Как найти sin t
Тригонометрическими уравнениями называют уравнения, в которых переменная содержится под знаком тригонометрических функций. К их числу прежде всего относятся простейшие тригонометрические уравнения, т.е. уравнения вида $sin x=a, cos x=a, tg x=a$, где $а$ – действительное число.
Перед решением уравнений разберем некоторые тригонометрические выражения и формулы.
$1$ радиан $=/≈57$ градусов
$1$ градус $=/$ радиан
Значения тригонометрических функций некоторых углов
$α$ | $ 0$ | $/$ | $/$ | $/$ | $/$ | $π$ |
$sinα$ | $ 0$ | $ /$ | $ /$ | $ /$ | $ 1$ | $ 0$ |
$cosα$ | $ 1$ | $ /$ | $ /$ | $ /$ | $ 0$ | $ -1$ |
$tgα$ | $ 0$ | $ /$ | $ 1$ | $ √3$ | $ -$ | $ 0$ |
$ctgα$ | $ -$ | $ √3$ | $ 1$ | $ /$ | $ 0$ | $ -$ |
Периоды повтора значений тригонометрических функций
Период повторения у синуса и косинуса $2π$, у тангенса и котангенса $π$
Знаки тригонометрических функций по четвертям
Эта информация нам пригодится для использования формул приведения. Формулы приведения необходимы для понижения углов до значения от $0$ до $90$ градусов.
Чтобы правильно раскрыть формулы приведения необходимо помнить, что:
- если в формуле содержатся углы $180°$ и $360°$ ($π$ и $2π$), то наименование функции не изменяется; (если же в формуле содержатся углы $90°$ и $270°$ ($/$ и $/$), то наименование функции меняется на противоположную (синус на косинус, тангенс на котангенс и т. д.);
- чтобы определить знак в правой части формулы ($+$ или $-$), достаточно, считая угол $α$ острым, определить знак преобразуемого выражения.
Преобразовать $сos(90° + α)$. Прежде всего, мы замечаем, что в формуле содержится угол $90$, поэтому $cos$ измениться на $sin$.
Чтобы определить знак перед $sinα$, предположим, что угол $α$ острый, тогда угол $90° + α$ должен оканчиваться во 2-й четверти, а косинус угла, лежащего во 2-й четверти, отрицателен. Поэтому, перед $sinα$ нужен знак $-$.
$сos(90° + α)= - sinα$ - это конечный результат преобразования
1. Синус и косинус. Тангенс и котангенс
а ордината точки \(M\) равна синусу числа \(t\) (записывают\(sin\) \(t\)).
Отношение синуса числа \(t\) к косинусу того же числа называют тангенсом числа \(t\) и обозначают \(tg t\).
Отношение косинуса числа \(t\) к синусу того же числа называют котангенсом числа \(t\) и обозначают \(ctg t\).
Из уравнения числовой окружности x 2 + y 2 = 1 , заменяя \(x\) и \(y\) на \(cos\) \(t\) и \(sin\) \(t\), получаем равенство
Отметим также несколько важных свойств синуса, косинуса, тангенса и котангенса:
sin ( − t ) = − sin t ; cos ( − t ) = cos t ; tg ( − t ) = − tg t ; ctg ( − t ) = − ctg t .
sin ( t + π ) = − sin t ; cos ( t + π ) = − cos t ; tg ( t + π ) = tg t ; ctg ( t + π ) = ctg t .
Для синуса и косинуса есть геометрическая иллюстрация на числовой окружности.
Дадим геометрическую иллюстрацию для тангенса и котангенса.
Проведём сначала в координатной плоскости к числовой окружности касательную в точке \(A\).
Эту касательную \(l\) будем считать числовой прямой, ориентированной так же, как ось \(y\), и с началом в точке \(A\) (см. рис.)
Из подобия треугольников \(OMK\) и \(OPA\) следует равенство:
Итак, если числу \(t\) соответствует на числовой окружности точка \(M\), то, проведя прямую \(OM\),
получим в пересечении её с числовой прямой \(l\) точку \(P\), которая имеет на числовой прямой \(l\) координату \(tg\) \(t\).
Аналогично можно ввести линию котангенсов — числовая прямая \(m\) с началом в точке \(B\) (см. рис.).
Как найти sin t
Прежде чем перейти к этому разделу, напомним определения синуса и косинуса, изложенные в учебнике геометрии 7-9 классов.
- Синус острого угла t прямоугольного треугольника равен отношению противолежащего катета к гипотенузе (рис.1):
- Косинус острого угла t прямоугольного треугольника равен отношению прилежащего катета к гипотенузе (рис.1):
Эти определения относятся к прямоугольному треугольнику и являются частными случаями тех определений, которые представлены в данном разделе.
Поместим тот же прямоугольный треугольник в числовую окружность (рис.2).
Мы видим, что катет b равен определенной величине y на оси Y (оси ординат), катет а равен определенной величине x на оси X (оси абсцисс). А гипотенуза с равна радиусу окружности (R).
Таким образом, наши формулы обретают иной вид.
Так как b = y, a = x, c = R, то:
y x
sin t = —— , cos t = ——.
R R
Кстати, тогда иной вид обретают, естественно, и формулы тангенса и котангенса.
Так как tg t = b/a, ctg t = a/b, то, верны и другие уравнения:
Но вернемся к синусу и косинусу. Мы имеем дело с числовой окружностью, в которой радиус равен 1. Значит, получается:
Так мы приходим к третьему, более простому виду тригонометрических формул.
Эти формулы применимы не только к острому, но и к любому другому углу (тупому или развернутому).
Определения и формулы cos t, sin t, tg t, ctg t.
Косинусом числа t числовой окружности называют абсциссу этого числа:
cos t = x
Синус числа t – это его ордината:
sin t = y
Тангенс числа t – это отношение синуса к косинусу:
sin t π
tg t = ———, где t ≠ — + πk
cos t 2
Котангенс числа t – это отношение косинуса к синусу:
cos t
ctg t = ———, где t ≠ πk
sin t
Из формул тангенса и котангенса следует еще одна формула:
sin t cos t πk
tg t · ctg t = ——— · ——— = 1, при t ≠ ——
cos t sin t 2
Уравнения числовой окружности.
Из предыдущего раздела мы знаем одно уравнение числовой окружности:
Но поскольку x = cos t, а y = sin t, то получается новое уравнение:
cos 2 t + sin 2 t = 1
Знаки синуса, косинуса, тангенса и котангенса в четвертях окружности:
1-я четверть
2-я четверть
3-я четверть
4-я четверть
Косинус и синус основных точек числовой окружности:
Как запомнить значения косинусов и синусов основных точек числовой окружности.
Прежде всего надо знать, что в каждой паре чисел значения косинуса стоят первыми, значения синуса – вторыми.
1) Обратите внимание: при всем множестве точек числовой окружности мы имеем дело лишь с пятью числами (в модуле):
Сделайте для себя это «открытие» - и вы снимете психологический страх перед обилием чисел: их на самом деле всего-то пять.
2) Начнем с целых чисел 0 и 1. Они находятся только на осях координат.
Не надо учить наизусть, где, к примеру, косинус в модуле имеет единицу, а где 0.
На концах оси косинусов (оси х), разумеется, косинусы равны модулю 1, а синусы равны 0.
На концах оси синусов (оси у) синусы равны модулю 1, а косинусы равны 0.
Теперь о знаках. Ноль знака не имеет. Что касается 1 – тут просто надо вспомнить самую простую вещь: из курса 7 класса вы знаете, что на оси х справа от центра координатной плоскости – положительные числа, слева – отрицательные; на оси у вверх от центра идут положительные числа, вниз – отрицательные. И тогда вы не ошибетесь со знаком 1.
3) Теперь перейдем к дробным значениям.
- Во всех знаменателях дробей – одно и то же число 2. Уже не ошибемся, что писать в знаменателе.
- В серединах четвертей косинус и синус имеют абсолютно одинаковое значение по модулю: √2/2. В каком случае они со знаком плюс или минус – см.таблицу выше. Но вряд ли вам нужна такая таблица: вы знаете это из того же курса 7 класса.
- Все ближайшие к оси х точки имеют абсолютно одинаковые по модулю значения косинуса и синуса: (√3/2; 1/2).
- Значения всех ближайших к оси у точек тоже абсолютно идентичны по модулю – причем в них те же числа, только они «поменялись» местами: (1/2; √3/2).
Теперь о знаках – тут свое интересное чередование (хотя со знаками, полагаем, вы должны легко разобраться и так).
Если в первой четверти значения и косинуса, и синуса со знаком плюс, то в диаметрально противоположной (третьей) они со знаком минус.
Если во второй четверти со знаком минус только косинусы, то в диаметрально противоположной (четвертой) – только синусы.
Осталось только напомнить, что в каждом сочетании значений косинуса и синуса первое число – это значение косинуса, второе число – значение синуса.
- Обратите внимание еще на одну закономерность: синус и косинус всех диаметрально противоположных точек окружности абсолютно равны по модулю. Возьмем, к примеру, противоположные точки π/3 и 4π/3:
cos π/3 = 1/2, sin π/3 = √3/2
cos 4π/3 = -1/2, sin 4π/3 = -√3/2
Различаются значения косинусов и синусов двух противоположных точек только по знаку. Но и здесь есть своя закономерность: синусы и косинусы диаметрально противоположных точек всегда имеют противоположные знаки.
Важно знать :
Значения косинусов и синусов точек числовой окружности последовательно возрастают или убывают в строго определенном порядке: от самого малого значения до самого большого и наоборот (см. раздел «Возрастание и убывание тригонометрических функций» - впрочем, в этом легко убедиться, лишь просто посмотрев на числовую окружность выше).
В порядке убывания получается такое чередование значений:
√3 √2 1 1 √2 √3
1; ——; ——; —; 0; – —; – ——; – ——; –1
2 2 2 2 2 2
Возрастают они строго в обратном порядке.
Поняв эту простую закономерность, вы научитесь довольно легко определять значения синуса и косинуса.
Тангенс и котангенс основных точек числовой окружности.
Зная косинус и синус точек числовой окружности, легко можно вычислить их тангенс и котангенс. Делим синус на косинус - получаем тангенс. Делим косинус на синус - получаем котангенс. Результаты этого деления - на рисунке.
ПРИМЕЧАНИЕ : В некоторых таблицах значения тангенса и котангенса, равные модулю √3/3, указаны как 1/√3. Ошибки тут нет, так как это равнозначные числа. Если числитель и знаменатель числа 1/√3 умножить на √3, то получим √3/3.
Как запомнить значение тангенсов и котангенсов основных точек числовой окружности.
Здесь такие же закономерности, что и с синусами и косинусами. И чисел тут всего четыре (в модуле): 0, √3/3, 1, √3.
На концах осей координат – прочерки и нули. Прочерки означают, что в данных точках тангенс или котангенс не имеют смысла.
Как запомнить, где прочерки, а где нули? Поможет правило.
Тангенс – это отношение синуса к косинусу. На концах оси синусов (ось у) тангенс не существует.
Котангенс – это отношение косинуса к синусу. На концах оси косинусов (ось х) котангенс не существует.
В остальных точках идет чередование всего лишь трех чисел: 1, √3 и √3/3 со знаками плюс или минус. Как с ними разобраться? Запомните (а лучше представьте) три обстоятельства:
1) тангенсы и котангенсы всех середин четвертей имеют в модуле 1.
2) тангенсы и котангенсы ближайших к оси х точек имеют в модуле √3/3; √3.
3) тангенсы и котангенсы ближайших к оси у точек имеют в модуле √3; √3/3.
Не ошибитесь со знаками – и вы большой знаток.
Нелишне будет запомнить, как возрастают и убывают тангенс и котангенс на числовой окружности (см.числовую окружность выше или раздел «Возрастание и убывание тригонометрических функций»). Тогда еще лучше будет понятен и порядок чередования значений тангенса и котангенса.
Тригонометрические свойства чисел числовой окружности.
Представим, что определенная точка М имеет значение t.
Свойство 1:
sin (–t) = –sin t
cos (–t) = cos t
tg (–t) = –tg t
ctg (–t) = –ctg t
Пояснение . Пусть t = –60º и t = –210º.
cos –60º равен 1/2. Но cos 60º тоже равен 1/2. То есть косинусы –60º и 60º равны как по модулю, так и по знаку: cos –60º = cos 60º.
cos –210º равен –√3/2. Но cos 210º тоже равен –√3/2. То есть: cos –210º = cos 210º.
Таким образом, мы доказали, что cos (–t) = cos t.
sin –60º равен –√3/2. А sin 60º равен √3/2. То есть sin –60º и sin 60º равны по модулю, но противоположны по знаку.
sin –210º равен 1/2. А sin 210º равен –1/2. То есть sin –210º и sin 210º равны по модулю, но противоположны по знаку.
Таким образом, мы доказали, что sin (–t) = –sin t.
Посмотрите, что происходит с тангенсами и котангенсами этих углов – и вы сами легко докажете себе верность двух других тождеств, приведенных в таблице.
Вывод: косинус – четная функция, синус, тангенс и котангенс – нечетные функции.
Свойство 2: Так как t = t + 2πk, то:
sin (t + 2πk) = sin t
cos (t + 2πk) = cos t
Пояснение : t и t + 2πk – это одна и та же точка на числовой окружности. Просто в случае с 2πk мы совершаем определенное количество полных оборотов по окружности, прежде чем приходим к точке t. Значит, и равенства, изложенные в этой таблице, очевидны.
Свойство 3: Если две точки окружности находятся друг против друга относительно центра О, то их синусы и косинусы равны по модулю, но противоположны по знаку, а их тангенсы и котангенсы одинаковы как по модулю, так и по знаку.
sin (t + π) = –sin t
cos (t + π) = –cos t
tg (t + π) = tg t
ctg (t + π) = ctg t
Пояснение : Пусть точка М находится в первой четверти. Она имеет положительное значение синуса и косинуса. Проведем от этой точки диаметр – то есть отрезок, проходящий через центр оси координат и заканчивающийся в точке окружности напротив. Обозначим эту точку буквой N. Как видите, дуга MN равна половине окружности. Вы уже знаете, что половина окружности – это величина, равная π. Значит, точка N находится на расстоянии π от точки М. Говоря иначе, если к точке М прибавить расстояние π, то мы получим точку N, находящуюся напротив. Она находится в третьей четверти. Проверьте, и увидите: косинус и синус точки N – со знаком «минус» (x и y имеют отрицательные значения).
Тангенс и котангенс точки М имеют положительное значение. А тангенс и котангенс точки N? Ответ простой: ведь тангенс и котангенс – это отношение синуса и косинуса. В нашем примере синус и косинус точки N – со знаком «минус». Значит:
–sin t
tg (t + π) = ———— = tg t
–cos t
–cos t
ctg (t + π) = ———— = ctg t
–sin t
Мы доказали, что тангенс и котангенс диаметрально противоположных точек окружности имеют не только одинаковое значение, но и одинаковый знак.
Свойство 4: Если две точки окружности находятся в соседних четвертях, а расстояние между точками равно одной четверти окружности, то синус одной точки равен косинусу другой с тем же знаком, а косинус одной точки равен синусу второй с противоположным знаком.
π
sin (t + —) = cos t
2
π
cos (t + —) = –sin t
2
Тригонометрические тождества
- $tgα=/$
- $ctgα=/$
- $sin^2α+cos^2α=1$ (Основное тригонометрическое тождество)
Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса
Вычислить $sin t$, если $cos t = / ; t ∈(/;2π)$
Найдем $sin t$ через основное тригонометрическое тождество. И определим знак, так как $t ∈(/;2π)$ -это четвертая четверть, то синус в ней имеет знак минус
Как найти sin t
Свойство 1:
sin (–t) = –sin t
cos (–t) = cos t
tg (–t) = –tg t
ctg (–t) = –ctg t
Пояснение . Пусть t = –60º и t = –210º (см.рисунок).
cos –60º равен 1/2. Но cos 60º тоже равен 1/2. То есть косинусы –60º и 60º равны как по модулю, так и по знаку: cos –60º = cos 60º.
cos –210º равен –√3/2. Но cos 210º тоже равен –√3/2. То есть: cos –210º = cos 210º.
Таким образом, мы доказали, что cos (–t) = cos t.
sin –60º равен –√3/2. А sin 60º равен √3/2. То есть sin –60º и sin 60º равны по модулю, но противоположны по знаку.
sin –210º равен 1/2. А sin 210º равен –1/2. То есть sin –210º и sin 210º равны по модулю, но противоположны по знаку.
Таким образом, мы доказали, что sin (–t) = –sin t.
Посмотрите, что происходит с тангенсами и котангенсами этих углов – и вы сами легко докажете себе верность двух других тождеств, приведенных в таблице.
Вывод: косинус – четная функция, синус, тангенс и котангенс – нечетные функции.
Свойство 2: Так как t = t + 2πk, то:
sin (t + 2πk) = sin t
cos (t + 2πk) = cos t
Пояснение : t и t + 2πk – это одна и та же точка на числовой окружности. Просто в случае с 2πk мы совершаем определенное количество полных оборотов по окружности, прежде чем приходим к точке t. Значит, и равенства, изложенные в этой таблице, очевидны.
Свойство 3: Если две точки окружности находятся друг против друга относительно центра О, то их синусы и косинусы равны по модулю, но противоположны по знаку, а их тангенсы и котангенсы одинаковы как по модулю, так и по знаку.
sin (t + π) = –sin t
cos (t + π) = –cos t
tg (t + π) = tg t
ctg (t + π) = ctg t
Пояснение : Пусть точка М находится в первой четверти (см.рисунок ниже). Она имеет положительное значение синуса и косинуса. Проведем от этой точки диаметр – то есть отрезок, проходящий через центр оси координат и заканчивающийся в точке окружности напротив. Обозначим эту точку буквой N. Как видите, дуга MN равна половине окружности. Мы знаем, что половина окружности – это величина, равная π. Значит, точка N находится на расстоянии π от точки М. Говоря иначе, если к точке М прибавить расстояние π, то мы получим точку N, находящуюся напротив:
Точка N имеет те же значения синуса и косинуса, что и точка М, но с противоположным знаком (минус). То есть синус точки N равен синусу точки М с противоположным знаком, косинус точки N также равен косинусу точки М, но тоже с противоположным знаком:
sin (M + π) = –sin M, cos (M + π) = –cos M.
sin (t + π) = –sin t, cos (t + π) = –cos t.
Мы доказали, что синус и косинус диаметрально противоположных точек равны по модулю, но противоположны по знаку.
Идем дальше. Тангенс и котангенс точки М имеют положительное значение. Но вычислите тангенс и котангенс точки N (разделите ее синус на косинус и косинус на синус) и увидите, что они тоже со знаком плюс.
–sin t
tg (t + π) = ———— = tg t
–cos t
–cos t
ctg (t + π) = ———— = ctg t
–sin t
Мы доказали, что тангенс и котангенс диаметрально противоположных точек окружности имеют не только одинаковое значение, но и одинаковый знак.
Свойство 4: Если две точки окружности находятся в соседних четвертях, а расстояние между точками равно одной четверти окружности, то синус одной точки равен косинусу другой с тем же знаком, а косинус одной точки равен синусу второй с противоположным знаком.
Четность тригонометрических функций
Косинус четная функция: $cos(-t)=cos t$
Синус, тангенс и котангенс нечетные функции: $sin(-t)= - sin t; tg(-t)= - tg t; ctg(-t)= - ctg t$
Читайте также: