Как найти sin между векторами
Решение: Найдем скалярное произведение векторов:
a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.
Найдем модули векторов:
| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5
Найдем угол между векторами:
cos α = | a · b | = | 24 | = | 24 | = 0.96 |
| a | · | b | | 5 · 5 | 25 |
Решение: Найдем скалярное произведение векторов:
a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.
Найдем модули векторов:
| a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
| b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2
Найдем угол между векторами:
cos α = | a · b | = | 40 | = | 40 | = | 4 | = 0.8 |
| a | · | b | | 5√ 2 · 5√ 2 | 50 | 5 |
Примеры вычисления угла между векторами для пространственных задач
Решение: Найдем скалярное произведение векторов:
a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.
Найдем модули векторов:
| a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6
Найдем угол между векторами:
cos α = | a · b | = | 28 | = | 14 |
| a | · | b | | 5 · 6 | 15 |
Решение: Найдем скалярное произведение векторов:
a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.
Найдем модули векторов:
| a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
| b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2
Найдем угол между векторами:
cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
© 2011-2021 Довжик МихаилКопирование материалов запрещено.
как вычислить синус угла между векторами по координатам векторов
Умножаем эти вектора. Их скалярное произведение равно произведению длин этих векторов на косинус угла между ними.
Угол нам неизвестен, зато известны координаты.
Математически запишем это так.
Пусть, даны вектора a и b
Тогда
Рассуждаем.
a*b-скалярное произведение векторов, равно сумме произведений соответствующих координат координат этих векторов, т. е. равно x1*x2+y1*y2
Значит, косинус угла между векторами равен:
Зная косинус угла, можем вычислить и его синус. Рассуждаем, как это сделать:
если косинус угла положительный, значит это угол лежит в 1 или 4 четверти, значит его синус либо положительный, либо отрицательный. Но т. к. угол между векторами-меньше или равен 180 градусов, то его синус - положительный. Аналогично рассуждаем, если косинус - отрицательный.
1. Угол между векторами. Скалярное произведение векторов
Угол между векторами может принимать значения от 0 ° до 180 ° включительно.
Если векторы не параллельны, то их можно расположить на пересекающихся прямых.
Если векторы расположены на параллельных прямых, то они могут образовать:
5. угол величиной 180 ° (векторы противоположно направлены).
Если один из векторов или оба вектора нулевые, то угол между ними будет равен 0 ° .
Скалярным произведением двух векторов называется число , равное произведению длин этих векторов на косинус угла между ними:
a → ⋅ b → = a → ⋅ b → ⋅ cos a → b → ˆ .
Результат скалярного произведения векторов является числом (в отличие от результата рассмотренных ранее действий с векторами — сложения, вычитания и умножения на число. В таких случаях результатом был вектор). При умножении вектора на вектор получается число, так как длины векторов — это числа, косинус угла — число — соответственно, их произведение также будет являться числом.
1. Если угол между векторами острый, то скалярное произведение будет положительным числом (так как косинус острого угла — положительное число).
Если векторы сонаправлены, то угол между ними будет равен 0 ° , а косинус равен \(1\), скалярное произведение также будет положительным.
2. Если угол между векторами тупой, то скалярное произведение будет отрицательным (так как косинус тупого угла — отрицательное число).
Если векторы направлены противоположно, то угол между ними будет равен 180 ° . Скалярное произведение также отрицательно, так как косинус этого угла равен \(-1\).
1. Если скалярное произведение векторов — положительное число, то угол между данными векторами острый.
2. Если скалярное произведение векторов — отрицательное число, то угол между данными векторами тупой.
1. Теорема синусов, теорема косинусов
Теорему Пифагора и тригонометрические функции острого угла можно использовать для вычисления элементов только в прямоугольном треугольнике.
Для нахождения элементов в произвольном треугольнике используется теорема синусов или теорема косинусов.
Стороны треугольника пропорциональны синусам противолежащих углов:
(в решении задачи одновременно пишутся две части, они образуют пропорцию).
неизвестных сторон треугольника, если даны два угла и одна сторона;
неизвестных углов треугольника, если даны две стороны и один прилежащий угол.
Так как один из углов треугольника может быть тупым, значение синуса тупого угла находится по формуле приведения sin 180 ° − α = sin α .
sin120 ° = sin 180 ° − 60 ° = sin60 ° = 3 2 ; sin150 ° = sin 180 ° − 30 ° = sin30 ° = 1 2 ; sin135 ° = sin 180 ° − 45 ° = sin45 ° = 2 2 .
a sinA = b sinB = c sinC = 2 R , где \(R\) — радиус описанной окружности.
Выразив радиус, получаем R = a 2 sinA , или R = b 2 sinB , или R = c 2 sinC .
Для вычисления элементов прямоугольного треугольника достаточно \(2\) данных величин (две стороны или сторона и угол).
Для вычисления элементов произвольного треугольника необходимо хотя бы \(3\) данных величины.
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
Также теорема исполняется для любой стороны треугольника:
неизвестной стороны треугольника, если даны две стороны и угол между ними;
вычисления косинуса неизвестного угла треугольника, если даны все стороны треугольника.
Значение косинуса тупого угла находится по формуле приведения cos 180 ° − α = − cos α .
cos120 ° = cos 180 ° − 60 ° = − cos60 ° = − 1 2 ; cos150 ° = cos 180 ° − 30 ° = − cos30 ° = − 3 2 ; cos135 ° = cos 180 ° − 45 ° = − cos45 ° = − 2 2 .
Если необходимо найти приблизительное значение синуса или косинуса другого угла или вычислить угол по найденному синусу или косинусу, то используется таблица или калькулятор.
Читайте также: