеком отображается в легендах и преданиях практически всех народов населяющих Землю. Первые документальные свидетельства попыток человека поднять в воздух летательный аппарат относятся к первому тысячелетию до нашей эры. Тысячи лет попыток, труда и размышлений привело к полноценному воздухоплаванию только в конце 18 века, вернее к его развитию. Сначала появились монгольфьер, а следом и шарльер. Это два вида летательного аппарата легче воздуха — аэростата, в дальнейшем развитие аэростатной техники привело к созданию — дирижаблей. А на смену этим воздушным левиафанам пришли и аппараты тяжелее воздуха.
Примерно в 400 году до н. э. в Китае массово стали применяться воздушные змеи не только для развлечения, но и в сугубо военных целей, в качестве средства сигнализации. Этот аппарат уже можно охарактеризовать как устройство тяжелее воздуха, имеющее жесткую конструкцию и использующее для поддержания в воздухе аэродинамическую подъемную силу набегающего потока за счет струйных воздушных течений.
Классификация летательных аппаратов
Летательный аппарат — это какое-либо техническое устройство, которое предназначается для полетов в воздушном или космическом пространстве. В общей классификации различают аппараты легче воздуха, тяжелее воздуха и космические. В последнее время все более широко развивается направления конструирования смежных аппаратов, особенно создания гибрида воздушно — космического аппарата.
- по принципу действия (полета);
- по принципу управления;
- по предназначению и сферам применения;
- по типу двигателей, установленных на ЛА;
- по конструктивным особенностям, касающимся фюзеляжа, крыльев, оперения и шасси.
Кратко о летательных аппаратах.
1. воздухоплавательные ЛА. Считаются летательные аппараты легче воздуха. Воздушная оболочка наполнена легким газом. К ним относятся дирижабли, аэростаты и гибридные ЛА. Вся конструкция данного типа аппаратов всецело остается тяжелее воздуха, но из за разности плотностей газовых масс в и вне оболочки, создается разность давлений и как итог — выталкивающая сила, так называемая сила Архимеда.
3. космические ЛА. Эти аппараты созданные специально для работы в безвоздушном пространстве с ничтожной гравитацией, а так же для преодоления силы притяжения небесных тел, для выхода в космическое пространство. К их числу относятся спутники, космические корабли, орбитальные станции, ракеты. Перемещение и подъемная сила создается за счет реактивной тяги, путем отбрасывания части массы аппарата. Рабочее тело так же образуется благодаря преобразованию внутренней массы аппарата, которая до начала полета еще состоит из окислителя и топлива.
Самые распространенные летательные аппараты — это самолеты. При классификации они подразделяются по многим признакам:
- имеющие одновинтовую схему, которая предполагает наличие дополнительного рулевого винта;
- соосная схема — когда два несущих винта находятся на одной оси друг над другом и вращаются в разные стороны;
- продольная — это когда несущие винты находятся на оси движения друг за другом;
- поперечная — винты располагаются по бокам от фюзеляжа вертолета.
1,5 — поперечная схема, 2 — продольная схема, 3 — одновинтовая схема, 4 — соосная схема
- для пассажирских перевозок;
- для боевого применения;
- для применения в качестве транспортных средств при перевозке грузов различного назначения;
- для различных сельскохозяйственных нужд;
- для потребностей медицинского обеспечения и поисково-спасательных работ;
- для применения в качестве воздушно-крановых устройств.
Краткая история авиации и воздухоплавания
Люди, серьезно занимающиеся историей создания летательных аппаратов, определяют, что какое-то устройство является ЛА, в первую очередь исходя из способности подобного агрегата поднять человека в воздух.
В конце первого тысячелетия нашей эры на территории мусульманской Испании арабский ученый Аббас ибн Фарнас сконструировал и построил деревянный каркас с крыльями, который имел подобие органов управления полетом. Он смог взлететь на этом прообразе дельтаплана с вершины небольшого холма, продержаться в воздухе около десяти минут и вернуться к месту старта.
1475 год — первыми серьезными с научной точки зрения чертежами летательных аппаратов и парашюта считаются эскизы сделанные Леонардо да Винчи.
1783 год — совершен первый полет с людьми на воздушном аэростате Монгольфье, в этом же году в воздух поднимается аэростат с гелиевым наполнением шара и выполняется первый прыжок с парашютом.
1852 год — первый дирижабль с паровым двигателем выполнил успешный полет с возвращением в точку старта.
1853 год — в воздух поднялся планер с человеком на борту.
1881 — 1885 года — профессор Можайский получает патент, строит и испытывает самолет с паровыми двигателями.
1900 год — построен первый дирижабль Цеппелина с жесткой конструкцией.
1903 год — братья Райт выполняют первые реально управляемые полеты на самолетах с поршневым двигателем.
1905 год — создана Международная авиационная федерация (ФАИ).
1909 год — созданный год назад Всероссийский аэроклуб вступает в ФАИ.
1910 год — с водной поверхности поднялся первый гидросамолет, в 1915 году русский конструктор Григорович дает старт летающей лодке М-5.
1918 год, декабрь — организован ЦАГИ, который возглавил профессор Жуковский. Этот институт многие десятилетия будет определять направления развития российской и мировой авиационной техники.
1925 год — совершает полет АНТ-4, двухдвигательный цельнометаллический самолет-бомбардировщик.
1928 год — принят к серийному производству легендарный учебный самолет У-2, на котором будет подготовлено не одно поколение выдающихся советских летчиков.
В конце двадцатых годов был сконструирован и успешно испытан первый советский автожир — винтокрылый летательный аппарат.
Тридцатые годы прошлого века — это период различных мировых рекордов установленных на ЛА разного типа.
1946 год — в гражданской авиации появляются первые вертолеты.
В 1948 году рождается советская реактивная авиация — самолеты МиГ-15 и Ил-28, в этом же году появляется первый турбовинтовой самолет. Через год в серийное производство запускается МиГ-17.
Вплоть до середины сороковых годов XX столетия основным строительным материалом для ЛА были дерево и ткань. Но уже в первые годы второй мировой войны на смену деревянным конструкциям приходят цельнометаллические конструкции из дюралюминия.
Конструкция самолета
У всех летательных аппаратов есть схожие конструкционные элементы. Для воздушных аппаратов легче воздуха — одни, для аппаратов тяжелее воздуха — другие, для космических — третьи. Самая развитая и многочисленная ветка летательных аппаратов — это устройства тяжелее воздуха для полетов в атмосфере Земли. Для всех летательных аппаратов тяжелее воздуха есть основные общие черты, так как все аэродинамическое воздухоплавание и дальнейшие полеты в космос исходили с самой первой конструктивной схемы — схемы аэроплана, самолета по другому.
Конструкция такого ЛА как самолет, независимо от его типа или предназначения, имеет ряд общих элементов, обязательных для того, чтобы это устройство могло летать. Классическая схема выглядит следующим образом.
Планер самолета.
Этим термином называют цельную конструкцию, состоящую из фюзеляжа, крыльев и хвостового оперения. На самом деле — это отдельные элементы, имеющие разные функции.
а) Фюзеляж — это основная силовая конструкция самолета, к которой крепятся крылья, хвостовое оперение, двигатели и взлетно-посадочные устройства.
Корпус фюзеляжа собранный по классической схеме состоит из:
— носовой части;
— центральной или несущей части;
— хвостовой части.
В носовой части этой конструкции, как правило, располагается радиолокационное и радиоэлектронное самолетное оборудование и кабина экипажа.
Центральная часть несет основную силовую нагрузку, к ней крепятся крылья самолета. Кроме того, в ней располагаются основные топливные баки, проложены центральные электрические, топливные, гидравлические и механические магистрали. В зависимости от предназначения ЛА внутри центральной части фюзеляжа могут располагаться салон для перевозки пассажиров, транспортный отсек для размещения перевозимых грузов или отсек для размещения бомбового и ракетного вооружения. Возможны также варианты для топливозаправщиков, самолетов разведчиков или других специальных ЛА.
Хвостовая часть имеет также мощную силовую конструкцию, так как она предназначена для крепления к ней хвостового оперения. В некоторых модификациях самолетов на ней располагаются двигатели, а у бомбардировщиков типа ИЛ-28, ТУ-16 или ТУ-95 в этой части может располагаться кабина воздушного стрелка с пушками.
С целью уменьшения сопротивления трения фюзеляжа о набегающий воздушный поток выбирается оптимальная форма фюзеляжа с заостренными носом и хвостом.
Учитывая большие нагрузки на эту часть конструкции во время полета, он выполняется цельнометаллическим из металлических элементов по жесткой схеме. Основным материалом при изготовлении этих элементов является дюралюминий.
Основными элементами конструкции фюзеляжа являются:
— стрингеры — обеспечивающие жесткость в продольном отношении;
— лонжероны — обеспечивающие жесткость конструкции в поперечном отношении;
— шпангоуты — металлические элементы швеллерного типа, имеющие вид замкнутой рамы разного сечения, скрепляющие стрингеры и элероны в заданную форму фюзеляжа;
— внешняя обшивка — заранее заготовленные по форме фюзеляжа металлические листы из дюралюминия или композиционных материалов, которые крепятся на стрингеры, лонжероны или шпангоуты в зависимости от конструкции ЛА.
В зависимости от заданной конструкторами формы фюзеляж может создавать подъемную силу от двадцати до сорока процентов всей подъемной силы ЛА.
Подъемная сила, за счет которой ЛА тяжелее воздуха держится в атмосфере — это реально существующая физическая сила, образующаяся при обтекании набегающим воздушным потоком крыла, фюзеляжа и других элементов конструкции ЛА.
Подъемная сила прямо пропорциональна плотности среды, в которой образуется воздушный поток, квадрату скорости с которым движется ЛА и углу атаки, который образуют крыло и другие элементы относительно набегающего потока. Она также пропорциональна площади ЛА.
Самое простое и популярное объяснение возникновения подъемной силы это образование разницы давлений в нижней и верхней части поверхности.
б) Крыло самолета — это конструкция имеющая несущую поверхность для образования подъемной силы. В зависимости от типа самолета крыло может быть:
— прямым;
— стреловидным;
— треугольным;
— трапециевидным;
— с обратной стреловидностью;
— с переменной стреловидностью.
Крыло имеет центроплан, а также левую и правую полуплоскости, еще их можно называть консолями. В случае, если фюзеляж выполнен в виде несущей поверхности как у самолета типа Су-27, то имеются только левая и правая полуплоскости.
По количеству крыльев могут быть монопланы (это основная конструкция современных самолетов) и бипланы (примером может служить Ан-2) или трипланы.
К крылу крепится механизация, обеспечивающая управление самолетом — это элероны с триммерами, а также имеющая отношение к взлетно-посадочным устройствам — это закрылки и предкрылки. Закрылки после их выпуска увеличивают площадь крыла, изменяют его форму, увеличивая возможный угол атаки на малой скорости и обеспечивают увеличение подъемной силы на режимах взлета и посадки. Предкрылки — это устройства для выравнивания воздушного потока и недопущения завихрений и срыва струи на больших углах атаки и малых скоростях. Кроме того, на крыле могут интерцепторы-элероны — для улучшения управляемости ЛА и интерцепторы-спойлеры — как дополнительная механизация уменьшающая подъемную силу и тормозящая ЛА в полете.
Подвижные элементы крыла
Внутри крыла могут размещаться топливные баки, например как у самолета МиГ-25. В законцовках крыла располагаются сигнальные огни.
в) Хвостовое оперение.
К хвостовой части фюзеляжа самолета крепятся два горизонтальных стабилизатора — это горизонтальное оперение и вертикальный киль — это вертикальное оперение. Эти элементы конструкции ЛА обеспечивают стабилизацию самолета в полете. Конструктивно они выполнены также как и крылья, только имеют значительно меньший размер. К горизонтальным стабилизаторам крепятся рули высоты, а к килю — руль поворота.
Взлетно-посадочные устройства.
а) Шасси — основное устройство относящиеся к этой категории.
Стойка шасси. Задняя тележка
Шасси самолета — это специальные опоры предназначенные для взлета, посадки, руления и стоянки ЛА.
Конструкция их достаточно проста и включает стойку с амортизаторами или без них, систему опор и рычагов обеспечивающих устойчивое положение стойки в выпущенном положении и быструю уборку ее после взлета. Также имеются колеса, поплавки или лыжи в зависимости от типа самолета и взлетно-посадочной поверхности.
В зависимости от расположения на планере возможны различные схемы:
— шасси с передней стойкой (основная схема для современных самолетов);
— шасси с двумя основными стойками и хвостовой опорой (примером может служить Ли-2 и Ан-2, в настоящее время практически не применяется);
— велосипедное шасси (такое шасси установлено на самолете Як-28);
— шасси с передней стойкой и выпускающейся при посадке задней штангой с колесиком.
Самой распространенной схемой для современных самолетов является шасси с передней стойкой и двумя основными. На очень тяжелых машинах основные стойки имеют многоколесные тележки.
б) Тормозная система. Торможение самолета после посадки осуществляется с помощью тормозов в колесах, спойлеров-интерцептеров, тормозных парашютов и реверса двигателей.
Двигательные силовые установки.
Они предназначены для придания самолету необходимой скорости, достаточной для взлета, выполнения требуемых задач в полете и посадки ЛА. Современные двигатели подразделяются на:
— поршневые;
— турбовинтовые;
— турбореактивные.
Самолетные двигатели могут размещаться в фюзеляже, подвешены на крыльях с помощью пилонов или размещены в хвостовой части самолета.
Практически у всех существующих проектов аэротакси есть кое-что общее. Это вращающиеся пропеллеры или винты, вынесенные за пределы фюзеляжа аппарата. Сама машина может быть похожей на большой мультикоптер , либо иметь более футуристический дизайн - но пропеллеры почти всегда присутствуют.
Новый концепт J-2000, разработанный стартапом Jetoptera, переворачивает все с ног на голову. Ведь перед нами первый проект летающего автомобиля, двигательные установки которого работают по принципу безлопастных вентиляторов.
Безлопастной двигатель
В основе J-2000 лежит новая технология безлопастного вентилятора, которая была впервые представлена всего несколько лет назад.
Все началось с того, что в 2009 году английский инженер Джеймс Дайсон представил миру совершенно новый тип вентилятора. Этот вентилятор выглядит как кольцо на подставке. Он не имеет видимых подвижных частей, но при этом из кольца дует сильный поток воздуха. Кажется, что кольцо само, безо всяких видимых причин, засасывает воздух с одной стороны и выдувает с другой.
Секрет кроется в особой форме полого кольца. Если вы разрежете его, то увидите, что в профиль оно не плоское, а имеет форму крыла самолета:
Внутри ножки-подставки, на которой крепится кольцо, находится небольшая турбина, которая всасывает воздух из комнаты. Этот воздух накачивается в кольцо и выдувается через щель в его толстой части. А поскольку кольцо имеет профиль самолетного крыла, то выходящий воздух образует область низкого давления с противоположной стороны. Далее кольцо уже самостоятельно, без помощи двигателя, засасывает воздух из комнаты и выбрасывает его с другой стороны. Это выглядит как магия, но на самом деле все происходит в строгом соответствии с законами аэродинамики.
Самое потрясающее в данной конструкции то, что кольцо перекачивает сквозь себя в 15 раз больше воздуха, чем затягивается маленькой турбиной внутри подставки. Например, турбина всасывает 1 литр воздуха, а кольцо умножает поток и “выдувает” 15 литров. Недаром сам Джеймс Дайсон называет свое детище “умножителем воздуха” (Air Multiplier).
А теперь представьте себе такой же безлопастной вентилятор, но гораздо более мощный. Достаточно мощный, чтобы поднять в воздух тяжелую машину. Именно так работают двигатели J-2000.
Преимущества конструкции
К сожалению, J-2000 не является полностью электрическим. По словам разработчиков, у современных аккумуляторов не хватает плотности энергии, чтобы питать нагнетающие турбины безлопастных двигателей. Машины типа J-2000 смогут перейти на батареи, когда плотность энергии в них достигнет отметки 1500 Вт·ч/кг. Для сравнения, в современных батареях плотность энергии составляет около 260 Вт·ч/кг. Учитывая это, сейчас разработчики вынуждены использовать бензиновые генераторы, которые вырабатывают электричество для турбин.
Но даже в таком виде конструкция имеет массу преимуществ. По словам инженеров Jetoptera, по сравнению с малыми турбореактивными двигателями аналогичной мощности их конструкция выдает на 10% больше тяги и сжигает на 50% меньше топлива. Также безлопастная двигательная установка весит примерно на 30% меньшее, чем традиционные пропеллерные двигатели или турбины.
В подвижности J-2000 не уступает мультикоптерной конструкции. Безлопастные двигатели можно безо всяких проблем наклонять в разные стороны для выполнения маневров или вертикального взлета.
Наконец, сам безлопастный двигатель не обязательно должен быть выполнен в виде кольца. Он может иметь любую форму - прямоугольника, овала и так далее. Важно лишь, чтобы в разрезе имелся все тот же профиль самолетного крыла. А значит, на основе технологии можно создавать по-настоящему огромные коробкообразные двигатели, охватывающие весь корпус аппарата:
Еще одно преимущество - низкий уровень шума. По словам инженеров Jetoptera, безлопастные двигатели - “самый тихий способ движения в небе” . Компания заключила договор Paragrine Systems и уже провела испытания на шум в рамках исследовательского сотрудничества, финансируемого Министерством обороны США. Результаты показали, что громкость двигателя J-2000 на 15 дБ ниже, чем у пропеллера аналогичной мощности.
Летательные аппараты будущего
J-2000 - лишь один из концептов. Он назван по максимальной взлетной массе в 2000 фунтов (907 кг). Jetoptera планирует создать целое семейство аппаратов, использующих двигатели данной конструкции. В него войдут как футуристические скоростные модели, так и аппараты, внешне похожие на обычные самолеты, оснащенные безлопастными двигателями.
А самое потрясающее - речь не идет о голой теории. Машина Jetoptera уже находится на стадии прототипирования. У компании уже имеется рама с несколькими двигателями, которая летает в тестовом режиме:
И тот факт, что проектом уже заинтересовались военные, доказывает, что речь идет о чем-то намного большем, чем простая фантазия. Вполне возможно, именно так будут выглядеть и летать аппараты будущего.
Когда приступают к классификации предметов или явлений, то ищут основные, наиболее общие черты, свойства, которые служат доказательством их родства. Наряду с этим изучают и такие признаки, которые резко отличали бы их друг от друга.
Если мы, следуя этому принципу, начнем классифицировать современные летательные аппараты, то прежде всего встанет вопрос: какие же признаки или свойства летательных аппаратов считать наиболее важными?
Может быть, можно классифицировать их, исходя из материалов, из которых изготовлены аппараты? Да, можно, но это будет мало наглядно. Ведь из разных материалов можно сделать одно и то же. Алюминий, сталь, дерево, полотно, резина, пластмассы в тон или иной степени применяются при изготовлении н самолетов, и вертолетов, н дирижаблей, и воздушных шаров.
Может быть основой для классификации летательных аппаратов избрать: когда и кем сделан аппарат впервые? Можно классифицировать в историческом плане — это вопрос важный, но тогда под одну рубрику попадут несхожие между собой по многим признакам аппараты, предложенные в одно время и в одной стране.
Очевидно, не эти признаки для классификации нужно считать наиболее важными.
Ввиду того что летательные аппараты предназначены для перемещения в воздушной среде, их принято подразделять на аппараты легче воздуха и аппараты тяжелее воздуха. Итак, основой классификации летательных аппаратов является их вес по отношению к воздуху.
Мы видим, что к аппаратам легче воздуха относятся дирижабли, воздушные шары и стратостаты. Они поднимаются и держатся в воздухе за счет наполнения их легкими газами. К аппаратам тяжелее воздуха принадлежат самолеты, планеры, ракеты и винтокрылые аппараты.
Самолет и планер поддерживаются в воздухе подъемной силой, создаваемой крыльями; ракеты удерживаются в воздухе силой тяги, развиваемой ракетным авигателем, а винтокрылые аппараты — подъемной силой несущего винта. Существуют (пока в проектах) аппараты, занимающие промежуточное положение между самолетами и винтокрылыми аппаратами, самолетами и ракетами. Это так называемые преобразуемые самолеты, или конверто-планы, которые должны объединить с себе положительные свойства как тех, так и других и сочетать огромные скорости полета с возможностью висения в воздухе, возможностью взлетать без разбега и садиться без пробега.
Вертолет, как и автожир, относится к винтокрылым летательным аппаратам. Их различие состоит в том, что несущий винт автожира не связан с двигателем и может свободно вращаться.
Несущий винт вертолета (или несколько несущих винтов) в отличие от несущего винта автожира в процессе взлета, полета и посадки приводится во вращение двигателем и служит как для создания подъемной силы, так и тяги. Создаваемая винтом аэродинамическая сила используется как для поддержания вертолета в воздухе, так и для его движения вперед Кроме того, несущий винт является также органом управления вертолетом.
Если у самолета тягу создает воздушный винт или реактивный двигатель, подъемную силу — крылья, а органами управления служат рули и элероны, то у вертолета все эти функции выполняет несущий винт. Из этого становится понятным, насколько важно значение несущего винта на вертолете.
Вертолеты отличаются друг от друга по количеству несущих винтов, по их расположению, по способу привода вращения. В соответствии с этими признаками и разделены вертолеты, изображенные.
Не так давно мир скептически относился к электромобилям, но Tesla заставила в них поверить. Теперь на электричество переводят и авиацию. Рассказываем, как появляются электросамолеты и почему мы еще на них не летаем
Как устроены электросамолеты
Этот аппарат, как и обычный самолет, оснащен двигателем внутреннего сгорания. Мотор преобразует химическую энергию сгорающего топлива в механическую и создает тягу — силу, которая толкает его сквозь поток воздуха. Но большую часть работы оборудования (регулировку крыла, выпуск шасси и так далее) выполняют электроприводы. Они питаются от системы электроснабжения и преобразуют электрическую энергию в механическую.
Советский бомбардировщик Пе-2 считается первым в мире электрифицированным самолетом. В 1930-х годах на нем установили около 50 электроприводов (Фото: avia.pro)
Летательный аппарат, у которого отсутствуют двигатели внутреннего сгорания, а все оборудование работает на электроэнергии. Для создания тяги в таких самолетах используют электродвигатели, которые питаются от аккумуляторов.
Самолет Yuneec International E430 китайского производства с электрическим двигателем, который питается от литий-полимерных аккумуляторов (Фото: avia.pro)
Применение батарей в качестве основных источников энергии ограничивало возможности летательных аппаратов — дальность, время полета, грузоподъемность. Поэтому специалисты в области авиации стали рассматривать альтернативные варианты получения энергии. Среди них:
- солнечные батареи — преобразуют энергию излучения в электроэнергию;
- топливные элементы — преобразуют химическую энергию топлива в электрическую без процессов горения; чаще всего в качестве топлива используется водород.
Оснащен гибридной силовой установкой. Она преобразует энергию дважды: сначала в механическую с помощью двигателей внутреннего сгорания, затем в электрическую с помощью генераторов.
Сергей Кравченко:
Кто создает и тестирует электросамолеты сегодня
Разработчики по всему миру, включая Россию, работают над созданием электросамолетов. Мы собрали примеры нескольких успешных проектов.
Стартап Kitty Hawk — персональный электросамолет
В 2017 году стартап Kitty Hawk, в который инвестирует сооснователь Google Ларри Пейдж, показал прототип первого персонального электросамолета Heaviside. Одноместный аппарат может вертикально взлетать и садиться, причем для этого ему достаточно площадки размером примерно 10х10 м.
Heaviside может преодолеть на одном заряде батареи до 160 км — примерно как от Москвы до Твери (Фото: Kitty Hawk)
Pipistrel — двухместный электросамолет
Компания Pipistrel представила двухместный электрический самолет Velis Electro, который прошел сертификацию Европейского агентства авиационной безопасности EASA. Аппарат получает энергию от двух аккумуляторов, развивает скорость до 181 км/ч и может находиться в воздухе до 50 мин.
Pipistrel уже запустила серийное производство Velis Electro: сертификат типа EASA позволяет эксплуатировать самолет в коммерческих целях (Фото: Pipistrel)
MagniX и AeroTEC — самый крупный коммерческий самолет
В 2020 году компании MagniX и AeroTEC испытали самый большой коммерческий самолет Cessna Caravan 208B с электрическим двигателем. По словам исполнительного директора Роя Ганзарски, самолет может перевозить 4–5 пассажиров на расстояние до 160 км.
Разработчики рассчитывают, что когда электродвигатель Cessna Caravan 208B пройдет сертификацию, самолет сможет выполнять рейсы с полной загрузкой из девяти пассажиров (Фото: MagniX)
Siemens — электросамолет с максимальной скоростью
Компания Siemens запустила самолет Extra 330LE с электродвигателем на аккумуляторных батареях. Аппарат побил рекорд среди аналогов: во время полета в 2017 году он достиг максимальной скорости 340 км/ч.
Siemens планируют использовать разработки Extra 330LE для производства (в партнерстве с компанией Airbus) региональных авиалайнеров, работающих на гибридных двигательных установках (Фото: Siemens)
ЦИАМ — первый пилотируемый российский электросамолет
ЦИАМ — летающая лаборатория с уникальной гибридной силовой установкой
На МАКС-2021 ЦИАМ также представил летающую лабораторию Як-40ЛЛ. В носовой части аппарата установлен воздушный винт, который приводится в движение электродвигателем. А электроэнергию он получает от генератора, который вращается двигателем внутреннего сгорания.
Зачем переводить авиацию на электричество
Очевидная причина повышенного спроса на электрификацию — экология. По данным Международной ассоциации воздушного транспорта IATA, на долю коммерческой авиации приходится около 2–3% выбросов углекислого газа. Причем за один короткий перелет, например из Лондона в Рим, образуется 234 кг углекислого газа на одного человека — больше, чем производят граждане некоторых стран за целый год.
Переход на электричество поможет решить экологические и другие проблемы современной авиации.
Сокращение количества выбросов в атмосферу
Снижение затрат на топливо
Именно эта перспектива мотивирует многие крупные авиакомпании вкладывать средства в разработку электросамолетов. Расходы на топливо составляют до 30% их затрат и значительно влияют на прибыль.
В 2020 году электросамолет компаний MagniX и AeroTEC Cessna 208B совершил успешный 30-минутный полет. Исполнительный директор Рой Ганзарски отметил, что цена полета составила всего $6. А если бы они использовали обычное моторное топливо, полет обошелся бы в $300-400.
По словам главы ЦИАМ Михаила Гордина, применение гибридных силовых установок позволит в будущем уменьшить расход топлива на 70%.
Снижение количества шума
Электрические и гибридные летательные аппараты гораздо тише обычных с ДВС. Например, вертолет на высоте 500 м создает звук в 60 дБ, который по громкости можно сравнить с проезжающим мимо мотоциклом. А электросамолет Heaviside (разработка компании Kitty Hawk) во время полета на той же высоте создает звук в 38 дБ — примерно тот же уровень громкости, что и во время разговора людей.
В результате переход авиации на электричество позволит бороться с шумовым загрязнением и строить аэропорты ближе к черте города.
Снижение затрат на эксплуатацию
Электрические двигатели устроены проще двигателей внутреннего сгорания. У них меньше движущихся и соприкасающихся частей, а значит, они менее подвержены износу. Специалисты авиационной промышленности предполагают, что электрические самолеты будут реже нуждаться в техобслуживании, что снизит эксплуатационные расходы.
Даже самые современные батареи уступают топливу в удельной энергоемкости — количестве энергии, которую они могут накопить. Реактивное топливо содержит примерно в 30 раз больше энергии, чем литий-ионная батарея.
Самый большой в мире пассажирский самолет Airbus A380 может пролететь 15 000 километров за один рейс и перевезти до 700 пассажиров. По подсчетам преподавателя кафедры прикладной аэродинамики университета Лафборо Дункана Уолкера, тот же самолет сможет преодолеть максимум 1 000 км с батареями в качестве источника энергии. Чтобы Airbus A380 пролетел на аккумуляторах свой максимум, ему понадобится комплект батарей весом в 30 раз больше, чем его текущий расход топлива. То есть из-за веса он просто не сможет оторваться от земли.
Даже если заменить всех пассажиров и груз на батареи, дальность полета Airbus A380 все равно была бы меньше 2 000 км по сравнению с обычными 15 000 км на топливе (Фото: Airbus)
Кроме того, самолет с традиционными двигателями во время полета сбрасывает топливо. Так судно становится легче, поэтому расход топлива, которое необходимо для полета, уменьшается. А вес аккумуляторов остается постоянным на протяжении всего полета, даже когда заряд израсходован.
По оценкам экспертов в области авиации, для безопасных и рентабельных полетов можно будет использовать батареи с энергоемкостью 2 000 Вт·ч/кг. Сейчас это показатель не превышает 250 Вт·ч/кг, а за год энергоемкость батарей растет примерно на 3%.
Сергей Кравченко:
«По мнению специалистов, батареи как источник энергии станут коммерчески привлекательными при достижении удельной мощности 600 кВт/кг (удельная мощность — количество тока, которое может выдавать аккумулятор на единицу веса. Показатели современных батарей находятся в пределах 10 кВт/кг. — РБК Тренды).
Какие перспективы у электрических самолетов
Сергей Кравченко:
Глава ЦИАМ Михаил Гордин отметил, что в ближайшем будущем крупные пассажирские лайнеры будут использовать именно гибридные силовые установки. А полностью электрические самолеты, вероятно, найдут применение только в малой авиации из-за ограниченной дальности и вместимости пассажиров.
Сергей Кравченко:
«В среднесрочной перспективе ожидается широкое распространение летательных аппаратов с гибридной силовой установкой. Появление полностью электрических систем будет связано с успехами электрохимии. Однако текущие достижения не позволяют ожидать существенного прогресса в этой области в ближайшее время.
Читайте также: